Schwarz triangle function
![]() | A request that this article title be changed to Schwarz triangle function is under discussion. Please do not move this article until the discussion is closed. |

Mathematical analysis → Complex analysis |
Complex analysis |
---|
![]() |
Complex numbers |
Basic theory |
Complex functions |
Theorems |
Geometric function theory |
People |
In complex analysis, the Schwarz triangle function or Schwarz s-function is a function that conformally maps the upper half plane to a triangle in the upper half plane having lines or circular arcs for edges. The target triangle is not necessarily a Schwarz triangle, although that case is the most mathematically interesting.
Through the theory of complex ordinary differential equations with regular singular points and the Schwarzian derivative, the triangle function can be expressed as the quotient of two solutions of a hypergeometric differential equation with real coefficients and singular points at 0, 1 and ∞. By the Schwarz reflection principle, the reflection group induces an action on the two dimensional space of solutions. On the orientation-preserving normal subgroup, this two-dimensional representation corresponds to the monodromy of the ordinary differential equation and induces a group of Möbius transformations on quotients of hypergeometric functions.
Formula
Let πα, πβ, and πγ be the interior angles at the vertices of the triangle (in radians). If any of α, β, and γ are greater than zero, then the Schwarz triangle function can be given in terms of hypergeometric functions as:
where
- a = (1−α−β−γ)/2,
- b = (1−α+β−γ)/2,
- c = 1−α,
- a′ = a − c + 1 = (1+α−β−γ)/2,
- b′ = b − c + 1 = (1+α+β−γ)/2, and
- c′ = 2 − c = 1 + α.
This formula can be derived using the Schwarzian derivative.
This function maps the upper half-plane to a spherical triangle if α + β + γ > 1, or a hyperbolic triangle if α + β + γ < 1. When α + β + γ = 1, then the triangle is a Euclidean triangle with straight edges: a = 0, , and the formula reduces to that given by the Schwarz–Christoffel transformation. In the special case of ideal triangles, where all the angles are zero, the triangle function yields the modular lambda function.
Value at singular points
This mapping has regular singular points at z = 0, 1, and ∞, corresponding to the vertices of the triangle with angles πα, πγ, and πβ respectively. At these singular points,[1]
- ,
- , and
- ,
where Γ(x) is the Gamma function.
Inverse
The inverse function is an automorphic function for this discrete group of Möbius transformations. This is a special case of a general scheme of Henri Poincaré that associates automorphic forms with ordinary differential equations with regular singular points.
When α, β, and γ are rational, the triangle is a Schwarz triangle. When α, β, and γ are each the reciprocal of an integer or zero, the triangle is a Möbius triangle, i.e. a non-overlapping Schwarz triangle. When the target triangle is a Möbius triangle, the inverse can be expressed as:
- Spherical: rational function
- Euclidean: elliptical function
- Hyperbolic: modular function
See also
References
- ^ Nehari 1975, pp. 315−316.
- ^ Lee, Laurence (1976). Conformal Projections based on Elliptic Functions. Cartographica Monographs. Vol. 16. University of Toronto Press. ISBN 9780919870161. Chapters also published in The Canadian Cartographer. 13 (1). 1976.
Sources
- Abramenko, Peter; Brown, Kenneth S. (2007). Buildings: Theory and Applications. Graduate Texts in Mathematics. Vol. 248. Springer-Verlag. ISBN 978-0-387-78834-0. MR 2439729.
- Ahlfors, Lars V. (1966), Complex Analysis (2nd ed.), McGraw Hill
- Beardon, Alan F. (1983), "Poincaré's Theorem", The Geometry of Discrete Groups, Graduate Texts in Mathematics, vol. 91, Springer, pp. 242–252, ISBN 0-387-90788-2
- Beardon, Alan F. (1984), "A primer on Riemann surfaces", London Mathematical Society Lecture Note Series, 78, Cambridge University Press, ISBN 0521271045
- Berger, Marcel (2010), Geometry revealed. A Jacob's ladder to modern higher geometry, translated by Lester Senechal, Springer, ISBN 978-3-540-70996-1
- Berndt, Bruce C.; Knopp, Marvin I. (2008), Hecke's theory of modular forms and Dirichlet series, Monographs in Number Theory, vol. 5, World Scientific, ISBN 978-981-270-635-5
- Björner, Anders; Brenti, Francesco (2005). Combinatorics of Coxeter groups. Graduate Texts in Mathematics. Vol. 231. Springer-Verlag. ISBN 978-3540-442387. MR 2133266.
- Borel, Armand (1997). "I. Basic material on SL2(R), discrete subgroups, and the upper half-plane". Automorphic forms on SL2(R). Cambridge Tracts in Mathematics. Vol. 130. Cambridge University Press. ISBN 0-521-58049-8. MR 1482800.
- Bourbaki, Nicolas (1968). "Chapitre IV : Groupes de Coxeter et systèmes de Tits • Chapitre V : Groupes engendrés par des réflexions". Groupes et algèbres de Lie. Éléments de mathématique (in French). Paris: Hermann. pp. 1–56, 57–141. MR 0240238. Reprinted by Masson in 1981 as ISBN 2-225-76076-4.
- Bridson, Martin R.; Haefliger, André (1999). "I. Basic material on SL2(R), discrete subgroups, and the upper half-plane". Metric spaces of non-positive curvature (PDF). Grundlehren der mathematischen Wissenschaften. Vol. 319. Springer-Verlag. ISBN 3-540-64324-9. MR 1744486.
- Brown, Kenneth S. (1989). Buildings. Springer-Verlag. ISBN 0-387-96876-8. MR 0969123.
- Busemann, Herbert (1955), The geometry of geodesics, Academic Press
- Carathéodory, Constantin (1954), Theory of functions of a complex variable, vol. 2, translated by F. Steinhardt, Chelsea
- Chandrasekharan, K. (1985), Elliptic functions, Grundlehren der Mathematischen Wissenschaften, vol. 281, Springer, ISBN 3-540-15295-4
- Davis, Michael W. (2008), "Appendix D. The Geometric Representation", The geometry and topology of Coxeter groups, London Mathematical Society Monographs, vol. 32, Princeton University Press, pp. 439–447, ISBN 978-0-691-13138-2
- de la Harpe, Pierre (1991). "An invitation to Coxeter groups". Group theory from a geometrical viewpoint (Trieste, 1990). World Scientific. pp. 193–253. MR 1170367.
- Deodhar, Vinay V. (1982). "On the root system of a Coxeter group". Comm. Algebra. 10 (6): 611–630. doi:10.1080/00927878208822738. MR 0647210.
- Deodhar, Vinay V. (1986). "Some characterizations of Coxeter groups". Enseign. Math. 32: 111–120. MR 0850554.
- de Rham, G. (1971). "Sur les polygones générateurs de groupes fuchsiens". Enseign. Math. (in French). 17: 49–61.
- Ellis, Graham (2019). "Triangle groups". An Invitation to Computational Homotopy. Oxford University Press. pp. 441–444. ISBN 978-0-19-883298-0. MR 3971587.
- Epstein, David B. A.; Petronio, Carlo (1994). "An exposition of Poincaré's polyhedron theorem". Enseign. Math. 40: 113–170. MR 1279064.
- Evans, Ronald (1973), "A fundamental region for Hecke's modular group", Journal of Number Theory, 5 (2): 108–115, Bibcode:1973JNT.....5..108E, doi:10.1016/0022-314x(73)90063-2
- Fricke, Robert; Klein, Felix (1897), Vorlesungen über die Theorie der automorphen Functionen. Erster Band; Die gruppentheoretischen Grundlagen (in German), B. G. Teubner, ISBN 978-1-4297-0551-6, JFM 28.0334.01
{{citation}}
: ISBN / Date incompatibility (help) - Graham, Ronald L.; Knuth, Donald E.; Patashnik, Oren (1994), Concrete mathematics (2nd ed.), Addison-Wesley, pp. 116–118, ISBN 0-201-55802-5
- Hardy, G. H.; Wright, E. M. (2008), An introduction to the theory of numbers (6th ed.), Oxford University Press, ISBN 978-0-19-921986-5
- Hatcher, Allen (2013). "1. The Farey Diagram". Topology of Numbers (PDF). Cornell University. Retrieved 25 February 2022.
- Hecke, E. (1935), "Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung", Mathematische Annalen (in German), 112: 664–699, doi:10.1007/bf01565437
- Heckman, Gert J. (2018). "Coxeter Groups" (PDF). Radboud University Nijmegen. Retrieved 3 March 2022.
- Helgason, Sigurdur (1978), Differential geometry, Lie groups and symmetric spaces, Academic Press, ISBN 0-12-338460-5
- Helgason, Sigurdur (2000), Groups and geometric analysis. Integral geometry, invariant differential operators, and spherical functions, Mathematical Surveys and Monographs, vol. 83, American Mathematical Society, ISBN 0-8218-2673-5
- Hille, Einar (1976), Ordinary differential equations in the complex domain, Wiley-Interscience
- Hiller, Howard (1982). Geometry of Coxeter groups. Research Notes in Mathematics. Vol. 54. Pitman. ISBN 0-273-08517-4. MR 0649068.
- Howlett, Robert (1996). "Introduction to Coxeter Groups". Australian National University Geometric Group Theory Workshop. Sydney.
{{cite book}}
: CS1 maint: location missing publisher (link) - Humphreys, James E. (1990). Reflection groups and Coxeter groups. Cambridge Studies in Advanced Mathematics. Vol. 29. Cambridge University Press. ISBN 0-521-37510-X. MR 1066460.
- Ince, E. L. (1944), Ordinary Differential Equations, Dover
- Iversen, Birger (1992), Hyperbolic geometry, London Mathematical Society Student Texts, vol. 25, Cambridge University Press, ISBN 0-521-43508-0
- Iwahori, Nagayoshi (1966). "On discrete reflection groups on symmetric Riemannian manifolds". Proc. U.S.-Japan Seminar in Differential Geometry (Kyoto, 1965). Tokyo: Nippon Hyoronsha. pp. 57–62. MR 0217741.
- Johnson, Norman W. (2018). Geometries and Transformations. Cambridge University Press. ISBN 978-1-107-10340-5. MR 3839612.
- Magnus, Wilhelm (1974), Noneuclidean tesselations and their groups, Pure and Applied Mathematics, vol. 61, Academic Press
- Magnus, Wilhelm; Karrass, Abraham; Solitar, Donald (1976). Combinatorial group theory: Presentations of groups in terms of generators and relations (Second revised ed.). Dover Books. MR 0207802.
- Maskit, Bernard (1971), "On Poincaré's theorem for fundamental polygons", Advances in Mathematics, 7 (3): 219–230, doi:10.1016/s0001-8708(71)80003-8
- Maskit, Bernard (1988). "Poincaré's theorem". Kleinian groups. Grundlehren der mathematischen Wissenschaften. Vol. 287. Springer-Verlag. ISBN 3-540-17746-9. MR 0959135.
- Maxwell, George (1982). "Sphere packings and hyperbolic reflection groups". J. Algebra. 79: 78–97. doi:10.1016/0021-8693(82)90318-0. MR 0679972.
- McMullen, Curtis T. (1998), "Hausdorff dimension and conformal dynamics. III. Computation of dimension", American Journal of Mathematics, 120: 691–721, doi:10.1353/ajm.1998.0031, S2CID 15928775
- Matsumoto, Hideya (1964). "Générateurs et relations des groupes de Weyl généralisés". C. R. Acad. Sci. Paris (in French). 258: 3419–3422. MR 0183818.
- Milnor, John (1975). "On the 3-dimensional Brieskorn manifolds M(p,q,r)". Knots, groups, and 3-manifolds (Papers dedicated to the memory of R. H. Fox). Ann. of Math. Studies. Vol. 84. Princeton University Press. pp. 175–225. MR 0418127.
- Mumford, David; Series, Caroline; Wright, David (2015), Indra's pearls. The vision of Felix Klein, Cambridge University Press, ISBN 978-1-107-56474-9
- Nehari, Zeev (1975), Conformal mapping, Dover
- Ratcliffe, John G. (2019). Foundations of hyperbolic manifolds. Graduate Texts in Mathematics. Vol. 149 (Third ed.). Springer. ISBN 978-3-030-31597-9. MR 1299730.
- Schlag, Wilhelm (2014). "Uniformization". A course in complex analysis and Riemann surfaces. Graduate Studies in Mathematics. Vol. 154. American Mathematical Society. pp. 305–351. ISBN 978-0-8218-9847-5. MR 3186310.
- Series, Caroline (2015), Continued fractions and hyperbolic geometry, Loughborough LMS Summer School (PDF), retrieved 15 February 2017
- Siegel, C. L. (1971), Topics in complex function theory, vol. II. Automorphic functions and abelian integrals, translated by A. Shenitzer; M. Tretkoff, Wiley-Interscience, pp. 85–87, ISBN 0-471-60843-2
- Steinberg, Robert (1968). Endomorphisms of linear algebraic groups. Memoirs of the American Mathematical Society. Vol. 80. American Mathematical Society. MR 0230728.
- Szenthe, J. (1993). "A significant property of real hyperbolic spaces". Proceedings of Symposium in Geometry (Cluj-Napoca and Tîrgu Mureş, 1992). pp. 153–161. MR 1333415.
- Takeuchi, Kisao (1977a), "Arithmetic triangle groups", Journal of the Mathematical Society of Japan, 29: 91–106, doi:10.2969/jmsj/02910091
- Takeuchi, Kisao (1977b), "Commensurability classes of arithmetic triangle groups", Journal of the Faculty of Science, the University of Tokyo, Section IA, Mathematics, 24: 201–212
- Threlfall, W. (1932), "Gruppenbilder" (PDF), Abhandlungen der Mathematisch-physischen Klasse der Sachsischen Akademie der Wissenschaften, 41, Hirzel: 1–59
- Tits, Jacques (2013). "Groupes et géométries de Coxeter". In F. Buekenhout; B. M. Mühlherr; J-P. Tignol; H. Van Maldeghem (eds.). Œuvres/Collected works, Volume I. Heritage of European Mathematics (in French). Zürich: European Mathematical Society. pp. 803–817. ISBN 978-3-03719-126-2. This manuscript was the foundational text for the theory of Coxeter groups, used for preparing Chapter IV of Bourbaki's Groupes et Algèbres de Lie; it was first published in 2001.
- Vinberg, Ernest B. (1971). "Discrete linear groups generated by reflections". Mathematics of the USSR-Izvestiya. 5 (5). Translated by P. Flor: 1083–1119. Bibcode:1971IzMat...5.1083V. doi:10.1070/IM1971v005n05ABEH001203. MR 0302779.
- Vinberg, Ernest B. (1985). "Hyperbolic reflection groups". Russian Mathematical Surveys. 40 (1). Translated by J. Wiegold. London Mathematical Society: 31–75. Bibcode:1985RuMaS..40...31V. doi:10.1070/RM1985v040n01ABEH003527.
- Vinberg, Ernest B.; Shvartsman, O. V. (1993). "Discrete groups of motions of spaces of constant curvature". Geometry II: Spaces of Constant Curvature. Encyclopaedia Math. Sci. Vol. 29. Springer-Verlag. pp. 139–248. ISBN 3-540-52000-7. MR 1254933.
- Weber, Matthias (2005), "Kepler's small stellated dodecahedron as a Riemann surface", Pacific Journal of Mathematics, 220: 167–182, doi:10.2140/pjm.2005.220.167
- Wolf, Joseph A. (2011), Spaces of constant curvature (6th ed.), AMS Chelsea, ISBN 978-0-8218-5282-8
- Yoshida, Masaaki (1987). Fuchsian differential equations, with special emphasis on the Gauss-Schwarz theory. Aspects of Mathematics. Vol. E11. Friedr. Vieweg & Sohn. ISBN 3-528-08971-7. MR 0986252.
Further reading
- Ford, Lester R. (1951) [1929], Automorphic Functions, American Mathematical Society, ISBN 0821837419
{{citation}}
: ISBN / Date incompatibility (help) - Lehner, Joseph (1964), Discontinuous groups and automorphic functions, Mathematical Surveys, vol. 8, American Mathematical Society. (Note that Lehner has pointed out that his proof of Poincaré's polygon theorem is incomplete. He has subsequently recommended de Rham's 1971 exposition.)
- Sansone, Giovanni; Gerretsen, Johan (1969), Lectures on the theory of functions of a complex variable. II: Geometric theory, Wolters-Noordhoff
- Series, Caroline (1985), "The modular surface and continued fractions", Journal of the London Mathematical Society, 31: 69–80, doi:10.1112/jlms/s2-31.1.69
- Thurston, William P. (1997), Silvio Levy (ed.), Three-dimensional geometry and topology. Vol. 1., Princeton Mathematical Series, vol. 35, Princeton University Press, ISBN 0-691-08304-5