4U 0142+61
This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. (May 2017) |
| Observation data Epoch J2000 Equinox J2000 | |
|---|---|
| Constellation | Cassiopeia |
| Right ascension | 01 46 22.41s |
| Declination | + 61° 45' 03.2" |
| Apparent magnitude (V) | 25.62 |
| Characteristics | |
| B−V color index | 0.63 |
| Variable type | Suspected |
| Astrometry | |
| Proper motion (μ) | RA: 26.58958 mas/yr Dec.: +61.75264 mas/yr |
| Details | |
| Luminosity | 0.63 L☉ |
| Rotation | 8.68832905 s |
| Age | ? years |
| Other designations | |
| PSR J0146+61, 1RXS J014621.5+614509 | |
| Database references | |
| SIMBAD | data |
4U 0142+61 is a magnetar at an approximate distance of 13000 light-years from Earth, located in the constellation Cassiopeia.
In an article published in Nature on April 6, 2006, Deepto Chakrabarty et al. of MIT revealed that a circumstellar disk was discovered around the pulsar. This may prove that pulsar planets are common around neutron stars. The debris disk is likely to be composed of mainly heavier metals. The star had undergone a supernova event approximately 100,000 years ago. The disk orbits about 1.6 million kilometers away from the pulsar and probably contains about 10 Earth-masses of material.[1] This also marks the first time that a pulsar has been discovered with a debris disk orbiting it.[2]
In May 2022 the first study of IXPE has hinted the possibility of vacuum birefringence on 4U 0142+61[3][4]
References
- ^ Wang, Zhongxiang; Chakrabarty, Deepto; Kaplan, David L. (April 2006). "A debris disk around an isolated young neutron star". Nature. 440 (7085): 772–775. arXiv:astro-ph/0604076. Bibcode:2006Natur.440..772W. doi:10.1038/nature04669. ISSN 0028-0836. PMID 16598251.
- ^ Ertan, Ü; Erkut, M. H.; Ekşi, K. Y.; Alpar, M. A. (March 2007). "The Anomalous X-Ray Pulsar 4U 0142+61: A Neutron Star with a Gaseous Fallback Disk". The Astrophysical Journal. 657 (1): 441–447. arXiv:astro-ph/0612587. Bibcode:2007ApJ...657..441E. doi:10.1086/510303.
- ^ Taverna, Roberto; Turolla, Roberto; Muleri, Fabio; Heyl, Jeremy; Zane, Silvia; Baldini, Luca; Caniulef, Denis González; Bachetti, Matteo; Rankin, John; Caiazzo, Ilaria; Di Lalla, Niccolò; Doroshenko, Victor; Errando, Manel; Gau, Ephraim; Kırmızıbayrak, Demet (2022-05-18). "Polarized x-rays from a magnetar". arXiv:2205.08898 [astro-ph].
- ^ "X-ray polarisation probes extreme physics". CERN Courier. 2022-06-30. Retrieved 2022-08-15.
- Scientists crack mystery of planet formation (April 5, 2006) CNN
- Spitzer Sees New Planet Disk Around Dead Star (April 7, 2006) SpaceDaily
- Birth of 'Phoenix' Planets?
- 4U0142+61
- 1RXS J014621.5+614509