This is an old revision of this page, as edited by Iyerkri(talk | contribs) at 22:27, 3 August 2022(→Motivation: removed unnecessary steps. Also removed an irrelevant comment.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.Revision as of 22:27, 3 August 2022 by Iyerkri(talk | contribs)(→Motivation: removed unnecessary steps. Also removed an irrelevant comment.)
Venn diagram showing additive and subtractive relationships various information measures associated with correlated variables and . The area contained by both circles is the joint entropy. The circle on the left (red and violet) is the individual entropy, with the red being the conditional entropy . The circle on the right (blue and violet) is , with the blue being . The violet is the mutual information.
In information theory, the conditional entropy quantifies the amount of information needed to describe the outcome of a random variable given that the value of another random variable is known. Here, information is measured in shannons, nats, or hartleys. The entropy of conditioned on is written as .
Note: Here, the convention is that the expression should be treated as being equal to zero. This is because .[1]
Intuitive explanation of the definition :
According to the definition, where associates to the information content of given , which is the amount of information needed to describe the event given . According to the law of large numbers, is the arithmetic mean of a large number of independent realizations of .
Motivation
Let be the entropy of the discrete random variable conditioned on the discrete random variable taking a certain value . Denote the support sets of and by and . Let have probability mass function. The unconditional entropy of is calculated as , i.e.
Note that is the result of averaging over all possible values that may take. Also, if the above sum is taken over a sample , the expected value is known in some domains as equivocation.[2]
Given discrete random variables with image and with image , the conditional entropy of given is defined as the weighted sum of for each possible value of , using as the weights:[3]: 15
Properties
Conditional entropy equals zero
if and only if the value of is completely determined by the value of .
Conditional entropy of independent random variables
Assume that the combined system determined by two random variables and has joint entropy, that is, we need bits of information on average to describe its exact state. Now if we first learn the value of , we have gained bits of information. Once is known, we only need bits to describe the state of the whole system. This quantity is exactly , which gives the chain rule of conditional entropy:
Although the specific-conditional entropy can be either less or greater than for a given random variate of , can never exceed .
Conditional differential entropy
Definition
The above definition is for discrete random variables. The continuous version of discrete conditional entropy is called conditional differential (or continuous) entropy. Let and be a continuous random variables with a joint probability density function. The differential conditional entropy is defined as[3]: 249
Eq.2
Properties
In contrast to the conditional entropy for discrete random variables, the conditional differential entropy may be negative.
As in the discrete case there is a chain rule for differential entropy:
Notice however that this rule may not be true if the involved differential entropies do not exist or are infinite.
Joint differential entropy is also used in the definition of the mutual information between continuous random variables:
with equality if and only if and are independent.[3]: 253
Relation to estimator error
The conditional differential entropy yields a lower bound on the expected squared error of an estimator. For any random variable , observation and estimator the following holds:[3]: 255
^Hellman, M.; Raviv, J. (1970). "Probability of error, equivocation, and the Chernoff bound". IEEE Transactions on Information Theory. 16 (4): 368–372. doi:10.1109/TIT.1970.1054466.