Jump to content

Locally catenative sequence

From Wikipedia, the free encyclopedia
This is the current revision of this page, as edited by Tea2min (talk | contribs) at 08:21, 21 July 2022 (top: Word (mathematics) redirects to Word (group theory). This is not what is meant here.). The present address (URL) is a permanent link to this version.
(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

In mathematics, a locally catenative sequence is a sequence of words in which each word can be constructed as the concatenation of previous words in the sequence.[1]

Formally, an infinite sequence of words w(n) is locally catenative if, for some positive integers k and i1,...ik:

Some authors use a slightly different definition in which encodings of previous words are allowed in the concatenation.[2]

Examples

[edit]

The sequence of Fibonacci words S(n) is locally catenative because

The sequence of Thue–Morse words T(n) is not locally catenative by the first definition. However, it is locally catenative by the second definition because

where the encoding μ replaces 0 with 1 and 1 with 0.

References

[edit]
  1. ^ Rozenberg, Grzegorz; Salomaa, Arto (1997). Handbook of Formal Languages. Springer. p. 262. ISBN 3-540-60420-0.
  2. ^ Allouche, Jean-Paul; Shallit, Jeffrey (2003). Automatic Sequences. Cambridge. p. 237. ISBN 0-521-82332-3.