This article is within the scope of WikiProject Mathematics, a collaborative effort to improve the coverage of mathematics on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.MathematicsWikipedia:WikiProject MathematicsTemplate:WikiProject Mathematicsmathematics
This article is within the scope of WikiProject Numbers, a collaborative effort to improve the coverage of Numbers on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.NumbersWikipedia:WikiProject NumbersTemplate:WikiProject NumbersNumbers
I hope someone improves this article so that it defines the Veblen function. Right now it simply seems to state a bunch of properties of this function, without asserting that some set of properties characterizes it. John Baez (talk) 06:08, 4 November 2012 (UTC)[reply]
In the lead it gives the general definition, "If φ0 is any normal function, then for any non-zero ordinal α, φα is the function enumerating the common fixed points of φβ for β<α.". In the first section, it defines "Veblen hierarchy" by specifying that "In the special case when φ0(α)=ωα, this family of functions is known as the Veblen hierarchy.". JRSpriggs (talk) 10:15, 4 November 2012 (UTC)[reply]
Set theoretic definitions
For the binary Veblen hierarchy, a formal definition using recursion on α and β is: