Template:DomainsImagesAndPrototypesOfTrigAndInverseTrigFunctions
Usage with no options
Calling
will display:
Name |
Symbol | Domain | Image/Range | Inverse function |
Domain | Image of principal values | ||||
---|---|---|---|---|---|---|---|---|---|---|
sine | ||||||||||
cosine | ||||||||||
tangent | ||||||||||
cotangent | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle \R} | |||||||||
secant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle \arcsec} | |||||||||
cosecant |
With includeTableDescription
Calling
{{DomainsImagesAndPrototypesOfTrigAndInverseTrigFunctions|includeTableDescription=true}}
will display:
The table below displays names and domains of the inverse trigonometric functions along with the range of their usual principal values in radians.
Name |
Symbol | Domain | Image/Range | Inverse function |
Domain | Image of principal values | ||||
---|---|---|---|---|---|---|---|---|---|---|
sine | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle [-1, 1]} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle \left[-\tfrac\pi2, \tfrac\pi2\right]} | ||||||||
cosine | ||||||||||
tangent | ||||||||||
cotangent | ||||||||||
secant | ||||||||||
cosecant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle \to} |
With includeTableDescription and includeExplanationOfNotation
Calling
{{DomainsImagesAndPrototypesOfTrigAndInverseTrigFunctions|includeTableDescription=true|includeExplanationOfNotation=true}}
will display:
The table below displays names and domains of the inverse trigonometric functions along with the range of their usual principal values in radians.
Name |
Symbol | Domain | Image/Range | Inverse function |
Domain | Image of principal values | ||||
---|---|---|---|---|---|---|---|---|---|---|
sine | ||||||||||
cosine | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle \to} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle [0, \pi]} | ||||||||
tangent | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle \pi \Z + \left(-\tfrac\pi2, \tfrac\pi2\right)} | |||||||||
cotangent | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle \to} | |||||||||
secant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle \arcsec} | |||||||||
cosecant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle \to} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle \arccsc} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle \left[-\tfrac\pi2, \tfrac\pi2\right] \setminus \{0\}} |
The symbol denotes the set of all real numbers and denotes the set of all integers. The set of all integer multiples of is denoted by
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle \pi \Z ~:=~ \{ \pi n \;:\; n \in \Z \} ~=~ \{ \ldots,\, -2\pi,\, -\pi,\, 0,\, \pi,\, 2\pi,\,\ldots \}.}
The symbol denotes set subtraction so that, for instance, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle \R \setminus (-1, 1)} is the set of points in (that is, real numbers) that are not in the interval Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle (-1, 1),} which in this case is equal to the set of all points in the two intervals
The Minkowski sum notation and that is used above to concisely write the domains of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle \cot, \csc, \tan, \text{ and } \sec} is now explained.
Domain of cotangent and cosecant : The domains of and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle \,\csc\,} are the same. They are the set of all angles at which i.e. all real numbers that are not of the form for some integer
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle \begin{align} \pi \Z + (0, \pi) &= \cdots \cup (-2 \pi, -\pi) \cup (-\pi, 0) \cup (0, \pi) \cup (\pi, 2\pi) \cup \cdots \\ &= \R \setminus \pi \Z \end{align} }
Domain of tangent Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle \tan} and secant Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle \sec} : The domains of and are the same. They are the set of all angles Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle \theta} at which which can also be written as
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle \begin{align} \pi \Z + \left(- \tfrac{\pi}{2}, \tfrac{\pi}{2}\right) &= \cdots \cup \bigl({-\tfrac{3\pi}{2}}, {-\tfrac{\pi}{2}}\bigr) \cup \bigl({-\tfrac{\pi}{2}}, \tfrac{\pi}{2}\bigr) \cup \bigl(\tfrac{\pi}{2}, \tfrac{3\pi}{2}\bigr) \cup \cdots \\ &= \R \setminus \left(\tfrac{\pi}{2} + \pi \Z\right) \\ \end{align}}