Buchholz's psi-functions are a hierarchy of single-argument ordinal functions
ψ
ν
(
α
)
{\displaystyle \psi _{\nu }(\alpha )}
introduced by German mathematician Wilfried Buchholz in 1986. These functions are a simplified version of the
θ
{\displaystyle \theta }
-functions, but nevertheless have the same strength[clarification needed ] as those. Later on this approach was extended by Jaiger[ note 1] and Schütte .[ 1]
Definition
Buchholz defined his functions as follows. Define:
The functions ψv (α) for α an ordinal, v an ordinal at most ω, are defined by induction on α as follows:
ψv (α) is the smallest ordinal not in C v (α)
where C v (α) is the smallest set such that
C v (α) contains all ordinals less than Ωv
C v (α) is closed under ordinal addition
C v (α) is closed under the functions ψu (for u ≤ω) applied to arguments less than α.
The limit of this notation is the Takeuti–Feferman–Buchholz ordinal .
Properties
Let
P
{\displaystyle P}
be the class of additively principal ordinals. Buchholz showed following properties of this functions:
ψ
ν
(
0
)
=
Ω
ν
,
{\displaystyle \psi _{\nu }(0)=\Omega _{\nu },}
[ 2] : p.197
ψ
ν
(
α
)
∈
P
,
{\displaystyle \psi _{\nu }(\alpha )\in P,}
[ 2] : p.197
ψ
ν
(
α
+
1
)
=
min
{
γ
∈
P
:
ψ
ν
(
α
)
<
γ
}
if
α
∈
C
ν
(
α
)
,
{\displaystyle \psi _{\nu }(\alpha +1)=\min\{\gamma \in P:\psi _{\nu }(\alpha )<\gamma \}{\text{ if }}\alpha \in C_{\nu }(\alpha ),}
[ 2] : p.199
Ω
ν
≤
ψ
ν
(
α
)
<
Ω
ν
+
1
{\displaystyle \Omega _{\nu }\leq \psi _{\nu }(\alpha )<\Omega _{\nu +1}}
[ 2] : p.197
ψ
0
(
α
)
=
ω
α
if
α
<
ε
0
,
{\displaystyle \psi _{0}(\alpha )=\omega ^{\alpha }{\text{ if }}\alpha <\varepsilon _{0},}
[ 2] : p.199
ψ
ν
(
α
)
=
ω
Ω
ν
+
α
if
α
<
ε
Ω
ν
+
1
and
ν
≠
0
,
{\displaystyle \psi _{\nu }(\alpha )=\omega ^{\Omega _{\nu }+\alpha }{\text{ if }}\alpha <\varepsilon _{\Omega _{\nu }+1}{\text{ and }}\nu \neq 0,}
[ 2] : p.199
θ
(
ε
Ω
ν
+
1
,
0
)
=
ψ
(
ε
Ω
ν
+
1
)
for
0
<
ν
≤
ω
.
{\displaystyle \theta (\varepsilon _{\Omega _{\nu }+1},0)=\psi (\varepsilon _{\Omega _{\nu }+1}){\text{ for }}0<\nu \leq \omega .}
[ 2] : p.206
The normal form for 0 is 0. If
α
{\displaystyle \alpha }
is a nonzero ordinal number
α
<
Ω
ω
{\displaystyle \alpha <\Omega _{\omega }}
then the normal form for
α
{\displaystyle \alpha }
is
α
=
ψ
ν
1
(
β
1
)
+
ψ
ν
2
(
β
2
)
+
⋯
+
ψ
ν
k
(
β
k
)
{\displaystyle \alpha =\psi _{\nu _{1}}(\beta _{1})+\psi _{\nu _{2}}(\beta _{2})+\cdots +\psi _{\nu _{k}}(\beta _{k})}
where
ν
i
∈
N
0
,
k
∈
N
>
0
,
β
i
∈
C
ν
i
(
β
i
)
{\displaystyle \nu _{i}\in \mathbb {N} _{0},k\in \mathbb {N} _{>0},\beta _{i}\in C_{\nu _{i}}(\beta _{i})}
and
ψ
ν
1
(
β
1
)
≥
ψ
ν
2
(
β
2
)
≥
⋯
≥
ψ
ν
k
(
β
k
)
{\displaystyle \psi _{\nu _{1}}(\beta _{1})\geq \psi _{\nu _{2}}(\beta _{2})\geq \cdots \geq \psi _{\nu _{k}}(\beta _{k})}
and each
β
i
{\displaystyle \beta _{i}}
is also written in normal form.
Fundamental sequences
The fundamental sequence for an ordinal number
α
{\displaystyle \alpha }
with cofinality
cof
(
α
)
=
β
{\displaystyle \operatorname {cof} (\alpha )=\beta }
is a strictly increasing sequence
(
α
[
η
]
)
η
<
β
{\displaystyle (\alpha [\eta ])_{\eta <\beta }}
with length
β
{\displaystyle \beta }
and with limit
α
{\displaystyle \alpha }
, where
α
[
η
]
{\displaystyle \alpha [\eta ]}
is the
η
{\displaystyle \eta }
-th element of this sequence. If
α
{\displaystyle \alpha }
is a successor ordinal then
cof
(
α
)
=
1
{\displaystyle \operatorname {cof} (\alpha )=1}
and the fundamental sequence has only one element
α
[
0
]
=
α
−
1
{\displaystyle \alpha [0]=\alpha -1}
. If
α
{\displaystyle \alpha }
is a limit ordinal then
cof
(
α
)
∈
{
ω
}
∪
{
Ω
μ
+
1
∣
μ
≥
0
}
{\displaystyle \operatorname {cof} (\alpha )\in \{\omega \}\cup \{\Omega _{\mu +1}\mid \mu \geq 0\}}
.
For nonzero ordinals
α
<
Ω
ω
{\displaystyle \alpha <\Omega _{\omega }}
, written in normal form, fundamental sequences are defined as follows:
If
α
=
ψ
ν
1
(
β
1
)
+
ψ
ν
2
(
β
2
)
+
⋯
+
ψ
ν
k
(
β
k
)
{\displaystyle \alpha =\psi _{\nu _{1}}(\beta _{1})+\psi _{\nu _{2}}(\beta _{2})+\cdots +\psi _{\nu _{k}}(\beta _{k})}
where
k
≥
2
{\displaystyle k\geq 2}
then
cof
(
α
)
=
cof
(
ψ
ν
k
(
β
k
)
)
{\displaystyle \operatorname {cof} (\alpha )=\operatorname {cof} (\psi _{\nu _{k}}(\beta _{k}))}
and
α
[
η
]
=
ψ
ν
1
(
β
1
)
+
⋯
+
ψ
ν
k
−
1
(
β
k
−
1
)
+
(
ψ
ν
k
(
β
k
)
[
η
]
)
{\displaystyle \alpha [\eta ]=\psi _{\nu _{1}}(\beta _{1})+\cdots +\psi _{\nu _{k-1}}(\beta _{k-1})+(\psi _{\nu _{k}}(\beta _{k})[\eta ])}
,
If
α
=
ψ
0
(
0
)
=
1
{\displaystyle \alpha =\psi _{0}(0)=1}
, then
cof
(
α
)
=
1
{\displaystyle \operatorname {cof} (\alpha )=1}
and
α
[
0
]
=
0
{\displaystyle \alpha [0]=0}
,
If
α
=
ψ
ν
+
1
(
0
)
{\displaystyle \alpha =\psi _{\nu +1}(0)}
, then
cof
(
α
)
=
Ω
ν
+
1
{\displaystyle \operatorname {cof} (\alpha )=\Omega _{\nu +1}}
and
α
[
η
]
=
Ω
ν
+
1
[
η
]
=
η
{\displaystyle \alpha [\eta ]=\Omega _{\nu +1}[\eta ]=\eta }
,
If
α
=
ψ
ν
(
β
+
1
)
{\displaystyle \alpha =\psi _{\nu }(\beta +1)}
then
cof
(
α
)
=
ω
{\displaystyle \operatorname {cof} (\alpha )=\omega }
and
α
[
η
]
=
ψ
ν
(
β
)
⋅
η
{\displaystyle \alpha [\eta ]=\psi _{\nu }(\beta )\cdot \eta }
(and note:
ψ
ν
(
0
)
=
Ω
ν
{\displaystyle \psi _{\nu }(0)=\Omega _{\nu }}
),
If
α
=
ψ
ν
(
β
)
{\displaystyle \alpha =\psi _{\nu }(\beta )}
and
cof
(
β
)
∈
{
ω
}
∪
{
Ω
μ
+
1
∣
μ
<
ν
}
{\displaystyle \operatorname {cof} (\beta )\in \{\omega \}\cup \{\Omega _{\mu +1}\mid \mu <\nu \}}
then
cof
(
α
)
=
cof
(
β
)
{\displaystyle \operatorname {cof} (\alpha )=\operatorname {cof} (\beta )}
and
α
[
η
]
=
ψ
ν
(
β
[
η
]
)
{\displaystyle \alpha [\eta ]=\psi _{\nu }(\beta [\eta ])}
,
If
α
=
ψ
ν
(
β
)
{\displaystyle \alpha =\psi _{\nu }(\beta )}
and
cof
(
β
)
∈
{
Ω
μ
+
1
∣
μ
≥
ν
}
{\displaystyle \operatorname {cof} (\beta )\in \{\Omega _{\mu +1}\mid \mu \geq \nu \}}
then
cof
(
α
)
=
ω
{\displaystyle \operatorname {cof} (\alpha )=\omega }
and
α
[
η
]
=
ψ
ν
(
β
[
γ
[
η
]
]
)
{\displaystyle \alpha [\eta ]=\psi _{\nu }(\beta [\gamma [\eta ]])}
where
{
γ
[
0
]
=
Ω
μ
γ
[
η
+
1
]
=
ψ
μ
(
β
[
γ
[
η
]
]
)
{\displaystyle \left\{{\begin{array}{lcr}\gamma [0]=\Omega _{\mu }\\\gamma [\eta +1]=\psi _{\mu }(\beta [\gamma [\eta ]])\\\end{array}}\right.}
.
Explanation
Buchholz is working in Zermelo–Fraenkel set theory, that means every ordinal
α
{\displaystyle \alpha }
is equal to set
{
β
∣
β
<
α
}
{\displaystyle \{\beta \mid \beta <\alpha \}}
. Then condition
C
ν
0
(
α
)
=
Ω
ν
{\displaystyle C_{\nu }^{0}(\alpha )=\Omega _{\nu }}
means that set
C
ν
0
(
α
)
{\displaystyle C_{\nu }^{0}(\alpha )}
includes all ordinals less than
Ω
ν
{\displaystyle \Omega _{\nu }}
in other words
C
ν
0
(
α
)
=
{
β
∣
β
<
Ω
ν
}
{\displaystyle C_{\nu }^{0}(\alpha )=\{\beta \mid \beta <\Omega _{\nu }\}}
.
The condition
C
ν
n
+
1
(
α
)
=
C
ν
n
(
α
)
∪
{
γ
∣
P
(
γ
)
⊆
C
ν
n
(
α
)
}
∪
{
ψ
μ
(
ξ
)
∣
ξ
∈
α
∩
C
ν
n
(
α
)
∧
μ
≤
ω
}
{\displaystyle C_{\nu }^{n+1}(\alpha )=C_{\nu }^{n}(\alpha )\cup \{\gamma \mid P(\gamma )\subseteq C_{\nu }^{n}(\alpha )\}\cup \{\psi _{\mu }(\xi )\mid \xi \in \alpha \cap C_{\nu }^{n}(\alpha )\wedge \mu \leq \omega \}}
means that set
C
ν
n
+
1
(
α
)
{\displaystyle C_{\nu }^{n+1}(\alpha )}
includes:
all ordinals from previous set
C
ν
n
(
α
)
{\displaystyle C_{\nu }^{n}(\alpha )}
,
all ordinals that can be obtained by summation the additively principal ordinals from previous set
C
ν
n
(
α
)
{\displaystyle C_{\nu }^{n}(\alpha )}
,
all ordinals that can be obtained by applying ordinals less than
α
{\displaystyle \alpha }
from the previous set
C
ν
n
(
α
)
{\displaystyle C_{\nu }^{n}(\alpha )}
as arguments of functions
ψ
μ
{\displaystyle \psi _{\mu }}
, where
μ
≤
ω
{\displaystyle \mu \leq \omega }
.
That is why we can rewrite this condition as:
C
ν
n
+
1
(
α
)
=
{
β
+
γ
,
ψ
μ
(
η
)
∣
β
,
γ
,
η
∈
C
ν
n
(
α
)
∧
η
<
α
∧
μ
≤
ω
}
.
{\displaystyle C_{\nu }^{n+1}(\alpha )=\{\beta +\gamma ,\psi _{\mu }(\eta )\mid \beta ,\gamma ,\eta \in C_{\nu }^{n}(\alpha )\wedge \eta <\alpha \wedge \mu \leq \omega \}.}
Thus union of all sets
C
ν
n
(
α
)
{\displaystyle C_{\nu }^{n}(\alpha )}
with
n
<
ω
{\displaystyle n<\omega }
i.e.
C
ν
(
α
)
=
⋃
n
<
ω
C
ν
n
(
α
)
{\displaystyle C_{\nu }(\alpha )=\bigcup _{n<\omega }C_{\nu }^{n}(\alpha )}
denotes the set of all ordinals which can be generated from ordinals
<
ℵ
ν
{\displaystyle <\aleph _{\nu }}
by the functions + (addition) and
ψ
μ
(
η
)
{\displaystyle \psi _{\mu }(\eta )}
, where
μ
≤
ω
{\displaystyle \mu \leq \omega }
and
η
<
α
{\displaystyle \eta <\alpha }
.
Then
ψ
ν
(
α
)
=
min
{
γ
∣
γ
∉
C
ν
(
α
)
}
{\displaystyle \psi _{\nu }(\alpha )=\min\{\gamma \mid \gamma \not \in C_{\nu }(\alpha )\}}
is the smallest ordinal that does not belong to this set.
Examples
Consider the following examples:
C
0
0
(
α
)
=
{
0
}
=
{
β
∣
β
<
1
}
,
{\displaystyle C_{0}^{0}(\alpha )=\{0\}=\{\beta \mid \beta <1\},}
C
0
(
0
)
=
{
0
}
{\displaystyle C_{0}(0)=\{0\}}
(since no functions
ψ
(
η
<
0
)
{\displaystyle \psi (\eta <0)}
and 0 + 0 = 0).
Then
ψ
0
(
0
)
=
1
{\displaystyle \psi _{0}(0)=1}
.
C
0
(
1
)
{\displaystyle C_{0}(1)}
includes
ψ
0
(
0
)
=
1
{\displaystyle \psi _{0}(0)=1}
and all possible sums of natural numbers and therefore
ψ
0
(
1
)
=
ω
{\displaystyle \psi _{0}(1)=\omega }
– first transfinite ordinal, which is greater than all natural numbers by its definition.
C
0
(
2
)
{\displaystyle C_{0}(2)}
includes
ψ
0
(
0
)
=
1
,
ψ
0
(
1
)
=
ω
{\displaystyle \psi _{0}(0)=1,\psi _{0}(1)=\omega }
and all possible sums of them and therefore
ψ
0
(
2
)
=
ω
2
{\displaystyle \psi _{0}(2)=\omega ^{2}}
.
If
α
=
ω
{\displaystyle \alpha =\omega }
then
C
0
(
α
)
=
{
0
,
ψ
(
0
)
=
1
,
…
,
ψ
(
1
)
=
ω
,
…
,
ψ
(
2
)
=
ω
2
,
…
,
ψ
(
3
)
=
ω
3
,
…
}
{\displaystyle C_{0}(\alpha )=\{0,\psi (0)=1,\ldots ,\psi (1)=\omega ,\ldots ,\psi (2)=\omega ^{2},\ldots ,\psi (3)=\omega ^{3},\ldots \}}
and
ψ
0
(
ω
)
=
ω
ω
{\displaystyle \psi _{0}(\omega )=\omega ^{\omega }}
.
If
α
=
Ω
{\displaystyle \alpha =\Omega }
then
C
0
(
α
)
=
{
0
,
ψ
(
0
)
=
1
,
…
,
ψ
(
1
)
=
ω
,
…
,
ψ
(
ω
)
=
ω
ω
,
…
,
ψ
(
ω
ω
)
=
ω
ω
ω
,
…
}
{\displaystyle C_{0}(\alpha )=\{0,\psi (0)=1,\ldots ,\psi (1)=\omega ,\ldots ,\psi (\omega )=\omega ^{\omega },\ldots ,\psi (\omega ^{\omega })=\omega ^{\omega ^{\omega }},\ldots \}}
and
ψ
0
(
Ω
)
=
ε
0
{\displaystyle \psi _{0}(\Omega )=\varepsilon _{0}}
– the smallest epsilon number i.e. first fixed point of
α
=
ω
α
{\displaystyle \alpha =\omega ^{\alpha }}
.
If
α
=
Ω
+
1
{\displaystyle \alpha =\Omega +1}
then
C
0
(
α
)
=
{
0
,
1
,
…
,
ψ
0
(
Ω
)
=
ε
0
,
…
,
ε
0
+
ε
0
,
…
,
ψ
1
(
0
)
=
Ω
,
…
}
{\displaystyle C_{0}(\alpha )=\{0,1,\ldots ,\psi _{0}(\Omega )=\varepsilon _{0},\ldots ,\varepsilon _{0}+\varepsilon _{0},\ldots ,\psi _{1}(0)=\Omega ,\ldots \}}
and
ψ
0
(
Ω
+
1
)
=
ε
0
ω
=
ω
ε
0
+
1
{\displaystyle \psi _{0}(\Omega +1)=\varepsilon _{0}\omega =\omega ^{\varepsilon _{0}+1}}
.
ψ
0
(
Ω
2
)
=
ε
1
{\displaystyle \psi _{0}(\Omega 2)=\varepsilon _{1}}
the second epsilon number,
ψ
0
(
Ω
2
)
=
ε
ε
⋯
=
ζ
0
{\displaystyle \psi _{0}(\Omega ^{2})=\varepsilon _{\varepsilon _{\cdots }}=\zeta _{0}}
i.e. first fixed point of
α
=
ε
α
{\displaystyle \alpha =\varepsilon _{\alpha }}
,
φ
(
α
,
β
)
=
ψ
0
(
Ω
α
(
1
+
β
)
)
{\displaystyle \varphi (\alpha ,\beta )=\psi _{0}(\Omega ^{\alpha }(1+\beta ))}
, where
φ
{\displaystyle \varphi }
denotes the Veblen's function,
ψ
0
(
Ω
Ω
)
=
Γ
0
=
φ
(
1
,
0
,
0
)
=
θ
(
Ω
,
0
)
{\displaystyle \psi _{0}(\Omega ^{\Omega })=\Gamma _{0}=\varphi (1,0,0)=\theta (\Omega ,0)}
, where
θ
{\displaystyle \theta }
denotes the Feferman's function,
ψ
0
(
Ω
Ω
2
)
=
φ
(
1
,
0
,
0
,
0
)
{\displaystyle \psi _{0}(\Omega ^{\Omega ^{2}})=\varphi (1,0,0,0)}
is the Ackermann ordinal,
ψ
0
(
Ω
Ω
ω
)
{\displaystyle \psi _{0}(\Omega ^{\Omega ^{\omega }})}
is the small Veblen ordinal,
ψ
0
(
Ω
Ω
Ω
)
{\displaystyle \psi _{0}(\Omega ^{\Omega ^{\Omega }})}
is the large Veblen ordinal,
ψ
0
(
Ω
↑↑
ω
)
=
ψ
0
(
ε
Ω
+
1
)
=
θ
(
ε
Ω
+
1
,
0
)
.
{\displaystyle \psi _{0}(\Omega \uparrow \uparrow \omega )=\psi _{0}(\varepsilon _{\Omega +1})=\theta (\varepsilon _{\Omega +1},0).}
Now let's research how
ψ
1
{\displaystyle \psi _{1}}
works:
C
1
0
(
0
)
=
{
β
∣
β
<
Ω
1
}
=
{
0
,
ψ
(
0
)
=
1
,
2
,
…
googol
,
…
,
ψ
0
(
1
)
=
ω
,
…
,
ψ
0
(
Ω
)
=
ε
0
,
…
{\displaystyle C_{1}^{0}(0)=\{\beta \mid \beta <\Omega _{1}\}=\{0,\psi (0)=1,2,\ldots {\text{googol}},\ldots ,\psi _{0}(1)=\omega ,\ldots ,\psi _{0}(\Omega )=\varepsilon _{0},\ldots }
…
,
ψ
0
(
Ω
Ω
)
=
Γ
0
,
…
,
ψ
(
Ω
Ω
Ω
+
Ω
2
)
,
…
}
{\displaystyle \ldots ,\psi _{0}(\Omega ^{\Omega })=\Gamma _{0},\ldots ,\psi (\Omega ^{\Omega ^{\Omega }+\Omega ^{2}}),\ldots \}}
i.e. includes all countable ordinals. And therefore
C
1
(
0
)
{\displaystyle C_{1}(0)}
includes all possible sums of all countable ordinals and
ψ
1
(
0
)
=
Ω
1
{\displaystyle \psi _{1}(0)=\Omega _{1}}
first uncountable ordinal which is greater than all countable ordinal by its definition i.e. smallest number with cardinality
ℵ
1
{\displaystyle \aleph _{1}}
.
If
α
=
1
{\displaystyle \alpha =1}
then
C
1
(
α
)
=
{
0
,
…
,
ψ
0
(
0
)
=
ω
,
…
,
ψ
1
(
0
)
=
Ω
,
…
,
Ω
+
ω
,
…
,
Ω
+
Ω
,
…
}
{\displaystyle C_{1}(\alpha )=\{0,\ldots ,\psi _{0}(0)=\omega ,\ldots ,\psi _{1}(0)=\Omega ,\ldots ,\Omega +\omega ,\ldots ,\Omega +\Omega ,\ldots \}}
and
ψ
1
(
1
)
=
Ω
ω
=
ω
Ω
+
1
{\displaystyle \psi _{1}(1)=\Omega \omega =\omega ^{\Omega +1}}
.
ψ
1
(
2
)
=
Ω
ω
2
=
ω
Ω
+
2
,
{\displaystyle \psi _{1}(2)=\Omega \omega ^{2}=\omega ^{\Omega +2},}
ψ
1
(
ψ
1
(
0
)
)
=
ψ
1
(
Ω
)
=
Ω
2
=
ω
Ω
+
Ω
,
{\displaystyle \psi _{1}(\psi _{1}(0))=\psi _{1}(\Omega )=\Omega ^{2}=\omega ^{\Omega +\Omega },}
ψ
1
(
ψ
1
(
ψ
1
(
0
)
)
)
=
ω
Ω
+
ω
Ω
+
Ω
=
ω
Ω
⋅
Ω
=
(
ω
Ω
)
Ω
=
Ω
Ω
,
{\displaystyle \psi _{1}(\psi _{1}(\psi _{1}(0)))=\omega ^{\Omega +\omega ^{\Omega +\Omega }}=\omega ^{\Omega \cdot \Omega }=(\omega ^{\Omega })^{\Omega }=\Omega ^{\Omega },}
ψ
1
4
(
0
)
=
Ω
Ω
Ω
,
{\displaystyle \psi _{1}^{4}(0)=\Omega ^{\Omega ^{\Omega }},}
ψ
1
k
+
1
(
0
)
=
Ω
↑↑
k
{\displaystyle \psi _{1}^{k+1}(0)=\Omega \uparrow \uparrow k}
where
k
{\displaystyle k}
is a natural number,
k
≥
2
{\displaystyle k\geq 2}
,
ψ
1
(
Ω
2
)
=
ψ
1
ω
(
0
)
=
Ω
↑↑
ω
=
ε
Ω
+
1
.
{\displaystyle \psi _{1}(\Omega _{2})=\psi _{1}^{\omega }(0)=\Omega \uparrow \uparrow \omega =\varepsilon _{\Omega +1}.}
For case
ψ
(
ψ
2
(
0
)
)
=
ψ
(
Ω
2
)
{\displaystyle \psi (\psi _{2}(0))=\psi (\Omega _{2})}
the set
C
0
(
Ω
2
)
{\displaystyle C_{0}(\Omega _{2})}
includes functions
ψ
0
{\displaystyle \psi _{0}}
with all arguments less than
Ω
2
{\displaystyle \Omega _{2}}
i.e. such arguments as
0
,
ψ
1
(
0
)
,
ψ
1
(
ψ
1
(
0
)
)
,
ψ
1
3
(
0
)
,
…
,
ψ
1
ω
(
0
)
{\displaystyle 0,\psi _{1}(0),\psi _{1}(\psi _{1}(0)),\psi _{1}^{3}(0),\ldots ,\psi _{1}^{\omega }(0)}
and then
ψ
0
(
Ω
2
)
=
ψ
0
(
ψ
1
(
Ω
2
)
)
=
ψ
0
(
ε
Ω
+
1
)
.
{\displaystyle \psi _{0}(\Omega _{2})=\psi _{0}(\psi _{1}(\Omega _{2}))=\psi _{0}(\varepsilon _{\Omega +1}).}
In the general case:
ψ
0
(
Ω
ν
+
1
)
=
ψ
0
(
ψ
ν
(
Ω
ν
+
1
)
)
=
ψ
0
(
ε
Ω
ν
+
1
)
=
θ
(
ε
Ω
ν
+
1
,
0
)
.
{\displaystyle \psi _{0}(\Omega _{\nu +1})=\psi _{0}(\psi _{\nu }(\Omega _{\nu +1}))=\psi _{0}(\varepsilon _{\Omega _{\nu }+1})=\theta (\varepsilon _{\Omega _{\nu }+1},0).}
We also can write:
θ
(
Ω
ν
,
0
)
=
ψ
0
(
Ω
ν
Ω
)
(for
1
≤
ν
)
<
ω
{\displaystyle \theta (\Omega _{\nu },0)=\psi _{0}(\Omega _{\nu }^{\Omega }){\text{ (for }}1\leq \nu )<\omega }
Ordinal notation
Buchholz[ note 2] defined an ordinal notation
(
O
T
,
<
)
{\displaystyle {\mathsf {(OT,<)}}}
associated to the
ψ
{\displaystyle \psi }
function. We simultaneously define the sets
T
{\displaystyle T}
and
P
T
{\displaystyle PT}
as formal strings consisting of
0
,
D
v
{\displaystyle 0,D_{v}}
indexed by
v
∈
ω
+
1
{\displaystyle v\in \omega +1}
, braces and commas in the following way:
0
∈
T
∧
0
∈
P
T
{\displaystyle 0\in T\land 0\in PT}
,
∀
(
v
,
a
)
∈
(
ω
+
1
)
×
T
(
D
v
a
∈
T
∧
D
v
a
∈
P
T
)
{\displaystyle \forall (v,a)\in (\omega +1)\times T(D_{v}a\in T\land D_{v}a\in PT)}
.
∀
(
a
0
,
a
1
)
∈
P
T
2
(
(
a
0
,
a
1
)
∈
T
)
{\displaystyle \forall (a_{0},a_{1})\in PT^{2}((a_{0},a_{1})\in T)}
.
∃
s
(
a
0
=
s
)
∧
(
a
0
,
a
1
)
∈
T
×
P
T
→
(
s
,
a
1
)
∈
T
{\displaystyle \exists s(a_{0}=s)\land (a_{0},a_{1})\in T\times PT\rightarrow (s,a_{1})\in T}
.
An element of
T
{\displaystyle T}
is called a term , and an element of
P
T
{\displaystyle PT}
is called a principal term . By definition,
T
{\displaystyle T}
is a recursive set and
P
T
{\displaystyle PT}
is a recursive subset of
T
{\displaystyle T}
. Every term is either
0
{\displaystyle 0}
, a principal term or a braced array of principal terms of length
≥
2
{\displaystyle \geq 2}
. We denote
a
∈
P
T
{\displaystyle a\in PT}
by
(
a
)
{\displaystyle (a)}
. By convention, every term can be uniquely expressed as either
0
{\displaystyle 0}
or a braced, non-empty array of principal terms. Since clauses 3 and 4 in the definition of
T
{\displaystyle T}
and
P
T
{\displaystyle PT}
are applicable only to arrays of length
≥
2
{\displaystyle \geq 2}
, this convention does not cause serious ambiguity.
We then define a binary relation
a
<
b
{\displaystyle a<b}
on
T
{\displaystyle T}
in the following way:
b
=
0
→
a
<
b
=
⊥
{\displaystyle b=0\rightarrow a<b=\bot }
a
=
0
→
(
a
<
b
↔
b
≠
0
)
{\displaystyle a=0\rightarrow (a<b\leftrightarrow b\neq 0)}
If
a
≠
0
∧
b
≠
0
{\displaystyle a\neq 0\land b\neq 0}
, then:
If
a
=
D
u
a
′
∧
b
=
D
v
b
′
{\displaystyle a=D_{u}a'\land b=D_{v}b'}
for some
(
(
u
,
a
′
)
,
(
v
,
b
′
)
)
∈
(
(
ω
+
1
)
×
T
)
2
{\displaystyle ((u,a'),(v,b'))\in ((\omega +1)\times T)^{2}}
, then
a
<
b
{\displaystyle a<b}
is true if either of the following are true:
u
<
v
{\displaystyle u<v}
u
=
v
∧
a
′
<
b
′
{\displaystyle u=v\land a'<b'}
If
a
=
(
a
0
,
.
.
.
,
a
n
)
∧
b
=
(
b
0
,
.
.
.
,
b
m
)
{\displaystyle a=(a_{0},...,a_{n})\land b=(b_{0},...,b_{m})}
for some
(
n
,
m
)
∈
N
2
∧
1
≤
n
+
m
{\displaystyle (n,m)\in \mathbb {N} ^{2}\land 1\leq n+m}
, then
a
<
b
{\displaystyle a<b}
is true if either of the following are true:
∀
i
∈
N
∧
i
≤
n
(
n
<
m
∧
a
i
=
b
i
)
{\displaystyle \forall i\in \mathbb {N} \land i\leq n(n<m\land a_{i}=b_{i})}
∃
k
∈
N
∀
i
∈
N
∧
i
<
k
(
k
≤
m
i
n
{
n
,
m
}
∧
a
k
<
b
k
∧
a
i
=
b
1
)
{\displaystyle \exists k\in \mathbb {N} \forall i\in \mathbb {N} \land i<k(k\leq min\{n,m\}\land a_{k}<b_{k}\land a_{i}=b_{1})}
<
{\displaystyle <}
is a recursive strict total ordering on
T
{\displaystyle T}
. We abbreviate
(
a
<
b
)
∨
(
a
=
b
)
{\displaystyle (a<b)\lor (a=b)}
as
a
≤
b
{\displaystyle a\leq b}
. Although
≤
{\displaystyle \leq }
itself is not a well-ordering, its restriction to a recursive subset
O
T
⊂
T
{\displaystyle OT\subset T}
, which will be described later, forms a well-ordering. In order to define
O
T
{\displaystyle OT}
, we define a subset
G
u
a
⊂
T
{\displaystyle G_{u}a\subset T}
for each
(
u
,
a
)
∈
(
ω
+
1
)
×
T
{\displaystyle (u,a)\in (\omega +1)\times T}
in the following way:
a
=
0
→
G
u
a
=
∅
{\displaystyle a=0\rightarrow G_{u}a=\varnothing }
Suppose that
a
=
D
v
a
′
{\displaystyle a=D_{v}a'}
for some
(
v
,
a
′
)
∈
(
ω
+
1
)
×
T
{\displaystyle (v,a')\in (\omega +1)\times T}
, then:
u
≤
v
→
G
u
a
=
{
a
′
}
∪
G
u
a
′
{\displaystyle u\leq v\rightarrow G_{u}a=\{a'\}\cup G_{u}a'}
u
>
v
→
G
u
a
=
∅
{\displaystyle u>v\rightarrow G_{u}a=\varnothing }
If
a
=
(
a
0
,
.
.
.
,
a
k
)
{\displaystyle a=(a_{0},...,a_{k})}
for some
(
a
i
)
i
=
0
k
∈
P
T
k
+
1
{\displaystyle (a_{i})_{i=0}^{k}\in PT^{k+1}}
for some
k
∈
N
∖
{
0
}
,
G
u
a
=
⋃
i
=
0
k
G
u
a
i
{\displaystyle k\in \mathbb {N} \backslash \{0\},G_{u}a=\bigcup _{i=0}^{k}G_{u}a_{i}}
.
b
∈
G
u
a
{\displaystyle b\in G_{u}a}
is a recursive relation on
(
u
,
a
,
b
)
∈
(
ω
+
1
)
×
T
2
{\displaystyle (u,a,b)\in (\omega +1)\times T^{2}}
. Finally, we define a subset
O
T
⊂
T
{\displaystyle OT\subset T}
in the following way:
0
∈
O
T
{\displaystyle 0\in OT}
For any
(
v
,
a
)
∈
(
ω
+
1
)
×
T
{\displaystyle (v,a)\in (\omega +1)\times T}
,
D
v
a
∈
O
T
{\displaystyle D_{v}a\in OT}
is equivalent to
a
∈
O
T
{\displaystyle a\in OT}
and, for any
a
′
∈
G
v
a
{\displaystyle a'\in G_{v}a}
,
a
′
<
a
{\displaystyle a'<a}
.
For any
(
a
i
)
i
=
0
k
∈
P
T
k
+
1
{\displaystyle (a_{i})_{i=0}^{k}\in PT^{k+1}}
,
(
a
0
,
.
.
.
,
a
k
)
∈
O
T
{\displaystyle (a_{0},...,a_{k})\in OT}
is equivalent to
(
a
i
)
i
=
0
k
∈
O
T
{\displaystyle (a_{i})_{i=0}^{k}\in OT}
and
a
k
≤
.
.
.
≤
a
0
{\displaystyle a_{k}\leq ...\leq a_{0}}
.
O
T
{\displaystyle OT}
is a recursive subset of
T
{\displaystyle T}
, and an element of
O
T
{\displaystyle OT}
is called an ordinal term . We can then define a map
o
:
O
T
→
C
0
(
ε
Ω
ω
+
1
)
{\displaystyle o:OT\rightarrow C_{0}(\varepsilon _{\Omega _{\omega }+1})}
in the following way:
a
=
0
→
o
(
a
)
=
0
{\displaystyle a=0\rightarrow o(a)=0}
If
a
=
D
v
a
′
{\displaystyle a=D_{v}a'}
for some
(
v
,
a
′
)
∈
(
ω
+
1
)
×
O
T
{\displaystyle (v,a')\in (\omega +1)\times OT}
, then
o
(
a
)
=
ψ
v
(
o
(
a
′
)
)
{\displaystyle o(a)=\psi _{v}(o(a'))}
.
If
a
=
(
a
0
,
.
.
.
,
a
k
)
{\displaystyle a=(a_{0},...,a_{k})}
for some
(
a
i
)
i
=
0
k
∈
(
O
T
∩
P
T
)
k
+
1
{\displaystyle (a_{i})_{i=0}^{k}\in (OT\cap PT)^{k+1}}
with
k
∈
N
∖
{
0
}
{\displaystyle k\in \mathbb {N} \backslash \{0\}}
, then
o
(
a
)
=
o
(
a
0
)
#
.
.
.
#
o
(
a
k
)
{\displaystyle o(a)=o(a_{0})\#...\#o(a_{k})}
, where
#
{\displaystyle \#}
denotes the descending sum of ordinals, which coincides with the usual addition by the definition of
O
T
{\displaystyle OT}
.
Buchholz verified the following properties of
o
{\displaystyle o}
:
The map
o
{\displaystyle o}
is an order-preserving bijective map with respect to
<
{\displaystyle <}
and
∈
{\displaystyle \in }
. In particular,
o
{\displaystyle o}
is a recursive strict well-ordering on
O
T
{\displaystyle OT}
.
For any
a
∈
O
T
{\displaystyle a\in OT}
satisfying
a
<
D
1
0
{\displaystyle a<D_{1}0}
,
o
(
a
)
{\displaystyle o(a)}
coincides with the ordinal type of
<
{\displaystyle <}
restricted to the countable subset
{
x
∈
O
T
|
x
<
a
}
{\displaystyle \{x\in OT\;|\;x<a\}}
.
The Takeuti-Feferman-Buchholz ordinal coincides with the ordinal type of
<
{\displaystyle <}
restricted to the recursive subset
{
x
∈
O
T
|
x
<
D
1
0
}
{\displaystyle \{x\in OT\;|\;x<D_{1}0\}}
.
The ordinal type of
(
O
T
,
<
)
{\displaystyle (OT,<)}
is greater than the Takeuti-Feferman-Buchholz ordinal .
For any
v
∈
N
∖
{
0
}
{\displaystyle v\in \mathbb {N} \;\backslash \;\{0\}}
, the well-foundedness of
<
{\displaystyle <}
restricted to the recursive subset
{
x
∈
O
T
|
x
<
D
0
D
v
+
1
0
}
{\displaystyle \{x\in OT\;|\;x<D_{0}D_{v+1}0\}}
in the sense of the non-existence of a primitive recursive infinite descending sequence is not provable under
I
D
v
{\displaystyle {\mathsf {ID}}_{v}}
.
The well-foundedness of
<
{\displaystyle <}
restricted to the recursive subset
{
x
∈
O
T
|
x
<
D
0
D
ω
0
}
{\displaystyle \{x\in OT\;|\;x<D_{0}D_{\omega }0\}}
in the same sense as above is not provable under
Π
1
1
−
C
A
0
{\displaystyle \Pi _{1}^{1}-CA_{0}}
.
The normal form for Buchholz's function can be defined by the pull-back of standard form for the ordinal notation associated to it by
o
{\displaystyle o}
. Namely, the set
N
F
{\displaystyle NF}
of predicates on ordinals in
C
0
(
ε
Ω
ω
+
1
)
{\displaystyle C_{0}(\varepsilon _{\Omega _{\omega }+1})}
is defined in the following way:
The predicate
α
=
N
F
0
{\displaystyle \alpha =_{NF}0}
on an ordinal
α
∈
C
0
(
ε
Ω
ω
+
1
)
{\displaystyle \alpha \in C_{0}(\varepsilon _{\Omega _{\omega }+1})}
defined as
α
=
0
{\displaystyle \alpha =0}
belongs to
N
F
{\displaystyle NF}
.
The predicate
α
0
=
N
F
ψ
k
1
(
α
1
)
{\displaystyle \alpha _{0}=_{NF}\psi _{k_{1}}(\alpha _{1})}
on ordinals
α
0
,
α
1
∈
C
0
(
ε
Ω
ω
+
1
)
{\displaystyle \alpha _{0},\alpha _{1}\in C_{0}(\varepsilon _{\Omega _{\omega }+1})}
with
k
1
=
ω
+
1
{\displaystyle k_{1}=\omega +1}
defined as
α
0
=
ψ
k
1
(
α
1
)
{\displaystyle \alpha _{0}=\psi _{k_{1}}(\alpha _{1})}
and
α
1
=
C
k
1
(
α
1
)
{\displaystyle \alpha _{1}=C_{k_{1}}(\alpha _{1})}
belongs to
N
F
{\displaystyle NF}
.
The predicate
α
0
=
N
F
α
1
+
.
.
.
+
α
n
{\displaystyle \alpha _{0}=_{NF}\alpha _{1}+...+\alpha _{n}}
on ordinals
α
0
,
α
1
,
.
.
.
,
α
n
∈
C
0
(
ε
Ω
ω
+
1
)
{\displaystyle \alpha _{0},\alpha _{1},...,\alpha _{n}\in C_{0}(\varepsilon _{\Omega _{\omega }+1})}
with an integer
n
>
1
{\displaystyle n>1}
defined as
α
0
=
α
1
+
.
.
.
+
α
n
{\displaystyle \alpha _{0}=\alpha _{1}+...+\alpha _{n}}
,
α
1
≥
.
.
.
≥
α
n
{\displaystyle \alpha _{1}\geq ...\geq \alpha _{n}}
, and
α
1
,
.
.
.
,
α
n
∈
A
P
{\displaystyle \alpha _{1},...,\alpha _{n}\in AP}
belongs to
N
F
{\displaystyle NF}
. Here
+
{\displaystyle +}
is a function symbol rather than an actual addition, and
A
P
{\displaystyle AP}
denotes the class of additive princpal numbers.
It is also useful to replace the third case by the following one obtained by combining the second condition:
The predicate
α
0
=
N
F
ψ
k
1
(
α
1
)
+
.
.
.
+
ψ
k
n
(
α
n
)
{\displaystyle \alpha _{0}=_{NF}\psi _{k_{1}}(\alpha _{1})+...+\psi _{k_{n}}(\alpha _{n})}
on ordinals
α
0
,
α
1
,
.
.
.
,
α
n
∈
C
0
(
ε
Ω
ω
+
1
)
{\displaystyle \alpha _{0},\alpha _{1},...,\alpha _{n}\in C_{0}(\varepsilon _{\Omega _{\omega }+1})}
with an integer
n
>
1
{\displaystyle n>1}
and
k
1
,
.
.
.
,
k
n
∈
ω
+
1
{\displaystyle k_{1},...,k_{n}\in \omega +1}
defined as
α
0
=
ψ
k
1
(
α
1
)
+
.
.
.
+
ψ
k
n
(
α
n
)
{\displaystyle \alpha _{0}=\psi _{k_{1}}(\alpha _{1})+...+\psi _{k_{n}}(\alpha _{n})}
,
ψ
k
1
(
α
1
)
≥
.
.
.
≥
ψ
k
n
(
α
n
)
{\displaystyle \psi _{k_{1}}(\alpha _{1})\geq ...\geq \psi _{k_{n}}(\alpha _{n})}
, and
α
1
∈
C
k
1
(
α
1
)
,
.
.
.
,
α
n
∈
C
k
n
(
α
n
)
∈
A
P
{\displaystyle \alpha _{1}\in C_{k_{1}}(\alpha _{1}),...,\alpha _{n}\in C_{k_{n}}(\alpha _{n})\in AP}
belongs to
N
F
{\displaystyle NF}
.
We note that those two formulations are not equivalent. For example,
ψ
0
(
Ω
)
+
1
=
N
F
ψ
0
(
ζ
1
)
+
ψ
0
(
0
)
{\displaystyle \psi _{0}(\Omega )+1=_{NF}\psi _{0}(\zeta _{1})+\psi _{0}(0)}
is a valid formula which is false with respect to the second formulation because of
ζ
1
≠
C
0
(
ζ
1
)
{\displaystyle \zeta _{1}\neq C_{0}(\zeta _{1})}
, while it is a valid formula which is true with respect to the first formulation because of
ψ
0
(
Ω
)
+
1
=
ψ
0
(
ζ
1
)
+
ψ
0
(
0
)
{\displaystyle \psi _{0}(\Omega )+1=\psi _{0}(\zeta _{1})+\psi _{0}(0)}
,
ψ
0
(
ζ
1
)
,
ψ
0
(
0
)
∈
A
P
{\displaystyle \psi _{0}(\zeta _{1}),\psi _{0}(0)\in AP}
, and
ψ
0
(
ζ
1
)
≥
ψ
0
(
0
)
{\displaystyle \psi _{0}(\zeta _{1})\geq \psi _{0}(0)}
. In this way, the notion of normal form heavily depends on the context. In both formulations, every ordinal in
C
0
(
ε
Ω
ω
+
1
)
{\displaystyle C_{0}(\varepsilon _{\Omega _{\omega }+1})}
can be uniquely expressed in normal form for Buchholz's function.
References
Notes