Jump to content

Polylogarithmic function

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by OlliverWithDoubleL (talk | contribs) at 05:44, 4 July 2022 (short description, math formatting). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematics, a polylogarithmic function in n is a polynomial in the logarithm of n,

The notation logkn is often used as a shorthand for (log n)k, analogous to sin2θ for (sin θ)2.

In computer science, polylogarithmic functions occur as the order of time or memory used by some algorithms (e.g., "it has polylogarithmic order").

All polylogarithmic functions of n are O(nε) for every exponent ε > 0 (for the meaning of this symbol, see small o notation), that is, a polylogarithmic function grows more slowly than any positive exponent. This observation is the basis for the soft O notation Õ(n).

References

  • Black, Paul E. (2004-12-17). "polylogarithmic". Dictionary of Algorithms and Data Structures. U.S. National Institute of Standards and Technology. Retrieved 2010-01-10.