Jump to content

User:Atavoidirc/constants

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Atavoidirc (talk | contribs) at 15:45, 9 June 2022 (List). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

List of mathematical constants


A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems.[1] For example, the constant π may be defined as the ratio of the length of a circle's circumference to its diameter. The following list includes a decimal expansion and set containing each number, ordered by year of discovery.

The column headings may be clicked to sort the table alphabetically, by decimal value, or by set. Explanations of the symbols in the right hand column can be found by clicking on them.

List

Name Symbol Decimal expansion Formula Year Set
One half 1/2 0.5 Prehistory
Pi 3.14159 26535 89793 23846 [Mw 1][OEIS 1] Ratio of a circle's circumference to its diameter. 1900 to 1600 BCE [2]
Square root of 2,

Pythagoras constant.[3]

1.41421 35623 73095 04880 [Mw 2][OEIS 2] Positive root of 1800 to 1600 BCE[4]
Square root of 3,

Theodorus' constant[5]

1.73205 08075 68877 29352 [Mw 3][OEIS 3] Positive root of 465 to 398 BCE
Square root of 5[6] 2.23606 79774 99789 69640 [OEIS 4] Positive root of
Phi, Golden ratio[7] 1.61803 39887 49894 84820 [Mw 4][OEIS 5] ~300 BCE
Silver ratio[8] 2.41421 35623 73095 04880 [Mw 5][OEIS 6] ~300 BCE
Zero 0 0 300 to 100 BCE[9]
Negative one −1 −1 300 to 200 BCE
Cube root of 2 1.25992 10498 94873 16476 [Mw 6][OEIS 7] Real root of 46 to 120 CE[10]
Cube root of 3 1.44224 95703 07408 38232 [OEIS 8] Real root of
Twelfth root of 2[11] 1.05946 30943 59295 26456 [OEIS 9] Real root of
Supergolden ratio[12] 1.46557 12318 76768 02665 [OEIS 10] Real root of
Imaginary unit[13] 0 + 1i Either of the two roots of [nb 1] 1501 to 1576
Connective constant for the hexagonal lattice[14][15] 1.84775 90650 22573 51225 [Mw 7][OEIS 11] , as a root of the polynomial 1593[OEIS 11]
Kepler–Bouwkamp constant[16] 0.11494 20448 53296 20070 [Mw 8][OEIS 12] 1596[OEIS 12]
Wallis's constant 2.09455 14815 42326 59148 [Mw 9][OEIS 13] Real root of 1616 to 1703
Euler's number[17] 2.71828 18284 59045 23536 [Mw 10][OEIS 14] 1618[18]
Natural logarithm of 2[19] 0.69314 71805 59945 30941 [Mw 11][OEIS 15] Real root of 1619 [20] & 1668[21]
Lemniscate constant[22] 2.62205 75542 92119 81046 [Mw 12][OEIS 16] where is Gauss's constant 1718 to 1798
Euler's constant 0.57721 56649 01532 86060 [Mw 13][OEIS 17] 1735
Erdős–Borwein constant[23] 1.60669 51524 15291 76378 [Mw 14][OEIS 18] 1749[24]
Omega constant 0.56714 32904 09783 87299 [Mw 15][OEIS 19] where W is the Lambert W function 1758 & 1783
Apéry's constant[25] 1.20205 69031 59594 28539 [Mw 16][OEIS 20] 1780[OEIS 20]
Laplace limit[26] 0.66274 34193 49181 58097 [Mw 17][OEIS 21] Real root of ~1782
Ramanujan–Soldner constant[27][28] 1.45136 92348 83381 05028 [Mw 18][OEIS 22] ; root of the logarithmic integral function. 1792[OEIS 22]
Gauss's constant[29] 0.83462 68416 74073 18628 [Mw 19][OEIS 23] where agm is the arithmetic–geometric mean 1799[30]
Second Hermite constant[31] 1.15470 05383 79251 52901 [Mw 20][OEIS 24] 1822 to 1901
Liouville's constant[32] 0.11000 10000 00000 00000 0001 [Mw 21][OEIS 25] Before 1844
First continued fraction constant 0.69777 46579 64007 98201 [Mw 22][OEIS 26] , where is the modified Bessel function 1855[33]
Ramanujan's constant[34] 262 53741 26407 68743

.99999 99999 99250 073 [Mw 23][OEIS 27]

1859
Glaisher–Kinkelin constant 1.28242 71291 00622 63687[Mw 24][OEIS 28] 1860[OEIS 28]
Catalan's constant[35][36][37] 0.91596 55941 77219 01505 [Mw 25][OEIS 29] 1864
Dottie number[38] 0.73908 51332 15160 64165 [Mw 26][OEIS 30] Real root of 1865[Mw 26]
Meissel–Mertens constant[39] 0.26149 72128 47642 78375 [Mw 27][OEIS 31] where γ is the Euler–Mascheroni constant and p is prime 1866 & 1873
Universal parabolic constant[40] 2.29558 71493 92638 07403 [Mw 28][OEIS 32] Before 1891[41]
Cahen's constant[42] 0.64341 05462 88338 02618 [Mw 29][OEIS 33] where sk is the kth term of Sylvester's sequence 2, 3, 7, 43, 1807, ... 1891
Gelfond's constant[43] 23.14069 26327 79269 0057 [Mw 30][OEIS 34] 1900[44]
Gelfond–Schneider constant[45] 2.66514 41426 90225 18865 [Mw 31][OEIS 35] Before 1902[OEIS 35]
Second Favard constant[46] 1.23370 05501 36169 82735 [Mw 32][OEIS 36] 1902 to 1965
First NielsenRamanujan constant[47] 0.82246 70334 24113 21823 [Mw 33][OEIS 37] 1909
Brun's constant[48] 1.90216 05831 04 [Mw 34][OEIS 38] where the sum ranges over all primes p such that p + 2 is also a prime 1919[OEIS 38]
Twin primes constant 0.66016 18158 46869 57392 [Mw 35][OEIS 39] 1922
Plastic number[49] 1.32471 79572 44746 02596 [Mw 36][OEIS 40] Real root of 1924[OEIS 40]
Prouhet–Thue–Morse constant[50] 0.41245 40336 40107 59778 [Mw 37][OEIS 41] where is the nth term of the Thue–Morse sequence 1929[OEIS 41]
Base 10 Champernowne constant[51] 0.12345 67891 01112 13141 [Mw 38][OEIS 42] Defined by concatenating representations of successive integers:

0.1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...

1933
Salem constant[52] 1.17628 08182 59917 50654 [Mw 39][OEIS 43] Largest real root of 1933[OEIS 43]
Khinchin's constant[53] 2.68545 20010 65306 44530 [Mw 40][OEIS 44] 1934
Chvátal–Sankoff constant for the binary alphabet where E[λn,2] is the expected longest common subsequence of two random length-n binary strings 1975
Chaitin's constants [54] In general they are uncomputable numbers.

But one such number is 0.00787 49969 97812 3844. [Mw 41][OEIS 45]

  • p: Halted program
  • |p|: Size in bits of program p
  • P: Domain of all programs that stop.
1975
Robbins constant[55] 0.66170 71822 67176 23515 [Mw 42][OEIS 46] 1977[OEIS 46]
Weierstrass constant [56] 0.47494 93799 87920 65033 [Mw 43][OEIS 47] Before 1978[57]
Fransén–Robinson constant[58] 2.80777 02420 28519 36522 [Mw 44][OEIS 48] 1978
Fractal dimension of the Cantor set[59] 0.63092 97535 71457 43709 [Mw 45][OEIS 49] Before 1979[OEIS 49]
Feigenbaum constant α[60] 2.50290 78750 95892 82228 [Mw 46][OEIS 50] Ratio between the width of a tine and the width of one of its two subtines in a bifurcation diagram 1979
Second du Bois-Reymond constant[61] 0.19452 80494 65325 11361 [Mw 47][OEIS 51] 1983[OEIS 51]
Erdős–Tenenbaum–Ford constant 0.86071 33205 59342 06887 [OEIS 52] 1984

List

Name Symbol Formula Year Set
Metallic mean
Hermite constant[Mw 48] For a lattice L in Euclidean space Rn with unit covolume, i.e. vol(Rn/L) = 1, let λ1(L) denote the least length of a nonzero element of L. Then √γnn is the maximum of λ1(L) over all such lattices L. 1822 to 1901
Hafner–Sarnak–McCurley constant [62] 1883[Mw 49]
Favard constants[63][Mw 50] 1902 to 1965
NielsenRamanujan constant[64] 1909[Mw 51]
Brun's constant[65] where the sum ranges over all primes p such that p + n is also a prime 1919[OEIS 53]
Champernowne constants[66] Defined by concatenating representations of successive integers in base b.

1933
Beraha constants
Chvátal–Sankoff constants
Feller's coin-tossing constants is the smallest positive real root of
Bernoulli number
Gregory coefficients
Harmonic number
Hyperharmonic number and
Ramanujan's sum
Stoneham number if b,c are coprime integers greater than one 1973
Stieltjes constants
Markov constant
Lagrange number where is the nth smallest number such that has positive (x,y)
Gregory number for rational x greater than one

See also

Notes

  1. ^ Both i and i are roots of this equation, though neither root is truly "positive" nor more fundamental than the other as they are algebraically equivalent. The distinction between signs of i and i is in some ways arbitrary, but a useful notational device. See imaginary unit for more information.

References

  1. ^ Weisstein, Eric W. "Constant". mathworld.wolfram.com. Retrieved 2020-08-08.
  2. ^ Arndt & Haenel 2006, p. 167
  3. ^ Calvin C Clawson (2001). Mathematical sorcery: revealing the secrets of numbers. p. IV. ISBN 978 0 7382 0496-3.
  4. ^ Fowler and Robson, p. 368. Photograph, illustration, and description of the root(2) tablet from the Yale Babylonian Collection Archived 2012-08-13 at the Wayback Machine High resolution photographs, descriptions, and analysis of the root(2) tablet (YBC 7289) from the Yale Babylonian Collection
  5. ^ Vijaya AV (2007). Figuring Out Mathematics. Dorling Kindcrsley (India) Pvt. Lid. p. 15. ISBN 978-81-317-0359-5.
  6. ^ P A J Lewis (2008). Essential Mathematics 9. Ratna Sagar. p. 24. ISBN 9788183323673.
  7. ^ Timothy Gowers; June Barrow-Green; Imre Leade (2007). The Princeton Companion to Mathematics. Princeton University Press. p. 316. ISBN 978-0-691-11880-2.
  8. ^ Kapusta, Janos (2004), "The square, the circle, and the golden proportion: a new class of geometrical constructions" (PDF), Forma, 19: 293–313.
  9. ^ Kim Plofker (2009), Mathematics in India, Princeton University Press, ISBN 978-0-691-12067-6, pp. 54–56.
  10. ^ Plutarch. "718ef". Quaestiones convivales VIII.ii. Archived from the original on 2009-11-19. Retrieved 2019-05-24. And therefore Plato himself dislikes Eudoxus, Archytas, and Menaechmus for endeavoring to bring down the doubling the cube to mechanical operations
  11. ^ Christensen, Thomas (2002), The Cambridge History of Western Music Theory, p. 205, ISBN 978-0521686983
  12. ^ Koshy, Thomas (2017). Fibonacci and Lucas Numbers with Applications (2 ed.). John Wiley & Sons. ISBN 9781118742174. Retrieved 14 August 2018.
  13. ^ Keith J. Devlin (1999). Mathematics: The New Golden Age. Columbia University Press. p. 66. ISBN 978-0-231-11638-1.
  14. ^ Mireille Bousquet-Mélou. Two-dimensional self-avoiding walks (PDF). CNRS, LaBRI, Bordeaux, France.
  15. ^ Hugo Duminil-Copin & Stanislav Smirnov (2011). The connective constant of the honeycomb lattice √ (2 + √ 2) (PDF). Université de Geneve.
  16. ^ Richard J. Mathar (2013). "Circumscribed Regular Polygons". arXiv:1301.6293 [math.MG].
  17. ^ E.Kasner y J.Newman. (2007). Mathematics and the Imagination. Conaculta. p. 77. ISBN 978-968-5374-20-0.
  18. ^ O'Connor, J J; Robertson, E F. "The number e". MacTutor History of Mathematics.
  19. ^ Annie Cuyt; Vigdis Brevik Petersen; Brigitte Verdonk; Haakon Waadeland; William B. Jones (2008). Handbook of Continued Fractions for Special Functions. Springer. p. 182. ISBN 978-1-4020-6948-2.
  20. ^ Cajori, Florian (1991). A History of Mathematics (5th ed.). AMS Bookstore. p. 152. ISBN 0-8218-2102-4.
  21. ^ O'Connor, J. J.; Robertson, E. F. (September 2001). "The number e". The MacTutor History of Mathematics archive. Retrieved 2009-02-02.
  22. ^ J. Coates; Martin J. Taylor (1991). L-Functions and Arithmetic. Cambridge University Press. p. 333. ISBN 978-0-521-38619-7.
  23. ^ Robert Baillie (2013). "Summing The Curious Series of Kempner and Irwin". arXiv:0806.4410 [math.CA].
  24. ^ Leonhard Euler (1749). Consideratio quarumdam serierum, quae singularibus proprietatibus sunt praeditae. p. 108.
  25. ^ Annie Cuyt; Vigdis Brevik Petersen; Brigitte Verdonk; Haakon Waadelantl; William B. Jones. (2008). Handbook of Continued Fractions for Special Functions. Springer. p. 188. ISBN 978-1-4020-6948-2.
  26. ^ Howard Curtis (2014). Orbital Mechanics for Engineering Students. Elsevier. p. 159. ISBN 978-0-08-097747-8.
  27. ^ Johann Georg Soldner (1809). Théorie et tables d'une nouvelle fonction transcendante (in French). J. Lindauer, München. p. 42.
  28. ^ Lorenzo Mascheroni (1792). Adnotationes ad calculum integralem Euleri (in Latin). Petrus Galeatius, Ticini. p. 17.
  29. ^ Keith B. Oldham; Jan C. Myland; Jerome Spanier (2009). An Atlas of Functions: With Equator, the Atlas Function Calculator. Springer. p. 15. ISBN 978-0-387-48806-6.
  30. ^ Nielsen, Mikkel Slot. (July 2016). Undergraduate convexity : problems and solutions. p. 162. ISBN 9789813146211. OCLC 951172848.
  31. ^ Steven Finch (2014). Errata and Addenda to Mathematical Constants (PDF). Harvard.edu. Archived from the original (PDF) on 2016-03-16. Retrieved 2013-12-17.
  32. ^ Calvin C. Clawson (2003). Mathematical Traveler: Exploring the Grand History of Numbers. Perseus. p. 187. ISBN 978-0-7382-0835-0.
  33. ^ Amoretti, F. (1855). "Sur la fraction continue [0,1,2,3,4,...]". Nouvelles annales de mathématiques. 1 (14): 40–44.
  34. ^ L. J. Lloyd James Peter Kilford (2008). Modular Forms: A Classical and Computational Introduction. Imperial College Press. p. 107. ISBN 978-1-84816-213-6.
  35. ^ Henri Cohen (2000). Number Theory: Volume II: Analytic and Modern Tools. Springer. p. 127. ISBN 978-0-387-49893-5.
  36. ^ H. M. Srivastava; Choi Junesang (2001). Series Associated With the Zeta and Related Functions. Kluwer Academic Publishers. p. 30. ISBN 978-0-7923-7054-3.
  37. ^ E. Catalan (1864). Mémoire sur la transformation des séries, et sur quelques intégrales définies, Comptes rendus hebdomadaires des séances de l'Académie des sciences 59. Kluwer Academic éditeurs. p. 618.
  38. ^ James Stewart (2010). Single Variable Calculus: Concepts and Contexts. Brooks/Cole. p. 314. ISBN 978-0-495-55972-6.
  39. ^ Julian Havil (2003). Gamma: Exploring Euler's Constant. Princeton University Press. p. 64. ISBN 9780691141336.
  40. ^ Steven Finch (2014). Errata and Addenda to Mathematical Constants (PDF). Harvard.edu. p. 59. Archived from the original (PDF) on 2016-03-16. Retrieved 2013-12-17.
  41. ^ Osborne, George Abbott (1891). An Elementary Treatise on the Differential and Integral Calculus. Leach, Shewell, and Sanborn. pp. 250.
  42. ^ Yann Bugeaud (2004). Series representations for some mathematical constants. p. 72. ISBN 978-0-521-82329-6.
  43. ^ David Wells (1997). The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books Ltd. p. 4. ISBN 9780141929408.
  44. ^ Tijdeman, Robert (1976). "On the Gel'fond–Baker method and its applications". In Felix E. Browder (ed.). Mathematical Developments Arising from Hilbert Problems. Proceedings of Symposia in Pure Mathematics. Vol. XXVIII.1. American Mathematical Society. pp. 241–268. ISBN 0-8218-1428-1. Zbl 0341.10026.
  45. ^ David Cohen (2006). Precalculus: With Unit Circle Trigonometry. Thomson Learning Inc. p. 328. ISBN 978-0-534-40230-3.
  46. ^ Helmut Brass; Knut Petras (2010). Quadrature Theory: The Theory of Numerical Integration on a Compact Interval. AMS. p. 274. ISBN 978-0-8218-5361-0.
  47. ^ Mauro Fiorentini. Nielsen – Ramanujan (costanti di).
  48. ^ Thomas Koshy (2007). Elementary Number Theory with Applications. Elsevier. p. 119. ISBN 978-0-12-372-487-8.
  49. ^ Ian Stewart (1996). Professor Stewart's Cabinet of Mathematical Curiosities. Birkhäuser Verlag. ISBN 978-1-84765-128-0.
  50. ^ Steven Finch (2014). Errata and Addenda to Mathematical Constants (PDF). Harvard.edu. p. 53. Archived from the original (PDF) on 2016-03-16. Retrieved 2013-12-17.
  51. ^ Michael J. Dinneen; Bakhadyr Khoussainov; Prof. Andre Nies (2012). Computation, Physics and Beyond. Springer. p. 110. ISBN 978-3-642-27653-8.
  52. ^ Pei-Chu Hu, Chung-Chun (2008). Distribution Theory of Algebraic Numbers. Hong Kong University. p. 246. ISBN 978-3-11-020536-7.
  53. ^ Julian Havil (2003). Gamma: Exploring Euler's Constant. Princeton University Press. p. 161. ISBN 9780691141336.
  54. ^ David Darling (2004). The Universal Book of Mathematics: From Abracadabra to Zeno's Paradoxes. Wiley & Sons inc. p. 63. ISBN 978-0-471-27047-8.
  55. ^ Steven R. Finch (2003). Mathematical Constants. Cambridge University Press. p. 479. ISBN 978-3-540-67695-9. Schmutz.
  56. ^ Eric W. Weisstein (2003). CRC Concise Encyclopedia of Mathematics, Second Edition. CRC Press. p. 151. ISBN 978-1-58488-347-0.
  57. ^ Waldschmidt, M. "Nombres transcendants et fonctions sigma de Weierstrass." C. R. Math. Rep. Acad. Sci. Canada 1, 111-114, 1978/79.
  58. ^ Dusko Letic; Nenad Cakic; Branko Davidovic; Ivana Berkovic. Orthogonal and diagonal dimension fluxes of hyperspherical function (PDF). Springer.
  59. ^ Paul Manneville (2010). Instabilities, Chaos and Turbulence. Imperial College Press. p. 176. ISBN 978-1-84816-392-8.
  60. ^ K. T. Chau; Zheng Wang (201). Chaos in Electric Drive Systems: Analysis, Control and Application. John Wiley & Son. p. 7. ISBN 978-0-470-82633-1. {{cite book}}: ISBN / Date incompatibility (help)
  61. ^ Steven R. Finch (2003). Mathematical Constants. Cambridge University Press. p. 238. ISBN 978-3-540-67695-9.
  62. ^ Holger Hermanns; Roberto Segala (2000). Process Algebra and Probabilistic Methods. Springer-Verlag. p. 270. ISBN 978-3-540-67695-9.
  63. ^ Helmut Brass; Knut Petras (2010). Quadrature Theory: The Theory of Numerical Integration on a Compact Interval. AMS. p. 274. ISBN 978-0-8218-5361-0.
  64. ^ Mauro Fiorentini. Nielsen – Ramanujan (costanti di).
  65. ^ Thomas Koshy (2007). Elementary Number Theory with Applications. Elsevier. p. 119. ISBN 978-0-12-372-487-8.
  66. ^ Michael J. Dinneen; Bakhadyr Khoussainov; Prof. Andre Nies (2012). Computation, Physics and Beyond. Springer. p. 110. ISBN 978-3-642-27653-8.

Site MathWorld Wolfram.com

  1. ^ Weisstein, Eric W. "Pi Formulas". MathWorld.
  2. ^ Weisstein, Eric W. "Pythagoras's Constant". MathWorld.
  3. ^ Weisstein, Eric W. "Theodorus's Constant". MathWorld.
  4. ^ Weisstein, Eric W. "Golden Ratio". MathWorld.
  5. ^ Weisstein, Eric W. "Silver Ratio". MathWorld.
  6. ^ Weisstein, Eric W. "Delian Constant". MathWorld.
  7. ^ Weisstein, Eric W. "Self-Avoiding Walk Connective Constant". MathWorld.
  8. ^ Weisstein, Eric W. "Polygon Inscribing". MathWorld.
  9. ^ Weisstein, Eric W. "Wallis's Constant". MathWorld.
  10. ^ Weisstein, Eric W. "e". MathWorld.
  11. ^ Weisstein, Eric W. "Natural Logarithm of 2". MathWorld.
  12. ^ Weisstein, Eric W. "Lemniscate Constant". MathWorld.
  13. ^ Weisstein, Eric W. "Euler–Mascheroni Constant". MathWorld.
  14. ^ Weisstein, Eric W. "Erdos-Borwein Constant". MathWorld.
  15. ^ Weisstein, Eric W. "Omega Constant". MathWorld.
  16. ^ Weisstein, Eric W. "Apéry's Constant". MathWorld.
  17. ^ Weisstein, Eric W. "Laplace Limit". MathWorld.
  18. ^ Weisstein, Eric W. "Soldner's Constant". MathWorld.
  19. ^ Weisstein, Eric W. "Gauss's Constant". MathWorld.
  20. ^ Weisstein, Eric W. "Hermite Constants". MathWorld.
  21. ^ Weisstein, Eric W. "Liouville's Constant". MathWorld.
  22. ^ Weisstein, Eric W. "Continued Fraction Constants". MathWorld.
  23. ^ Weisstein, Eric W. "Ramanujan Constant". MathWorld.
  24. ^ Weisstein, Eric W. "Glaisher-Kinkelin Constant". MathWorld.
  25. ^ Weisstein, Eric W. "Catalan's Constant". MathWorld.
  26. ^ a b Weisstein, Eric W. "Dottie Number". MathWorld.
  27. ^ Weisstein, Eric W. "Mertens Constant". MathWorld.
  28. ^ Weisstein, Eric W. "Universal Parabolic Constant". MathWorld.
  29. ^ Weisstein, Eric W. "Cahen's Constant". MathWorld.
  30. ^ Weisstein, Eric W. "Gelfonds Constant". MathWorld.
  31. ^ Weisstein, Eric W. "Gelfond-Schneider Constant". MathWorld.
  32. ^ Weisstein, Eric W. "Favard Constants". MathWorld.
  33. ^ Weisstein, Eric W. "Nielsen-Ramanujan Constants". MathWorld.
  34. ^ Weisstein, Eric W. "Brun's Constant". MathWorld.
  35. ^ Weisstein, Eric W. "Twin Primes Constant". MathWorld.
  36. ^ Weisstein, Eric W. "Plastic Constant". MathWorld.
  37. ^ Weisstein, Eric W. "Thue-Morse Constant". MathWorld.
  38. ^ Weisstein, Eric W. "Champernowne Constant". MathWorld.
  39. ^ Weisstein, Eric W. "Salem Constants". MathWorld.
  40. ^ Weisstein, Eric W. "Khinchin's Constant". MathWorld.
  41. ^ Weisstein, Eric W. "Chaitin's Constant". MathWorld.
  42. ^ Weisstein, Eric W. "Robbins Constant". MathWorld.
  43. ^ Weisstein, Eric W. "Weierstrass Constant". MathWorld.
  44. ^ Weisstein, Eric W. "Fransen-Robinson Constant". MathWorld.
  45. ^ Weisstein, Eric W. "Cantor Set". MathWorld.
  46. ^ Cite error: The named reference Feigenbaum Constant was invoked but never defined (see the help page).
  47. ^ Weisstein, Eric W. "du Bois-Reymond Constants". MathWorld.
  48. ^ https://mathworld.wolfram.com/HermiteConstants.html
  49. ^ Weisstein, Eric W. "Relatively Prime". MathWorld.
  50. ^ https://mathworld.wolfram.com/FavardConstants.html
  51. ^ https://mathworld.wolfram.com/Nielsen-RamanujanConstants.html

Site OEIS.com

Site OEIS Wiki

Bibliography

Further reading



[[Category:Mathematical constants|*] [[Category:Mathematics-related lists|mathematical constants] [[Category:Mathematical tables|Constants] [[Category:Articles containing video clips] [[Category:Number-related lists|constants] [[Category:Continued fractions]