Jump to content

Biordered set

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Adore mannu (talk | contribs) at 12:42, 5 June 2022. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

.[1] hey myself mannu


.[2]

Definition

The formal definition of a biordered set given by Nambooripad[2] requires some preliminaries.

Preliminaries

If X and Y be sets and ρ⊆ X × Y, let ρ ( y ) = { xX : x ρ y }.

Let E be a set in which a partial binary operation, indicated by juxtaposition, is defined. If DE is the domain of the partial binary operation on E then DE is a relation on E and (e,f) is in DE if and only if the product ef exists in E. The following relations can be defined in E:

If T is any statement about E involving the partial binary operation and the above relations in E, one can define the left-right dual of T denoted by T*. If DE is symmetric then T* is meaningful whenever T is.

Formal definition

The set E is called a biordered set if the following axioms and their duals hold for arbitrary elements e, f, g, etc. in E.

(B1) ωr and ωl are reflexive and transitive relations on E and DE = ( ωr ∪ ω l ) ∪ ( ωr ∪ ωl )−1.
(B21) If f is in ωr( e ) then f R fe ω e.
(B22) If g ωl f and if f and g are in ωr ( e ) then ge ωl fe.
(B31) If g ωr f and f ωr e then gf = ( ge )f.
(B32) If g ωl f and if f and g are in ωr ( e ) then ( fg )e = ( fe )( ge ).

In M ( e, f ) = ωl ( e ) ∩ ωr ( f ) (the M-set of e and f in that order), define a relation by

.

Then the set

is called the sandwich set of e and f in that order.

(B4) If f and g are in ωr ( e ) then S( f, g )e = S ( fe, ge ).

M-biordered sets and regular biordered sets

We say that a biordered set E is an M-biordered set if M ( e, f ) ≠ ∅ for all e and f in E. Also, E is called a regular biordered set if S ( e, f ) ≠ ∅ for all e and f in E.

In 2012 Roman S. Gigoń gave a simple proof that M-biordered sets arise from E-inversive semigroups.[3][clarification needed]

Subobjects and morphisms

Biordered subsets

A subset F of a biordered set E is a biordered subset (subboset) of E if F is a biordered set under the partial binary operation inherited from E.

For any e in E the sets ωr ( e ), ωl ( e ) and ω ( e ) are biordered subsets of E.[2]

Bimorphisms

A mapping φ : EF between two biordered sets E and F is a biordered set homomorphism (also called a bimorphism) if for all ( e, f ) in DE we have ( eφ ) ( fφ ) = ( ef )φ.

Illustrative examples

Vector space example

Let V be a vector space and

E = { ( A, B ) | V = AB }

where V = AB means that A and B are subspaces of V and V is the internal direct sum of A and B. The partial binary operation ⋆ on E defined by

( A, B ) ⋆ ( C, D ) = ( A + ( BC ), ( B + C ) ∩ D )

makes E a biordered set. The quasiorders in E are characterised as follows:

( A, B ) ωr ( C, D ) ⇔ AC
( A, B ) ωl ( C, D ) ⇔ BD

Biordered set of a semigroup

The set E of idempotents in a semigroup S becomes a biordered set if a partial binary operation is defined in E as follows: ef is defined in E if and only if ef = e or ef= f or fe = e or fe = f holds in S. If S is a regular semigroup then E is a regular biordered set.

As a concrete example, let S be the semigroup of all mappings of X = { 1, 2, 3 } into itself. Let the symbol (abc) denote the map for which 1 → a, 2 → b, and 3 → c. The set E of idempotents in S contains the following elements:

(111), (222), (333) (constant maps)
(122), (133), (121), (323), (113), (223)
(123) (identity map)

The following table (taking composition of mappings in the diagram order) describes the partial binary operation in E. An X in a cell indicates that the corresponding multiplication is not defined.

 (111)   (222)   (333)   (122)   (133)   (121)   (323)   (113)   (223)   (123) 
 (111)   (111)  (222)  (333)  (111)  (111)  (111)  (333)  (111)  (222)  (111)
 (222)   (111)  (222)  (333)  (222)  (333)  (222)  (222)  (111)  (222)  (222)
 (333)   (111)  (222)  (333)  (222)  (333)  (111)  (333)  (333)  (333)  (333)
 (122)   (111)  (222)  (333)  (122)  (133)  (122)    X    X    X  (122)
 (133)   (111)  (222)  (333)  (122)  (133)    X    X  (133)    X  (133)
 (121)   (111)  (222)  (333)  (121)    X  (121)  (323)    X    X  (121)
 (323)   (111)  (222)  (333)    X    X  (121)   (323)    X  (323)  (323)
 (113)   (111)  (222)  (333)    X  (113)    X    X  (113)  (223)  (113)
 (223)   (111)  (222)  (333)    X    X    X  (223)  (113)  (223)  (223)
 (123)   (111)  (222)  (333)  (122)  (133)  (121)  (323)  (113)  (223)  (123)

References

  1. ^ Patrick K. Jordan. On biordered sets, including an alternative approach to fundamental regular semigroups. Master's thesis, University of Sydney, 2002.
  2. ^ a b c Nambooripad, K S S (1979). Structure of regular semigroups – I. Memoirs of the American Mathematical Society. Vol. 224. American Mathematical Society. ISBN 978-0-8218-2224-1.
  3. ^ Gigoń, Roman (2012). "Some results on E-inversive semigroups". Quasigroups and Related Systems 20: 53-60.