Biordered set
![]() | This article's tone or style may not reflect the encyclopedic tone used on Wikipedia. (November 2012) |
.[1] hey myself mannu
.[2]
Definition
The formal definition of a biordered set given by Nambooripad[2] requires some preliminaries.
Preliminaries
If X and Y be sets and ρ⊆ X × Y, let ρ ( y ) = { x ∈ X : x ρ y }.
Let E be a set in which a partial binary operation, indicated by juxtaposition, is defined. If DE is the domain of the partial binary operation on E then DE is a relation on E and (e,f) is in DE if and only if the product ef exists in E. The following relations can be defined in E:
If T is any statement about E involving the partial binary operation and the above relations in E, one can define the left-right dual of T denoted by T*. If DE is symmetric then T* is meaningful whenever T is.
Formal definition
The set E is called a biordered set if the following axioms and their duals hold for arbitrary elements e, f, g, etc. in E.
- (B1) ωr and ωl are reflexive and transitive relations on E and DE = ( ωr ∪ ω l ) ∪ ( ωr ∪ ωl )−1.
- (B21) If f is in ωr( e ) then f R fe ω e.
- (B22) If g ωl f and if f and g are in ωr ( e ) then ge ωl fe.
- (B31) If g ωr f and f ωr e then gf = ( ge )f.
- (B32) If g ωl f and if f and g are in ωr ( e ) then ( fg )e = ( fe )( ge ).
In M ( e, f ) = ωl ( e ) ∩ ωr ( f ) (the M-set of e and f in that order), define a relation by
- .
Then the set
is called the sandwich set of e and f in that order.
- (B4) If f and g are in ωr ( e ) then S( f, g )e = S ( fe, ge ).
M-biordered sets and regular biordered sets
We say that a biordered set E is an M-biordered set if M ( e, f ) ≠ ∅ for all e and f in E. Also, E is called a regular biordered set if S ( e, f ) ≠ ∅ for all e and f in E.
In 2012 Roman S. Gigoń gave a simple proof that M-biordered sets arise from E-inversive semigroups.[3][clarification needed]
Subobjects and morphisms
Biordered subsets
A subset F of a biordered set E is a biordered subset (subboset) of E if F is a biordered set under the partial binary operation inherited from E.
For any e in E the sets ωr ( e ), ωl ( e ) and ω ( e ) are biordered subsets of E.[2]
Bimorphisms
A mapping φ : E → F between two biordered sets E and F is a biordered set homomorphism (also called a bimorphism) if for all ( e, f ) in DE we have ( eφ ) ( fφ ) = ( ef )φ.
Illustrative examples
Vector space example
Let V be a vector space and
- E = { ( A, B ) | V = A ⊕ B }
where V = A ⊕ B means that A and B are subspaces of V and V is the internal direct sum of A and B. The partial binary operation ⋆ on E defined by
- ( A, B ) ⋆ ( C, D ) = ( A + ( B ∩ C ), ( B + C ) ∩ D )
makes E a biordered set. The quasiorders in E are characterised as follows:
- ( A, B ) ωr ( C, D ) ⇔ A ⊇ C
- ( A, B ) ωl ( C, D ) ⇔ B ⊆ D
Biordered set of a semigroup
The set E of idempotents in a semigroup S becomes a biordered set if a partial binary operation is defined in E as follows: ef is defined in E if and only if ef = e or ef= f or fe = e or fe = f holds in S. If S is a regular semigroup then E is a regular biordered set.
As a concrete example, let S be the semigroup of all mappings of X = { 1, 2, 3 } into itself. Let the symbol (abc) denote the map for which 1 → a, 2 → b, and 3 → c. The set E of idempotents in S contains the following elements:
- (111), (222), (333) (constant maps)
- (122), (133), (121), (323), (113), (223)
- (123) (identity map)
The following table (taking composition of mappings in the diagram order) describes the partial binary operation in E. An X in a cell indicates that the corresponding multiplication is not defined.
∗ | (111) | (222) | (333) | (122) | (133) | (121) | (323) | (113) | (223) | (123) |
---|---|---|---|---|---|---|---|---|---|---|
(111) | (111) | (222) | (333) | (111) | (111) | (111) | (333) | (111) | (222) | (111) |
(222) | (111) | (222) | (333) | (222) | (333) | (222) | (222) | (111) | (222) | (222) |
(333) | (111) | (222) | (333) | (222) | (333) | (111) | (333) | (333) | (333) | (333) |
(122) | (111) | (222) | (333) | (122) | (133) | (122) | X | X | X | (122) |
(133) | (111) | (222) | (333) | (122) | (133) | X | X | (133) | X | (133) |
(121) | (111) | (222) | (333) | (121) | X | (121) | (323) | X | X | (121) |
(323) | (111) | (222) | (333) | X | X | (121) | (323) | X | (323) | (323) |
(113) | (111) | (222) | (333) | X | (113) | X | X | (113) | (223) | (113) |
(223) | (111) | (222) | (333) | X | X | X | (223) | (113) | (223) | (223) |
(123) | (111) | (222) | (333) | (122) | (133) | (121) | (323) | (113) | (223) | (123) |
References
- ^ Patrick K. Jordan. On biordered sets, including an alternative approach to fundamental regular semigroups. Master's thesis, University of Sydney, 2002.
- ^ a b c Nambooripad, K S S (1979). Structure of regular semigroups – I. Memoirs of the American Mathematical Society. Vol. 224. American Mathematical Society. ISBN 978-0-8218-2224-1.
- ^ Gigoń, Roman (2012). "Some results on E-inversive semigroups". Quasigroups and Related Systems 20: 53-60.