Jump to content

User:Atavoidirc/constants

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Atavoidirc (talk | contribs) at 14:00, 3 May 2022 (List). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

List of mathematical constants


A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems.[1] For example, the constant π may be defined as the ratio of the length of a circle's circumference to its diameter. The following list includes a decimal expansion and set containing each number, ordered by year of discovery.

The column headings may be clicked to sort the table alphabetically, by decimal value, or by set. Explanations of the symbols in the right hand column can be found by clicking on them.

List

Name Symbol Decimal expansion Formula Year Set
Second Hermite constant[2] 1.15470 05383 [Mw 1] 1822 to 1901
Liouville's constant[3] 0.11000 10000 [Mw 2][OEIS 1] Before 1844
First continued fraction constant 0.69777 46579 [Mw 3][OEIS 2]

, where is the modified Bessel function

1855[4]
Hermite–Ramanujan constant[5] 262537412... [Mw 4][OEIS 3] 1859
Weierstrass constant [6] 0.47494 93799 [Mw 5][OEIS 4] 1872 ?
First Hafner–Sarnak–McCurley constant [7] 0.60792 71018 [Mw 6][OEIS 5] 1883[Mw 6]
Second Favard constant[8] 1.23370 05501 [Mw 7][OEIS 6] 1902 to 1965
First NielsenRamanujan constant[9] 0.82246 70334 [Mw 8][OEIS 7] 1909
Tribonacci constant[10] 1.83928 67552 [Mw 9][OEIS 8]

Real root of

1914 to 1963
Twin primes constant 0.66016 18158 [Mw 10][OEIS 9] 1922
Z score for the 97.5 percentile point[11][12][13][14] 1.95996 39845 [Mw 11][OEIS 10] where erf-1(x) is the inverse error function

Real number such that

1925
Champernowne constants[15] 0.12345 67891 01112 13141 [Mw 12][OEIS 11] Defined by concatenating representations of successive integers in base b 1933
Mills' constant[16] 1.30637 78838 63080 69046 [Mw 13][OEIS 12] Smallest positive real number A such that is prime for all positive integers n 1947
Lieb's square ice constant[17] 1.53960 07178 39002 03869 [Mw 14][OEIS 13] 1967
Connective constant for the hexagonal lattice[18][19] 1.84775 90650 22573 51225 [Mw 15][OEIS 14] , as a root of the polynomial 1982[20]
Brun's constant[21] 1.90216 05831 04 [Mw 16][OEIS 15]

where the sum ranges over all primes p such that p + 2 is also a prime

1989[OEIS 15]
Prime constant[22] 0.41468 25098 51111 66024 [OEIS 16] Before 2008
Copeland–Erdős constant[23] 0.23571 11317 19232 93137 [Mw 17][OEIS 17] Defined by concatenating representations of successive prime numbers:

0.2 3 5 7 11 13 17 19 23 29 31 37 ...

Before 2012[23]

See also

Notes

References

  1. ^ Weisstein, Eric W. "Constant". mathworld.wolfram.com. Retrieved 2020-08-08.
  2. ^ Steven Finch (2014). Errata and Addenda to Mathematical Constants (PDF). Harvard.edu. Archived from the original (PDF) on 2016-03-16. Retrieved 2013-12-17.
  3. ^ Calvin C. Clawson (2003). Mathematical Traveler: Exploring the Grand History of Numbers. Perseus. p. 187. ISBN 978-0-7382-0835-0.
  4. ^ Amoretti, F. (1855). "Sur la fraction continue [0,1,2,3,4,...]". Nouvelles annales de mathématiques. 1 (14): 40–44.
  5. ^ L. J. Lloyd James Peter Kilford (2008). Modular Forms: A Classical and Computational Introduction. Imperial College Press. p. 107. ISBN 978-1-84816-213-6.
  6. ^ Eric W. Weisstein (2003). CRC Concise Encyclopedia of Mathematics, Second Edition. CRC Press. p. 151. ISBN 978-1-58488-347-0.
  7. ^ Holger Hermanns; Roberto Segala (2000). Process Algebra and Probabilistic Methods. Springer-Verlag. p. 270. ISBN 978-3-540-67695-9.
  8. ^ Helmut Brass; Knut Petras (2010). Quadrature Theory: The Theory of Numerical Integration on a Compact Interval. AMS. p. 274. ISBN 978-0-8218-5361-0.
  9. ^ Mauro Fiorentini. Nielsen – Ramanujan (costanti di).
  10. ^ Agronomof, M. (1914). "Sur une suite récurrente". Mathesis. 4: 125–126.
  11. ^ Rees, DG (1987), Foundations of Statistics, CRC Press, p. 246, ISBN 0-412-28560-6, Why 95% confidence? Why not some other confidence level? The use of 95% is partly convention, but levels such as 90%, 98% and sometimes 99.9% are also used.
  12. ^ "Engineering Statistics Handbook: Confidence Limits for the Mean". National Institute of Standards and Technology. Archived from the original on 5 February 2008. Retrieved 4 February 2008. Although the choice of confidence coefficient is somewhat arbitrary, in practice 90%, 95%, and 99% intervals are often used, with 95% being the most commonly used.
  13. ^ Olson, Eric T; Olson, Tammy Perry (2000), Real-Life Math: Statistics, Walch Publishing, p. 66, ISBN 0-8251-3863-9, While other stricter, or looser, limits may be chosen, the 95 percent interval is very often preferred by statisticians.
  14. ^ Swift, MB. "Comparison of Confidence Intervals for a Poisson Mean - Further Considerations". Communications in Statistics - Theory and Methods. Vol. 38, no. 5. pp. 748–759. doi:10.1080/03610920802255856. In modern applied practice, almost all confidence intervals are stated at the 95% level.
  15. ^ Michael J. Dinneen; Bakhadyr Khoussainov; Prof. Andre Nies (2012). Computation, Physics and Beyond. Springer. p. 110. ISBN 978-3-642-27653-8.
  16. ^ Laith Saadi (2004). Stealth Ciphers. Trafford Publishing. p. 160. ISBN 978-1-4120-2409-9.
  17. ^ Robin Whitty. Lieb's Square Ice Theorem (PDF).
  18. ^ Mireille Bousquet-Mélou. Two-dimensional self-avoiding walks (PDF). CNRS, LaBRI, Bordeaux, France.
  19. ^ Hugo Duminil-Copin & Stanislav Smirnov (2011). The connective constant of the honeycomb lattice √ (2 + √ 2) (PDF). Université de Geneve.
  20. ^ B. Nienhuis (1982). "Exact critical point and critical exponents of O(n) models in two dimensions". Phys. Rev. Lett. 49 (15): 1062–1065. Bibcode:1982PhRvL..49.1062N. doi:10.1103/PhysRevLett.49.1062.
  21. ^ Thomas Koshy (2007). Elementary Number Theory with Applications. Elsevier. p. 119. ISBN 978-0-12-372-487-8.
  22. ^ Hardy, G. H. (2008). An introduction to the theory of numbers. E. M. Wright, D. R. Heath-Brown, Joseph H. Silverman (6th ed.). Oxford: Oxford University Press. ISBN 978-0-19-921985-8. OCLC 214305907.
  23. ^ a b Yann Bugeaud (2012). Distribution Modulo One and Diophantine Approximation. Cambridge University Press. p. 87. ISBN 978-0-521-11169-0.

Site MathWorld Wolfram.com

Site OEIS.com

Site OEIS Wiki

Bibliography

Further reading



[[Category:Mathematical constants|*] [[Category:Mathematics-related lists|mathematical constants] [[Category:Mathematical tables|Constants] [[Category:Articles containing video clips] [[Category:Number-related lists|constants] [[Category:Continued fractions]