Jump to content

Sachdev–Ye–Kitaev model

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Forbes72 (talk | contribs) at 18:36, 1 May 2022 (removed Category:Condensed matter physics; added Category:Lattice models using HotCat). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In condensed matter physics and black hole physics, the Sachdev–Ye–Kitaev (SYK) model (commonly known as SYK model) is an exactly solvable model initially proposed by Subir Sachdev and Jinwu Ye,[1] and later modified by Alexei Kitaev to the present commonly used form.[2][3] The model is believed to bring insights into the understanding of strongly correlated materials and it also has a close relation with the discrete model of AdS/CFT, and fermionic code. Many condensed matter systems, such as quantum dot coupled to topological superconducting wires,[4] graphene flake with irregular boundary,[5] and kagome optical lattice with impurities,[6] are proposed to be modeled by it. Some variants of the model is amenable to digital quantum simulation,[7] with pioneering experiments implemented in a NMR setting.[8]

Model

Let be an integer and an even integer such that , and consider a set of Majorana fermions which are fermion operators satisfying conditions:

  1. Hermitian ;
  2. Clifford relation .

Let be random variables whose expectations satisfy:

  1. ;
  2. .

Then the SYK model is defined as

.

Note that sometimes an extra normalization factor is included.

The most famous model is when :

,

where the factor is included to coincide with the most popular form.

See also

References

  1. ^ Sachdev, Subir; Ye, Jinwu (1993-05-24). "Gapless spin-fluid ground state in a random quantum Heisenberg magnet". Physical Review Letters. 70 (21): 3339–3342. arXiv:cond-mat/9212030. Bibcode:1993PhRvL..70.3339S. doi:10.1103/PhysRevLett.70.3339. PMID 10053843.
  2. ^ "Alexei Kitaev, Caltech & KITP, A simple model of quantum holography (part 1)". online.kitp.ucsb.edu. Retrieved 2019-11-02.
  3. ^ "Alexei Kitaev, Caltech, A simple model of quantum holography (part 2)". online.kitp.ucsb.edu. Retrieved 2019-11-02.
  4. ^ Chew, Aaron; Essin, Andrew; Alicea, Jason (2017-09-29). "Approximating the Sachdev-Ye-Kitaev model with Majorana wires". Phys. Rev. B. 96 (12): 121119. doi:10.1103/PhysRevB.96.121119.
  5. ^ Chen, Anffany; Ilan, R.; Juan, F.; Pikulin, D.I.; Franz, M. (2018-06-18). "Quantum Holography in a Graphene Flake with an Irregular Boundary". Phys. Rev. Lett. 121 (3): 036403. arXiv:1802.00802. doi:10.1103/PhysRevLett.121.036403.
  6. ^ Wei, Chenan; Sedrakyan, Tigran (2021-01-29). "Optical lattice platform for the Sachdev-Ye-Kitaev model". Phys. Rev. A. 103 (1): 013323. arXiv:2005.07640. Bibcode:2021PhRvA.103a3323W. doi:10.1103/PhysRevA.103.013323.
  7. ^ García-Álvarez, L.; Egusquiza, I.L.; Lamata, L.; del Campo, A.; Sonner, J.; Solano, E. (2017). "Digital Quantum Simulation of Minimal AdS/CFT". Physical Review Letters. 119: 040501. arXiv:1607.08560. Bibcode:2017PhRvL.119d0501G. doi:10.1103/PhysRevLett.119.040501.
  8. ^ Luo, Z.; You, Y.-Z.; Li, J.; Jian, C.-M.; Lu, D.; Xu, C.; Zeng, B.; Laflamme, R. (2019). "Quantum simulation of the non-fermi-liquid state of Sachdev-Ye-Kitaev model". npj Quantum Information. 5: 53. arXiv:1712.06458. Bibcode:2019npjQI...5...53L. doi:10.1038/s41534-019-0166-7.