User:Atavoidirc/constants
List of mathematical constants
A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems.[1] For example, the constant π may be defined as the ratio of the length of a circle's circumference to its diameter. The following list includes a decimal expansion and set containing each number, ordered by year of discovery.
The column headings may be clicked to sort the table alphabetically, by decimal value, or by set. Explanations of the symbols in the right hand column can be found by clicking on them.
List
Name | Symbol | Decimal expansion | Formula | Year | Set | Continued Fraction |
---|---|---|---|---|---|---|
One | 1 | 1 | Prehistory | [1; ] | ||
Two | 2 | 2 | Prehistory | [2; ] | ||
One half | 1/2 | 0.5 | Prehistory | [0; 2] | ||
Pi | 3.14159 26535 89793 23846 [Mw 1][OEIS 1] | Ratio of a circle's circumference to its diameter. | 1900 to 1600 BCE [2] | [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, …] [OEIS 2] | ||
Square root of 2,
Pythagoras constant.[3] |
1.41421 35623 73095 04880 [Mw 2][OEIS 3] | Positive root of | 1800 to 1600 BCE[4] | [1; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, …] | ||
Square root of 3,
Theodorus' constant[5] |
1.73205 08075 68877 29352 [Mw 3][OEIS 4] | Positive root of | 465 to 398 BCE | |||
Square root of 5[6] | 2.23606 79774 99789 69640[OEIS 5] | Positive root of | ||||
Phi, Golden ratio[7] | 1.61803 39887 49894 84820 [Mw 4][OEIS 6] | ~300 BCE | [1; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …] [8] | |||
Silver ratio[9] | 2.41421 35623 73095 04880 [Mw 5][OEIS 7] | ~300 BCE | ||||
Zero | 0 | 0 | 300 to 100 BCE[10] | [0; ] | ||
Negative one | −1 | −1 | 300 to 200 BCE | [-1; ] | ||
Cube root of 2 (Delian Constant) | 1.25992 10498 94873 16476 [Mw 6][OEIS 8] | Real root of | 46 to 120 CE[11] | |||
Cube root of 3 | 1.44224 95703 07408 38232[OEIS 9] | Real root of | ||||
Twelfth root of 2[12] | 1.05946 30943 59295 26456[OEIS 10] | Real root of | ||||
Supergolden ratio[13] | 1.46557 12318 76768 02665[OEIS 11] |
Real root of |
||||
Imaginary unit[14] | 0 + 1i | Either of the two roots of [nb 1] | 1501 to 1576 | [i; ] | ||
Wallis's constant | 2.09455 14815 42326 59148 [Mw 7][OEIS 12] |
Real root of |
1616 to 1703 | |||
Euler's number[15] | 2.71828 18284 59045 23536 [Mw 8][OEIS 13] | 1618[16] | [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1, 14, …] [17][OEIS 14] | |||
Natural logarithm of 2[18] | 0.69314 71805 59945 30941 [Mw 9][OEIS 15] | Real root of
|
1619 [19] & 1668[20] | |||
Sophomore's dream1 J.Bernoulli[21] |
0.78343 05107 12134 40705 [OEIS 16] | 1697 | ||||
Sophomore's dream2 J.Bernoulli[22] |
1.29128 59970 62663 54040 [Mw 10][OEIS 17] | 1697 | ||||
Lemniscate constant[23] | 2.62205 75542 92119 81046 [Mw 11][OEIS 18] |
where is Gauss's constant |
1718 to 1798 | |||
Euler–Mascheroni constant | 0.57721 56649 01532 86060 [Mw 12][OEIS 19] | 1735 | [0; 1, 1, 2, 1, 2, 1, 4, 3, 13, 5, 1, 1, 8, 1, 2, 4, 1, 1, 40, 1, …] [24][OEIS 20] | |||
Erdős–Borwein constant[25] | 1.60669 51524 15291 76378 [Mw 13][OEIS 21] | 1749[26] | [1; 1, 1, 1, 1, 5, 2, 1, 2, 29, 4, 1, 2, 2, 2, 2, 6, 1, 7, 1, 6, …] [OEIS 22] | |||
Omega constant | 0.56714 32904 09783 87299 [Mw 14][OEIS 23] |
where W is the Lambert W function |
1758 & 1783 | [0; 1, 1, 3, 4, 2, 10, 4, 1, 1, 1, 1, 2, 7, 306, 1, 5, 1, 2, 1, 5, …] [OEIS 24] | ||
Laplace limit[27] | 0.66274 34193 49181 58097 [Mw 15][OEIS 25] | Real root of | ~1782 | |||
Gauss's constant[28] | 0.83462 68416 74073 18628 [Mw 16][OEIS 26] |
where agm is the arithmetic–geometric mean |
1799[29] | [0; 1, 5, 21, 3, 4, 14, 1, 1, 1, 1, 1, 3, 1, 15, 1, 3, 8, 36, 1, 2, …] [OEIS 27] | ||
Ramanujan–Soldner constant[30][31] | 1.45136 92348 83381 05028 [Mw 17][OEIS 28] | ; root of the logarithmic integral function. | 1812[Mw 18] | [1; 2, 4, 1, 1, 1, 3, 1, 1, 1, 2, 47, 2, 4, 1, 12, 1, 1, 2, 2, 1, …] [OEIS 29] | ||
Second Hermite constant[32] | 1.15470 05383 79251 52901 [Mw 19] | 1822 to 1901 | ||||
Liouville's constant[33] | 0.11000 10000 00000 00000 0001 [Mw 20][OEIS 30] | Before 1844 | ||||
First continued fraction constant | 0.69777 46579 64007 98201 [Mw 21][OEIS 31] |
, where is the modified Bessel function |
1855[34] | [0; 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, …] | ||
Hermite–Ramanujan constant[35] | 262 53741 26407 68743 .99999 99999 99250 073 [Mw 22][OEIS 32] |
1859 | ||||
Glaisher–Kinkelin constant | 1.28242 71291 00622 63687[Mw 23][OEIS 33] | 1860 to 1894 | ||||
Catalan's constant[36][37][38] | 0.91596 55941 77219 01505 [Mw 24][OEIS 34] | 1864 | [0; 1, 10, 1, 8, 1, 88, 4, 1, 1, 7, 22, 1, 2, 3, 26, 1, 11, 1, 10, 1, …] [39][OEIS 35] | |||
Dottie number[40] | 0.73908 51332 15160 64165 [Mw 25][OEIS 36] | Real root of | 1865[Mw 25] | |||
Meissel–Mertens constant[41] | 0.26149 72128 47642 78375 [Mw 26][OEIS 37] |
where γ is the Euler–Mascheroni constant and p is prime |
1866 & 1873 | [0; 3, 1, 4, 1, 2, 5, 2, 1, 1, 1, 1, 13, 4, 2, 4, 2, 1, 33, 296, 2, …] [OEIS 38] | ||
Weierstrass constant [42] | 0.47494 93799 87920 65033 [Mw 27][OEIS 39] | 1872 ? | ||||
First Hafner–Sarnak–McCurley constant [43] | 0.60792 71018 54026 62866 [Mw 28][OEIS 40] | 1883[Mw 28] | ||||
Universal parabolic constant[44] | 2.29558 71493 92638 07403 [Mw 29][OEIS 41] | Before 1891[45] | [2; 3, 2, 1, 1, 1, 1, 3, 3, 1, 1, 4, 2, 3, 2, 7, 1, 6, 1, 8, 7, …] | |||
Cahen's constant[46] | 0.64341 05462 88338 02618 [Mw 30][OEIS 42] |
where sk is the kth term of Sylvester's sequence 2, 3, 7, 43, 1807, ... |
1891 | [0; 1, 1, 1, 22, 32, 132, 1292, 252982, 4209841472, 2694251407415154862, …] [OEIS 43] | ||
Apéry's constant[47] | 1.20205 69031 59594 28539 [Mw 31][OEIS 44] | 1895[48] | [1; 4, 1, 18, 1, 1, 1, 4, 1, 9, 9, 2, 1, 1, 1, 2, 7, 1, 1, 7, 11, …] [49][OEIS 45] | |||
Gelfond's constant[50] | 23.14069 26327 79269 0057 [Mw 32][OEIS 46] | 1900[51] | [23; 7, 9, 3, 1, 1, 591, 2, 9, 1, 2, 34, 1, 16, 1, 30, 1, 1, 4, 1, 2, …] [OEIS 47] | |||
Second Favard constant[52] | 1.23370 05501 36169 82735 [Mw 33][OEIS 48] | 1902 to 1965 | ||||
Golden angle[53] | 2.39996 32297 28653 32223 [Mw 34][OEIS 49] | or
in degrees |
1907 | |||
Sierpiński's constant[54] | 2.58498 17595 79253 21706 [Mw 35][OEIS 50] | 1907 | ||||
First Nielsen–Ramanujan constant[55] | 0.82246 70334 24113 21823 [Mw 36][OEIS 51] | 1909 | ||||
Gieseking constant[56] | 1.01494 16064 09653 62502 [Mw 37][OEIS 52] | . |
1912 | |||
Bernstein's constant[57] | 0.28016 94990 23869 13303 [Mw 38][OEIS 53] | , where En(f) is the error of the best uniform approximation to a real function f(x) on the interval [−1, 1] by real polynomials of no more than degree n, and f(x) = |x| | 1913 | [0; 3, 1, 1, 3, 9, 6, 3, 1, 3, 13, 1, 16, 3, 3, 4, …] | ||
Tribonacci constant[58] | 1.83928 67552 14161 13255 [Mw 39][OEIS 54] |
Real root of |
1914 to 1963 | |||
Twin primes constant | 0.66016 18158 46869 57392 [Mw 40][OEIS 55] | 1922 | [0; 1, 1, 1, 16, 2, 2, 2, 2, 1, 18, 2, 2, 11, 1, 1, 2, 4, 1, 16, 3, …] [OEIS 56] | |||
Z score for the 97.5 percentile point[59][60][61][62] | 1.95996 39845 40054 23552 [Mw 41][OEIS 57] | where erf-1(x) is the inverse error function
Real number such that |
1925 | |||
Bloch–Landau constant[63] | 0.54325 89653 42976 70695 [Mw 42][OEIS 58] | 1929 | ||||
Plastic number[64] | 1.32471 79572 44746 02596 [Mw 43][OEIS 59] |
Real root of |
1929 | [1; 3, 12, 1, 1, 3, 2, 3, 2, 4, 2, 141, 80, 2, 5, 1, 2, 8, 2, 1, 1, …] [OEIS 60] | ||
Golomb–Dickman constant[65] | 0.62432 99885 43550 87099 [Mw 44][OEIS 61] |
where Li(t) is the logarithmic integral, and ρ(t) is the Dickman function |
1930 & 1964 | |||
Feller–Tornier constant[66] | 0.66131 70494 69622 33528 [Mw 45][OEIS 62] | 1932 | ||||
Base 10 Champernowne constant[67] | 0.12345 67891 01112 13141 [Mw 46][OEIS 63] | Defined by concatenating representations of successive integers:
0.1 2 3 4 5 6 7 8 9 10 11 12 13 14 ... |
1933 | [0; 8, 9, 1, 149083, 1, 1, 1, 4, 1, 1, 1, 3, 4, 1, 1, 1, 15, 4.57540×10165, 6, 1, …] [OEIS 64] | ||
Gelfond–Schneider constant[68] | 2.66514 41426 90225 18865 [Mw 47][OEIS 65] | 1934 | [2; 1, 1, 1, 72, 3, 4, 1, 3, 2, 1, 1, 1, 14, 1, 2, 1, 1, 3, 1, 3, …] [OEIS 66] | |||
Khinchin's constant[69] | 2.68545 20010 65306 44530 [Mw 48][OEIS 67] | 1934 | [2; 1, 2, 5, 1, 1, 2, 1, 1, 3, 10, 2, 1, 3, 2, 24, 1, 3, 2, 3, 1, …] [70][OEIS 68] | |||
Khinchin–Lévy constant (1)[71] | 1.18656 91104 15625 45282 [Mw 49][OEIS 69] | 1935 | ||||
Khinchin-Lévy constant (2)[72] | 3.27582 29187 21811 15978 [Mw 50][OEIS 70] | 1936 | ||||
Mills' constant[73] | 1.30637 78838 63080 69046 [Mw 51][OEIS 71] | Smallest positive real number A such that is prime for all positive integers n | 1947 | |||
Euler–Gompertz constant[74] | 0.59634 73623 23194 07434 [Mw 52][OEIS 72] | Before 1948[OEIS 72] | ||||
de Bruijn–Newman constant | The number Λ where for where has real zeros if and only if λ ≥ Λ.
where . |
1950 | ||||
Van der Pauw constant | 4.53236 01418 27193 80962[OEIS 73] | Before 1958[OEIS 74] | ||||
Magic angle[75] | 0.95531 66181 245092 78163[OEIS 75] | Before 1959[76][75] | ||||
Lochs constant[77] | 0.97027 01143 92033 92574 [Mw 53][OEIS 76] | 1964 | ||||
Lieb's square ice constant[78] | 1.53960 07178 39002 03869 [Mw 54][OEIS 77] | 1967 | ||||
Baker constant[79] | 0.83564 88482 64721 05333[OEIS 78] | Before 1969[79] | ||||
Niven's constant[80] | 1.70521 11401 05367 76428 [Mw 55][OEIS 79] | 1969 | ||||
Porter's constant[81] | 1.46707 80794 33975 47289 [Mw 56][OEIS 80] |
where γ is the Euler–Mascheroni constant and ζ '(2) is the derivative of the Riemann zeta function evaluated at s = 2 |
1974 | |||
Feigenbaum constant δ [82] | 4.66920 16091 02990 67185 [Mw 57][OEIS 81] |
where the sequence xn is given by |
1975 | [4; 1, 2, 43, 2, 163, 2, 3, 1, 1, 2, 5, 1, 2, 3, 80, 2, 5, 2, 1, 1, …] [OEIS 82] | ||
Chaitin's constants [83] | In general they are uncomputable numbers. But one such number is 0.00787 49969 97812 3844 [Mw 58][OEIS 83] |
|
1975 | |||
Fransén–Robinson constant[84] | 2.80777 02420 28519 36522 [Mw 59][OEIS 84] | 1978 | [2; 1, 4, 4, 1, 18, 5, 1, 3, 4, 1, 5, 3, 6, 1, 1, 1, 5, 1, 1, 1, …] [OEIS 85] | |||
Robbins constant[85] | 0.66170 71822 67176 23515 [Mw 60][OEIS 86] | 1978 | ||||
Fractal dimension of the Cantor set[86] | 0.63092 97535 71457 43709 [Mw 61][OEIS 87] | Before 1979[OEIS 87] | ||||
Feigenbaum constant α[87] | 2.50290 78750 95892 82228 [Mw 57][OEIS 88] | Ratio between the width of a tine and the width of one of its two subtines in a bifurcation diagram | 1979 | [2; 1, 1, 85, 2, 8, 1, 10, 16, 3, 8, 9, 2, 1, 40, 1, 2, 3, 2, 2, 1, …] [OEIS 89] | ||
Connective constant for the hexagonal lattice[88][89] | 1.84775 90650 22573 51225 [Mw 62][OEIS 90] | , as a root of the polynomial | 1982[90] | |||
Lehmer's conjecture constant[91] | 1.17628 08182 59917 50654 [Mw 63][OEIS 91] | Real root of | 1983? | |||
Chebyshev constant[92][93] | 0.59017 02995 08048 11302 [Mw 64][OEIS 92] | Before 1987[Mw 64] | ||||
Conway's constant[94] | 1.30357 72690 34296 39125 [Mw 65][OEIS 93] | Real root of the polynomial:
|
1987 | |||
Prévost constant, Reciprocal Fibonacci constant[95] | 3.35988 56662 43177 55317 [Mw 66][OEIS 94] |
where Fn is the nth Fibonacci number |
Before 1988[OEIS 94] | [3; 2, 1, 3, 1, 1, 13, 2, 3, 3, 2, 1, 1, 6, 3, 2, 4, 362, 2, 4, 8, …] [OEIS 95] | ||
Brun's constant[96] | 1.90216 05831 04 [Mw 67][OEIS 96] |
where the sum ranges over all primes p such that p + 2 is also a prime |
1989[OEIS 96] | [1; 1, 9, 4, 1, 1, 8, 3, 4, 7, 1, 3, 3, 1, 2, 1, 1, 12, 4, 2, 1, …] | ||
Hafner–Sarnak–McCurley constant [97] | 0.35323 63718 54995 98454 [Mw 68][OEIS 97] |
where pk is the kth prime number |
1993 | |||
Fractal dimension of the Apollonian packing of circles [98][99] |
1.30568 6729 ≈ by Thomas & Dhar 1.30568 8 ≈ by McMullen [Mw 69][OEIS 98] |
1994 to 1998 | ||||
Backhouse's constant[100] | 1.45607 49485 82689 67139 [Mw 70][OEIS 99] |
where pk is the kth prime number |
1995 | [1; 2, 5, 5, 4, 1, 1, 18, 1, 1, 1, 1, 1, 2, 13, 3, 1, 2, 4, 16, 4, …] [OEIS 100] | ||
Viswanath constant[101] | 1.13198 82487 943 [Mw 71][OEIS 101] | where fn = fn−1 ± fn−2, where the signs + or − are chosen at random with equal probability 1/2 | 1997 | [1; 7, 1, 1, 2, 1, 3, 2, 1, 2, 1, 17, 1, 1, 2, 1, 2, 4, 1, 2, …] | ||
Regular paperfolding sequence[102][103] | 0.85073 61882 01867 26036 [Mw 72][OEIS 102] | Before 1998[103] | ||||
Komornik–Loreti constant[104] | 1.78723 16501 82965 93301 [Mw 73][OEIS 103] | Real number such that , or
where tk is the kth term of the Thue–Morse sequence |
1998 | |||
Artin constant[105] | 0.37395 58136 19202 28805 [Mw 74][OEIS 104] | 1999 | ||||
Embree–Trefethen constant | 0.70258 | the number where the sequence decays almost surely if and grows almost surely otherwise | 1999 | [0; 1, 2, 2, 1, 3, 5, 1, 2, 6, 1, 1, 5, …] | ||
MRB constant[106][107][108] | 0.18785 96424 62067 12024 [Mw 75][Ow 1][OEIS 105] | 1999 | [0; 5, 3, 10, 1, 1, 4, 1, 1, 1, 1, 9, 1, 1, 12, 2, 17, 2, 2, 1, 1, …] [OEIS 106] | |||
Somos' quadratic recurrence constant[109] | 1.66168 79496 33594 12129 [Mw 76][OEIS 107] | 1999[Mw 76] | ||||
Foias constant α [110] | 1.18745 23511 26501 05459 [Mw 77][OEIS 108] |
Foias constant is the unique real number such that if x1 = α then the sequence diverges to infinity |
2000 | |||
Foias constant β | 2.29316 62874 11861 03150 [Mw 77][OEIS 109] | Real root of | 2000 | |||
DeVicci's tesseract constant | 1.00743 47568 84279 37609[Mw 78][OEIS 110] | The largest cube that can pass through in an 4D hypercube.
Positive root of |
Before 2001 | |||
Ramanujan nested radical[111] | 2.74723 82749 32304 33305 | Before 2001[111] | ||||
Hausdorff dimension of the Sierpinski triangle[112] | 1.58496 25007 21156 18145 [Mw 79][OEIS 111] | Before 2002[112] | ||||
Heath-Brown–Moroz constant[113] | 0.00131 76411 54853 17810 [Mw 80][OEIS 112] | Before 2002[113] | ||||
Lebesgue constant[114] | 0.98943 12738 31146 95174 [Mw 81][OEIS 113] | Before 2002[114] | ||||
2nd du Bois-Reymond constant[115] | 0.19452 80494 65325 11361 [Mw 82][OEIS 114] | Before 2003[115] | ||||
Landau–Ramanujan constant[116] | 0.76422 36535 89220 66299 [Mw 83][OEIS 115] | Before 2005[116] | [0; 1, 3, 4, 6, 1, 15, 1, 2, 2, 3, 1, 23, 3, 1, 1, 3, 1, 1, 7, 2, …] | |||
Stephens constant[117] | 0.57595 99688 92945 43964 [Mw 84][OEIS 116] | Before 2005[117] | ||||
Taniguchi constant[117] | 0.67823 44919 17391 97803 [Mw 85][OEIS 117] | Before 2005[117] | ||||
Prime constant[118] | 0.41468 25098 51111 66024 [OEIS 118] | Before 2008 | ||||
Raabe's formula[119] | 0.91893 85332 04672 74178 [Mw 86][OEIS 119] | Before 2011[119] | ||||
Copeland–Erdős constant[120] | 0.23571 11317 19232 93137 [Mw 87][OEIS 120] | Defined by concatenating representations of successive prime numbers:
0.2 3 5 7 11 13 17 19 23 29 31 37 ... |
Before 2012[120] | |||
Kepler–Bouwkamp constant[121] | 0.11494 20448 53296 20070 [Mw 88][OEIS 121] | Before 2013[121] | ||||
Prouhet–Thue–Morse constant[122] | 0.41245 40336 40107 59778 [Mw 89][OEIS 122] | where is the nth term of the Thue–Morse sequence | Before 2014[122] |
See also
- Invariant (mathematics)
- List of mathematical symbols
- List of mathematical symbols by subject
- List of numbers
- List of physical constants
- Particular values of the Riemann zeta function
- Physical constant
Notes
- ^ Both i and −i are roots of this equation, though neither root is truly "positive" nor more fundamental than the other as they are algebraically equivalent. The distinction between signs of i and −i is in some ways arbitrary, but a useful notational device. See imaginary unit for more information.
References
- ^ Weisstein, Eric W. "Constant". mathworld.wolfram.com. Retrieved 2020-08-08.
- ^ Arndt & Haenel 2006, p. 167
- ^ Calvin C Clawson (2001). Mathematical sorcery: revealing the secrets of numbers. p. IV. ISBN 978 0 7382 0496-3.
- ^ Fowler and Robson, p. 368. Photograph, illustration, and description of the root(2) tablet from the Yale Babylonian Collection Archived 2012-08-13 at the Wayback Machine High resolution photographs, descriptions, and analysis of the root(2) tablet (YBC 7289) from the Yale Babylonian Collection
- ^ Vijaya AV (2007). Figuring Out Mathematics. Dorling Kindcrsley (India) Pvt. Lid. p. 15. ISBN 978-81-317-0359-5.
- ^ P A J Lewis (2008). Essential Mathematics 9. Ratna Sagar. p. 24. ISBN 9788183323673.
- ^ Timothy Gowers; June Barrow-Green; Imre Leade (2007). The Princeton Companion to Mathematics. Princeton University Press. p. 316. ISBN 978-0-691-11880-2.
- ^ Cuyt et al. 2008, p. 186.
- ^ Kapusta, Janos (2004), "The square, the circle, and the golden proportion: a new class of geometrical constructions" (PDF), Forma, 19: 293–313.
- ^ Kim Plofker (2009), Mathematics in India, Princeton University Press, ISBN 978-0-691-12067-6, pp. 54–56.
- ^ Plutarch. "718ef". Quaestiones convivales VIII.ii. Archived from the original on 2009-11-19. Retrieved 2019-05-24.
And therefore Plato himself dislikes Eudoxus, Archytas, and Menaechmus for endeavoring to bring down the doubling the cube to mechanical operations
- ^ Christensen, Thomas (2002), The Cambridge History of Western Music Theory, p. 205, ISBN 978-0521686983
- ^ Koshy, Thomas (2017). Fibonacci and Lucas Numbers with Applications (2 ed.). John Wiley & Sons. ISBN 9781118742174. Retrieved 14 August 2018.
- ^ Keith J. Devlin (1999). Mathematics: The New Golden Age. Columbia University Press. p. 66. ISBN 978-0-231-11638-1.
- ^ E.Kasner y J.Newman. (2007). Mathematics and the Imagination. Conaculta. p. 77. ISBN 978-968-5374-20-0.
- ^ O'Connor, J J; Robertson, E F. "The number e". MacTutor History of Mathematics.
- ^ Cuyt et al. 2008, p. 179.
- ^ Annie Cuyt; Vigdis Brevik Petersen; Brigitte Verdonk; Haakon Waadeland; William B. Jones (2008). Handbook of Continued Fractions for Special Functions. Springer. p. 182. ISBN 978-1-4020-6948-2.
- ^ Cajori, Florian (1991). A History of Mathematics (5th ed.). AMS Bookstore. p. 152. ISBN 0-8218-2102-4.
- ^ O'Connor, J. J.; Robertson, E. F. (September 2001). "The number e". The MacTutor History of Mathematics archive. Retrieved 2009-02-02.
- ^ William Dunham (2005). The Calculus Gallery: Masterpieces from Newton to Lebesgue. Princeton University Press. p. 51. ISBN 978-0-691-09565-3.
- ^ Jean Jacquelin (2010). SOPHOMORE'S DREAM FUNCTION.
- ^ J. Coates; Martin J. Taylor (1991). L-Functions and Arithmetic. Cambridge University Press. p. 333. ISBN 978-0-521-38619-7.
- ^ Cuyt et al. 2008, p. 182.
- ^ Robert Baillie (2013). "Summing The Curious Series of Kempner and Irwin". arXiv:0806.4410 [math.CA].
- ^ Leonhard Euler (1749). Consideratio quarumdam serierum, quae singularibus proprietatibus sunt praeditae. p. 108.
- ^ Howard Curtis (2014). Orbital Mechanics for Engineering Students. Elsevier. p. 159. ISBN 978-0-08-097747-8.
- ^ Keith B. Oldham; Jan C. Myland; Jerome Spanier (2009). An Atlas of Functions: With Equator, the Atlas Function Calculator. Springer. p. 15. ISBN 978-0-387-48806-6.
- ^ Nielsen, Mikkel Slot. (July 2016). Undergraduate convexity : problems and solutions. p. 162. ISBN 9789813146211. OCLC 951172848.
- ^ Johann Georg Soldner (1809). Théorie et tables d'une nouvelle fonction transcendante (in French). J. Lindauer, München. p. 42.
- ^ Lorenzo Mascheroni (1792). Adnotationes ad calculum integralem Euleri (in Latin). Petrus Galeatius, Ticini. p. 17.
- ^ Steven Finch (2014). Errata and Addenda to Mathematical Constants (PDF). Harvard.edu. Archived from the original (PDF) on 2016-03-16. Retrieved 2013-12-17.
- ^ Calvin C. Clawson (2003). Mathematical Traveler: Exploring the Grand History of Numbers. Perseus. p. 187. ISBN 978-0-7382-0835-0.
- ^ Amoretti, F. (1855). "Sur la fraction continue [0,1,2,3,4,...]". Nouvelles annales de mathématiques. 1 (14): 40–44.
- ^ L. J. Lloyd James Peter Kilford (2008). Modular Forms: A Classical and Computational Introduction. Imperial College Press. p. 107. ISBN 978-1-84816-213-6.
- ^ Henri Cohen (2000). Number Theory: Volume II: Analytic and Modern Tools. Springer. p. 127. ISBN 978-0-387-49893-5.
- ^ H. M. Srivastava; Choi Junesang (2001). Series Associated With the Zeta and Related Functions. Kluwer Academic Publishers. p. 30. ISBN 978-0-7923-7054-3.
- ^ E. Catalan (1864). Mémoire sur la transformation des séries, et sur quelques intégrales définies, Comptes rendus hebdomadaires des séances de l'Académie des sciences 59. Kluwer Academic éditeurs. p. 618.
- ^ Borwein et al. 2014, p. 190.
- ^ James Stewart (2010). Single Variable Calculus: Concepts and Contexts. Brooks/Cole. p. 314. ISBN 978-0-495-55972-6.
- ^ Julian Havil (2003). Gamma: Exploring Euler's Constant. Princeton University Press. p. 64. ISBN 9780691141336.
- ^ Eric W. Weisstein (2003). CRC Concise Encyclopedia of Mathematics, Second Edition. CRC Press. p. 151. ISBN 978-1-58488-347-0.
- ^ Holger Hermanns; Roberto Segala (2000). Process Algebra and Probabilistic Methods. Springer-Verlag. p. 270. ISBN 978-3-540-67695-9.
- ^ Steven Finch (2014). Errata and Addenda to Mathematical Constants (PDF). Harvard.edu. p. 59. Archived from the original (PDF) on 2016-03-16. Retrieved 2013-12-17.
- ^ Osborne, George Abbott (1891). An Elementary Treatise on the Differential and Integral Calculus. Leach, Shewell, and Sanborn. pp. 250.
- ^ Yann Bugeaud (2004). Series representations for some mathematical constants. p. 72. ISBN 978-0-521-82329-6.
- ^ Annie Cuyt; Vigdis Brevik Petersen; Brigitte Verdonk; Haakon Waadelantl; William B. Jones. (2008). Handbook of Continued Fractions for Special Functions. Springer. p. 188. ISBN 978-1-4020-6948-2.
- ^ See Jensen 1895.
- ^ Cuyt et al. 2008, p. 188.
- ^ David Wells (1997). The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books Ltd. p. 4. ISBN 9780141929408.
- ^ Tijdeman, Robert (1976). "On the Gel'fond–Baker method and its applications". In Felix E. Browder (ed.). Mathematical Developments Arising from Hilbert Problems. Proceedings of Symposia in Pure Mathematics. Vol. XXVIII.1. American Mathematical Society. pp. 241–268. ISBN 0-8218-1428-1. Zbl 0341.10026.
- ^ Helmut Brass; Knut Petras (2010). Quadrature Theory: The Theory of Numerical Integration on a Compact Interval. AMS. p. 274. ISBN 978-0-8218-5361-0.
- ^ Ángulo áureo.
- ^ Eric W. Weisstein (2002). CRC Concise Encyclopedia of Mathematics, Second Edition. CRC Press. p. 1356. ISBN 9781420035223.
- ^ Mauro Fiorentini. Nielsen – Ramanujan (costanti di).
- ^ Steven Finch. Volumes of Hyperbolic 3-Manifolds (PDF). Harvard University. Archived from the original (PDF) on 2015-09-19.
- ^ Lloyd N. Trefethen (2013). Approximation Theory and Approximation Practice. SIAM. p. 211. ISBN 978-1-611972-39-9.
- ^ Agronomof, M. (1914). "Sur une suite récurrente". Mathesis. 4: 125–126.
- ^
Rees, DG (1987), Foundations of Statistics, CRC Press, p. 246, ISBN 0-412-28560-6,
Why 95% confidence? Why not some other confidence level? The use of 95% is partly convention, but levels such as 90%, 98% and sometimes 99.9% are also used.
- ^ "Engineering Statistics Handbook: Confidence Limits for the Mean". National Institute of Standards and Technology. Archived from the original on 5 February 2008. Retrieved 4 February 2008.
Although the choice of confidence coefficient is somewhat arbitrary, in practice 90%, 95%, and 99% intervals are often used, with 95% being the most commonly used.
- ^
Olson, Eric T; Olson, Tammy Perry (2000), Real-Life Math: Statistics, Walch Publishing, p. 66, ISBN 0-8251-3863-9,
While other stricter, or looser, limits may be chosen, the 95 percent interval is very often preferred by statisticians.
- ^ Swift, MB. "Comparison of Confidence Intervals for a Poisson Mean - Further Considerations". Communications in Statistics - Theory and Methods. Vol. 38, no. 5. pp. 748–759. doi:10.1080/03610920802255856.
In modern applied practice, almost all confidence intervals are stated at the 95% level.
- ^ Eric W. Weisstein (2003). CRC Concise Encyclopedia of Mathematics, Second Edition. CRC Press. p. 1688. ISBN 978-1-58488-347-0.
- ^ Ian Stewart (1996). Professor Stewart's Cabinet of Mathematical Curiosities. Birkhäuser Verlag. ISBN 978-1-84765-128-0.
- ^ Eric W. Weisstein (2002). CRC Concise Encyclopedia of Mathematics. Crc Press. p. 1212. ISBN 9781420035223.
- ^ ECKFORD COHEN (1962). SOME ASYMPTOTIC FORMULAS IN THE THEORY OF NUMBERS (PDF). University of Tennessee. p. 220.
- ^ Michael J. Dinneen; Bakhadyr Khoussainov; Prof. Andre Nies (2012). Computation, Physics and Beyond. Springer. p. 110. ISBN 978-3-642-27653-8.
- ^ David Cohen (2006). Precalculus: With Unit Circle Trigonometry. Thomson Learning Inc. p. 328. ISBN 978-0-534-40230-3.
- ^ Julian Havil (2003). Gamma: Exploring Euler's Constant. Princeton University Press. p. 161. ISBN 9780691141336.
- ^ Cuyt et al. 2008, p. 191.
- ^ Aleksandr I͡Akovlevich Khinchin (1997). Continued Fractions. Courier Dover Publications. p. 66. ISBN 978-0-486-69630-0.
- ^ Marek Wolf (2018). "Two arguments that the nontrivial zeros of the Riemann zeta function are irrational". Computational Methods in Science and Technology. 24 (4): 215–220. arXiv:1002.4171. doi:10.12921/cmst.2018.0000049. S2CID 115174293.
- ^ Laith Saadi (2004). Stealth Ciphers. Trafford Publishing. p. 160. ISBN 978-1-4120-2409-9.
- ^ Annie Cuyt; Viadis Brevik Petersen; Brigitte Verdonk; William B. Jones (2008). Handbook of continued fractions for special functions. Springer Science. p. 190. ISBN 978-1-4020-6948-2.
- ^ a b Andras Bezdek (2003). Discrete Geometry. Marcel Dekkcr, Inc. p. 150. ISBN 978-0-8247-0968-6.
- ^ Lowe, I. J. (1959-04-01). "Free Induction Decays of Rotating Solids". Physical Review Letters. 2 (7): 285–287. doi:10.1103/PhysRevLett.2.285. ISSN 0031-9007.
- ^ Steven Finch (2007). Continued Fraction Transformation (PDF). Harvard University. p. 7. Archived from the original (PDF) on 2016-04-19. Retrieved 2015-02-28.
- ^ Robin Whitty. Lieb's Square Ice Theorem (PDF).
- ^ a b Jean-Pierre Serre (1969–1970). Travaux de Baker (PDF). NUMDAM, Séminaire N. Bourbaki. p. 74.
- ^ Ivan Niven. Averages of exponents in factoring integers (PDF).
- ^ Michel A. Théra (2002). Constructive, Experimental, and Nonlinear Analysis. CMS-AMS. p. 77. ISBN 978-0-8218-2167-1.
- ^ Kathleen T. Alligood (1996). Chaos: An Introduction to Dynamical Systems. Springer. ISBN 978-0-387-94677-1.
- ^ David Darling (2004). The Universal Book of Mathematics: From Abracadabra to Zeno's Paradoxes. Wiley & Sons inc. p. 63. ISBN 978-0-471-27047-8.
- ^ Dusko Letic; Nenad Cakic; Branko Davidovic; Ivana Berkovic. Orthogonal and diagonal dimension fluxes of hyperspherical function (PDF). Springer.
- ^ Steven R. Finch (2003). Mathematical Constants. Cambridge University Press. p. 479. ISBN 978-3-540-67695-9.
Schmutz.
- ^ Paul Manneville (2010). Instabilities, Chaos and Turbulence. Imperial College Press. p. 176. ISBN 978-1-84816-392-8.
- ^ K. T. Chau; Zheng Wang (201). Chaos in Electric Drive Systems: Analysis, Control and Application. John Wiley & Son. p. 7. ISBN 978-0-470-82633-1.
{{cite book}}
: ISBN / Date incompatibility (help) - ^ Mireille Bousquet-Mélou. Two-dimensional self-avoiding walks (PDF). CNRS, LaBRI, Bordeaux, France.
- ^ Hugo Duminil-Copin & Stanislav Smirnov (2011). The connective constant of the honeycomb lattice √ (2 + √ 2) (PDF). Université de Geneve.
- ^ B. Nienhuis (1982). "Exact critical point and critical exponents of O(n) models in two dimensions". Phys. Rev. Lett. 49 (15): 1062–1065. Bibcode:1982PhRvL..49.1062N. doi:10.1103/PhysRevLett.49.1062.
- ^ Pei-Chu Hu, Chung-Chun (2008). Distribution Theory of Algebraic Numbers. Hong Kong University. p. 246. ISBN 978-3-11-020536-7.
- ^ Steven Finch (2014). Electrical Capacitance (PDF). Harvard.edu. p. 1. Archived from the original (PDF) on 2016-04-19. Retrieved 2015-10-12.
- ^ Thomas Ransford. Computation of Logarithmic Capacity (PDF). Université Laval, Quebec (QC), Canada. p. 557.[permanent dead link]
- ^ Facts On File, Incorporated (1997). Mathematics Frontiers. p. 46. ISBN 978-0-8160-5427-5.
- ^ Gérard P. Michon (2005). Numerical Constants. Numericana.
- ^ Thomas Koshy (2007). Elementary Number Theory with Applications. Elsevier. p. 119. ISBN 978-0-12-372-487-8.
- ^ Steven R. Finch (2003). Mathematical Constants. p. 110. ISBN 978-3-540-67695-9.
- ^ Benoit Mandelbrot (2004). Fractals and Chaos: The Mandelbrot Set and Beyond. ISBN 978-1-4419-1897-0.
- ^ Curtis T. McMullen (1997). Hausdorff dimension and conformal dynamics III: Computation of dimension (PDF).
- ^ Eric W. Weisstein (2003). CRC Concise Encyclopedia of Mathematics, Second Edition. CRC Press. p. 151. ISBN 978-1-58488-347-0.
- ^ DIVAKAR VISWANATH (1999). RANDOM FIBONACCI SEQUENCES AND THE NUMBER 1.13198824... (PDF). MATHEMATICS OF COMPUTATION.
- ^ Francisco J. Aragón Artacho; David H. Baileyy; Jonathan M. Borweinz; Peter B. Borwein (2012). Tools for visualizing real numbers (PDF). p. 33.
- ^ a b Papierfalten (PDF). 1998.
- ^ Christoph Lanz. k-Automatic Reals (PDF). Technischen Universität Wien.
- ^ Paulo Ribenboim (2000). My Numbers, My Friends: Popular Lectures on Number Theory. Springer. p. 66. ISBN 978-0-387-98911-2.
- ^ Richard E. Crandall (2012). Unified algorithms for polylogarithm, L-series, and zeta variants (PDF). perfscipress.com. Archived from the original on 2013-04-30.
{{cite book}}
: CS1 maint: bot: original URL status unknown (link) - ^ RICHARD J. MATHAR (2010). "NUMERICAL EVALUATION OF THE OSCILLATORY INTEGRAL OVER exp(I pi x)x^1/x BETWEEN 1 AND INFINITY". arXiv:0912.3844 [math.CA].
- ^ M.R.Burns (1999). Root constant. Marvin Ray Burns.
- ^ Jesus Guillera; Jonathan Sondow (2008). "Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent". The Ramanujan Journal. 16 (3): 247–270. arXiv:math/0506319. doi:10.1007/s11139-007-9102-0. S2CID 119131640.
- ^ Andrei Vernescu (2007). Gazeta Matemetica Seria a revista de cultur Matemetica Anul XXV(CIV)Nr. 1, Constante de tip Euler generalízate (PDF). p. 14.
- ^ a b Bruce C. Berndt; Robert Alexander Rankin (2001). Ramanujan: essays and surveys. American Mathematical Society, London Mathematical Society. p. 219. ISBN 978-0-8218-2624-9.
- ^ a b Eric W. Weisstein (2002). CRC Concise Encyclopedia of Mathematics (Second ed.). CRC Press. p. 1356. ISBN 978-1-58488-347-0.
- ^ a b J. B. Friedlander; A. Perelli; C. Viola; D.R. Heath-Brown; H.Iwaniec; J. Kaczorowski (2002). Analytic Number Theory. Springer. p. 29. ISBN 978-3-540-36363-7.
- ^ a b Horst Alzer (2002). "Journal of Computational and Applied Mathematics, Volume 139, Issue 2" (PDF). Journal of Computational and Applied Mathematics. 139 (2): 215–230. doi:10.1016/S0377-0427(01)00426-5.
- ^ a b Steven R. Finch (2003). Mathematical Constants. Cambridge University Press. p. 238. ISBN 978-3-540-67695-9.
- ^ a b Richard E. Crandall; Carl B. Pomerance (2005). Prime Numbers: A Computational Perspective. Springer. p. 80. ISBN 978-0387-25282-7.
- ^ a b c d Steven Finch (2005). Class Number Theory (PDF). Harvard University. p. 8. Archived from the original (PDF) on 2016-04-19. Retrieved 2014-04-15.
- ^ Hardy, G. H. (2008). An introduction to the theory of numbers. E. M. Wright, D. R. Heath-Brown, Joseph H. Silverman (6th ed.). Oxford: Oxford University Press. ISBN 978-0-19-921985-8. OCLC 214305907.
- ^ a b István Mezö (2011). "On the integral of the fourth Jacobi theta function". arXiv:1106.1042 [math.NT].
- ^ a b Yann Bugeaud (2012). Distribution Modulo One and Diophantine Approximation. Cambridge University Press. p. 87. ISBN 978-0-521-11169-0.
- ^ a b Richard J. Mathar (2013). "Circumscribed Regular Polygons". arXiv:1301.6293 [math.MG].
- ^ a b Steven Finch (2014). Errata and Addenda to Mathematical Constants (PDF). Harvard.edu. p. 53. Archived from the original (PDF) on 2016-03-16. Retrieved 2013-12-17.
Site MathWorld Wolfram.com
- ^ Weisstein, Eric W. "Pi Formulas". MathWorld.
- ^ Weisstein, Eric W. "Pythagoras's Constant". MathWorld.
- ^ Weisstein, Eric W. "Theodorus's Constant". MathWorld.
- ^ Weisstein, Eric W. "Golden Ratio". MathWorld.
- ^ Weisstein, Eric W. "Silver Ratio". MathWorld.
- ^ Weisstein, Eric W. "Delian Constant". MathWorld.
- ^ Weisstein, Eric W. "Wallis's Constant". MathWorld.
- ^ Weisstein, Eric W. "e". MathWorld.
- ^ Weisstein, Eric W. "Natural Logarithm of 2". MathWorld.
- ^ Weisstein, Eric W. "Sophomore's Dream". MathWorld.
- ^ Weisstein, Eric W. "Lemniscate Constant". MathWorld.
- ^ Weisstein, Eric W. "Euler–Mascheroni Constant". MathWorld.
- ^ Weisstein, Eric W. "Erdos-Borwein Constant". MathWorld.
- ^ Weisstein, Eric W. "Omega Constant". MathWorld.
- ^ Weisstein, Eric W. "Laplace Limit". MathWorld.
- ^ Weisstein, Eric W. "Gauss's Constant". MathWorld.
- ^ Weisstein, Eric W. "Soldner's Constant". MathWorld.
- ^ Weisstein, Eric W. "Soldner's Constant". MathWorld.
- ^ Weisstein, Eric W. "Hermite Constants". MathWorld.
- ^ Weisstein, Eric W. "Liouville's Constant". MathWorld.
- ^ Weisstein, Eric W. "Continued Fraction Constants". MathWorld.
- ^ Weisstein, Eric W. "Ramanujan Constant". MathWorld.
- ^ Weisstein, Eric W. "Glaisher-Kinkelin Constant". MathWorld.
- ^ Weisstein, Eric W. "Catalan's Constant". MathWorld.
- ^ a b Weisstein, Eric W. "Dottie Number". MathWorld.
- ^ Weisstein, Eric W. "Mertens Constant". MathWorld.
- ^ Weisstein, Eric W. "Weierstrass Constant". MathWorld.
- ^ a b Weisstein, Eric W. "Relatively Prime". MathWorld.
- ^ Weisstein, Eric W. "Universal Parabolic Constant". MathWorld.
- ^ Weisstein, Eric W. "Cahen's Constant". MathWorld.
- ^ Weisstein, Eric W. "Apéry's Constant". MathWorld.
- ^ Weisstein, Eric W. "Gelfonds Constant". MathWorld.
- ^ Weisstein, Eric W. "Favard Constants". MathWorld.
- ^ Weisstein, Eric W. "Golden Angle". MathWorld.
- ^ Weisstein, Eric W. "Sierpinski Constant". MathWorld.
- ^ Weisstein, Eric W. "Nielsen-Ramanujan Constants". MathWorld.
- ^ Weisstein, Eric W. "Gieseking's Constant". MathWorld.
- ^ Weisstein, Eric W. "Bernstein's Constant". MathWorld.
- ^ Weisstein, Eric W. "Tribonacci Constant". MathWorld.
- ^ Weisstein, Eric W. "Twin Primes Constant". MathWorld.
- ^ Weisstein, Eric W. "Confidence Interval". MathWorld.
- ^ Weisstein, Eric W. "Landau Constant". MathWorld.
- ^ Weisstein, Eric W. "Plastic Constant". MathWorld.
- ^ Weisstein, Eric W. "Golomb-Dickman Constant". MathWorld.
- ^ Weisstein, Eric W. "Feller-Tornier Constant". MathWorld.
- ^ Weisstein, Eric W. "Champernowne Constant". MathWorld.
- ^ Weisstein, Eric W. "Gelfond-Schneider Constant". MathWorld.
- ^ Weisstein, Eric W. "Khinchin's Constant". MathWorld.
- ^ Weisstein, Eric W. "Levy Constant". MathWorld.
- ^ Weisstein, Eric W. "Levy Constant". MathWorld.
- ^ Weisstein, Eric W. "Mills Constant". MathWorld.
- ^ Weisstein, Eric W. "Gompertz Constant". MathWorld.
- ^ Weisstein, Eric W. "Lochs' Constant". MathWorld.
- ^ Weisstein, Eric W. "Liebs Square Ice Constant". MathWorld.
- ^ Weisstein, Eric W. "Niven's Constant". MathWorld.
- ^ Weisstein, Eric W. "Porter's Constant". MathWorld.
- ^ a b Weisstein, Eric W. "Feigenbaum Constant". MathWorld.
- ^ Weisstein, Eric W. "Chaitin's Constant". MathWorld.
- ^ Weisstein, Eric W. "Fransen-Robinson Constant". MathWorld.
- ^ Weisstein, Eric W. "Robbins Constant". MathWorld.
- ^ Weisstein, Eric W. "Cantor Set". MathWorld.
- ^ Weisstein, Eric W. "Self-Avoiding Walk Connective Constant". MathWorld.
- ^ Weisstein, Eric W. "Salem Constants". MathWorld.
- ^ a b Weisstein, Eric W. "Chebyshev Constants". MathWorld.
- ^ Weisstein, Eric W. "Conway's Constant". MathWorld.
- ^ Weisstein, Eric W. "Reciprocal Fibonacci Constant". MathWorld.
- ^ Weisstein, Eric W. "Brun's Constant". MathWorld.
- ^ Weisstein, Eric W. "Hafner-Sarnak-McCurley Constant". MathWorld.
- ^ Weisstein, Eric W. "Apollonian Gasket". MathWorld.
- ^ Weisstein, Eric W. "Backhouse's Constant". MathWorld.
- ^ Weisstein, Eric W. "Random Fibonacci Sequence". MathWorld.
- ^ Weisstein, Eric W. "Paper Folding Constant". MathWorld.
- ^ Weisstein, Eric W. "Komornik-Loreti Constant". MathWorld.
- ^ Weisstein, Eric W. "Artin's Constant". MathWorld.
- ^ Weisstein, Eric W. "MRB Constant". MathWorld.
- ^ a b Weisstein, Eric W. "SomossQuadraticRecurrence Constant". MathWorld.
- ^ a b Weisstein, Eric W. "Foias Constant". MathWorld.
- ^ Weisstein, Eric W. "Prince Rupert's Cube". MathWorld.
- ^ Weisstein, Eric W. "Pascal's Triangle". MathWorld.
- ^ Weisstein, Eric W. "Heath-Brown-Moroz Constant". MathWorld.
- ^ Weisstein, Eric W. "Atavoidirc/constants". MathWorld.
- ^ Weisstein, Eric W. "Du Bois Reymond Constants". MathWorld.
- ^ Weisstein, Eric W. "Landau-Ramanujan Constant". MathWorld.
- ^ Weisstein, Eric W. "Stephen's Constant". MathWorld.
- ^ Weisstein, Eric W. "Taniguchis Constant". MathWorld.
- ^ Weisstein, Eric W. "Log Gamma Function". MathWorld.
- ^ Weisstein, Eric W. "Copeland-Erdos Constant". MathWorld.
- ^ Weisstein, Eric W. "Polygon Inscribing". MathWorld.
- ^ Weisstein, Eric W. "Thue-Morse Constant". MathWorld.
Site OEIS.com
- ^ OEIS: A000796
- ^ OEIS: A001203
- ^ OEIS: A002193
- ^ OEIS: A002194
- ^ OEIS: A002163
- ^ OEIS: A001622
- ^ OEIS: A014176
- ^ OEIS: A002580
- ^ OEIS: A002581
- ^ OEIS: A010774
- ^ OEIS: A092526
- ^ OEIS: A007493
- ^ OEIS: A001113
- ^ OEIS: A003417
- ^ OEIS: A002162
- ^ OEIS: A083648
- ^ OEIS: A073009
- ^ OEIS: A062539
- ^ OEIS: A001620
- ^ OEIS: A002852
- ^ OEIS: A065442
- ^ OEIS: A038631
- ^ OEIS: A030178
- ^ OEIS: A019474
- ^ OEIS: A033259
- ^ OEIS: A014549
- ^ OEIS: A053002
- ^ OEIS: A070769
- ^ OEIS: A099803
- ^ OEIS: A012245
- ^ OEIS: A052119
- ^ OEIS: A060295
- ^ OEIS: A074962
- ^ OEIS: A006752
- ^ OEIS: A014538
- ^ OEIS: A003957
- ^ OEIS: A077761
- ^ OEIS: A230767
- ^ OEIS: A094692
- ^ OEIS: A059956
- ^ OEIS: A103710
- ^ OEIS: A080130
- ^ OEIS: A006280
- ^ OEIS: A002117
- ^ OEIS: A013631
- ^ OEIS: A039661
- ^ OEIS: A058287
- ^ OEIS: A111003
- ^ OEIS: A131988
- ^ OEIS: A062089
- ^ OEIS: A072691
- ^ OEIS: A143298
- ^ OEIS: A073001
- ^ OEIS: A058265
- ^ OEIS: A005597
- ^ OEIS: A065645
- ^ OEIS: A220510
- ^ OEIS: A081760
- ^ OEIS: A060006
- ^ OEIS: A072117
- ^ OEIS: A084945
- ^ OEIS: A065493
- ^ OEIS: A033307
- ^ OEIS: A030167
- ^ OEIS: A007507
- ^ OEIS: A062979
- ^ OEIS: A002210
- ^ OEIS: A002211
- ^ OEIS: A100199
- ^ OEIS: A086702
- ^ OEIS: A051021
- ^ a b OEIS: A073003
- ^ OEIS: A163973
- ^ OEIS: A163973
- ^ OEIS: A195696
- ^ OEIS: A086819
- ^ OEIS: A118273
- ^ OEIS: A113476
- ^ OEIS: A033150
- ^ OEIS: A086237
- ^ OEIS: A006890
- ^ OEIS: A159766
- ^ OEIS: A100264
- ^ OEIS: A058655
- ^ OEIS: A046943
- ^ OEIS: A073012
- ^ a b OEIS: A102525
- ^ OEIS: A006891
- ^ OEIS: A159767
- ^ OEIS: A179260
- ^ OEIS: A073011
- ^ OEIS: A249205
- ^ OEIS: A014715
- ^ a b OEIS: A079586
- ^ OEIS: A0795873
- ^ a b OEIS: A065421
- ^ OEIS: A085849
- ^ OEIS: A052483
- ^ OEIS: A072508
- ^ OEIS: A074269
- ^ OEIS: A078416
- ^ OEIS: A143347
- ^ OEIS: A055060
- ^ OEIS: A005596
- ^ OEIS: A037077
- ^ OEIS: A248660
- ^ OEIS: A065481
- ^ OEIS: A085848
- ^ OEIS: A085846
- ^ OEIS: A243309
- ^ OEIS: A020857
- ^ OEIS: A118228
- ^ OEIS: A243277
- ^ OEIS: A062546
- ^ OEIS: A064533
- ^ OEIS: A065478
- ^ OEIS: A175639
- ^ OEIS: A051006
- ^ OEIS: A075700
- ^ OEIS: A033308
- ^ OEIS: A085365
- ^ OEIS: A014571
Site OEIS Wiki
Bibliography
- Arndt, Jörg; Haenel, Christoph (2006). Pi Unleashed. Springer-Verlag. ISBN 978-3-540-66572-4. Retrieved 2013-06-05. English translation by Catriona and David Lischka.
- Jensen, Johan Ludwig William Valdemar (1895), "Note numéro 245. Deuxième réponse. Remarques relatives aux réponses du MM. Franel et Kluyver", L'Intermédiaire des Mathématiciens, II: 346–347
- Cuyt, Annie A.M.; Petersen, Vigdis; Verdonk, Brigitte; Waadeland, Haakon; Jones, William B. (2008). "Mathematical constants". Handbook of Continued Fractions for Special Functions. Dordrecht, Netherlands: Springer Science + Business Media. ISBN 9781402069499.
- Borwein, Jonathan; van der Poorten, Alf; Shallit, Jeffrey; Zudilin, Wadim (2014). Neverending Fractions: An Introduction to Continued Fractions. Australian Mathematical Society Lecture Series. Vol. 23. Cambridge, United Kingdom: Cambridge University Press. ISBN 9780521186490. ISSN 0950-2815.
Further reading
- Wolfram, Stephen. "4: Systems Based on Numbers". Section 5: Mathematical Constants — Continued fractions.
{{cite book}}
:|work=
ignored (help)
External links
- Inverse Symbolic Calculator, Plouffe's Inverter
- Constants - from Wolfram MathWorld
- On-Line Encyclopedia of Integer Sequences (OEIS)
- Steven Finch's page of mathematical constants
- Xavier Gourdon and Pascal Sebah's page of numbers, mathematical constants and algorithms
[[Category:Mathematical constants|*]
[[Category:Mathematics-related lists|mathematical constants]
[[Category:Mathematical tables|Constants]
[[Category:Articles containing video clips]
[[Category:Number-related lists|constants]
[[Category:Continued fractions]