Jump to content

Jacket matrix

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by PMHLEE (talk | contribs) at 12:19, 12 April 2022. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematics, a jacket matrix is a square symmetric matrix of order n if its entries are non-zero and real, complex, or from a finite field, and

Hierarchy of matrix types

where In is the identity matrix, and

where T denotes the transpose of the matrix.

In other words, the inverse of a jacket matrix is determined its element-wise or block-wise inverse. The definition above may also be expressed as:

The jacket matrix is a generalization of the Hadamard matrix; it is a diagonal block-wise inverse matrix.

Motivation

n .... −2, −1, 0 1, 2,..... logarithm
2n .... 1, 2, 4, ... series

As shown in the table, i.e. in the series, for example with n=2, forward: , inverse : , then, . That is, there exists an element-wise inverse.

Example 1.

:

or more general

:

Example 2.

For m x m matrices,

denotes an mn x mn block diagonal Jacket matrix.

Example 3.

Euler's formula:

, and .

Therefore,

.

Also,

,.

Finally,

A·B = B·A = I

References

[1] Moon Ho Lee, "The Center Weighted Hadamard Transform", IEEE Transactions on Circuits Syst. Vol. 36, No. 9, PP. 1247–1249, Sept. 1989.

[2] Kathy Horadam, Hadamard Matrices and Their Applications, Princeton University Press, UK, Chapter 4.5.1: The jacket matrix construction, PP. 85–91, 2007.

[3] Moon Ho Lee, Jacket Matrices: Constructions and Its Applications for Fast Cooperative Wireless Signal Processing, LAP LAMBERT Publishing, Germany, Nov. 2012.