User:Atavoidirc/constants
A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems.[1] For example, the constant π may be defined as the ratio of the length of a circle's circumference to its diameter. The following list includes a decimal expansion and set containing each number, ordered by year of discovery.
Rational
Name | Symbol | Decimal expansion | Formula |
---|---|---|---|
1.96[2][3][4][5] | 1.96 | 1.96 | |
Belphegor's prime[6] | ![]() |
1000000000000066600000000000001 | |
Googol | 10100 | 1000000... | |
Googolplex | 1010100 | 1000000... | |
Graham's number | ...67018485186439059104575627262464195387 | where and using Knuth's up-arrow notation | |
Hardy–Ramanujan number | 1729 | 1729 | |
Kaprekar's constant[7][8][9] | 6174 | 6174 | |
Milü | 355/113 | 3.14159292035398230088... | |
Negative one | −1 | −1 | |
One | 1 | 1 | None[nb 1] |
One half | 1/2 | 0.5 | |
Rayo's number[10][11] | Too large to calculate | The smallest number bigger than any finite number named by an expression in the language of first-order set theory with a googol symbols or less. | |
Two | 2 | 2 | |
Zero | 0 | 0 | The additive identity: |
Irrational Algebraic
Name | Symbol | Decimal expansion | Formula |
---|---|---|---|
Connective constant[12][13] | 1.84775 90650 22573 51225 [Mw 1][OEIS 1] |
as a root of the polynomial | |
Conway constant[14] | 1.30357 72690 34296 39125 [Mw 2][OEIS 2] | ||
Cube root of 2 (Delian Constant) | 1.25992 10498 94873 16476 [Mw 3][OEIS 3] | Real root of | |
Cube root of 3 | 1.44224 95703 07408 38232[OEIS 4] | Real root of | |
DeVicci's tesseract constant | 1.00743 47568 84279 37609[Mw 4][OEIS 5] | The largest cube that can pass through in an 4D hypercube.
Positive root of | |
Phi, Golden ratio[15] | 1.61803 39887 49894 84820 [Mw 5][OEIS 6] | ||
Golden ratio Conjugate | 0.61803 39887 49894 84820[Mw 6][OEIS 7] | ||
Hermite constant[16] | 1.15470 05383 79251 52901 [Mw 7] | ||
Lehmer's conjecture constant[17] | 1.17628 08182 59917 50654 [Mw 8][OEIS 8] | ||
Lieb's square ice constant[18] | 1.53960 07178 39002 03869 [Mw 9][OEIS 9] | ||
Plastic number[19] | 1.32471 79572 44746 02596 [Mw 10][OEIS 10] | ||
Ramanujan nested radical[20] | 2.74723 82749 32304 33305 | ||
Silver ratio[21] | 2.41421 35623 73095 04880 [Mw 11][OEIS 11] | ||
Square root of 2,
Pythagoras constant.[22] |
1.41421 35623 73095 04880 [Mw 12][OEIS 12] | Positive root of | |
Square root of 3,
Theodorus' constant[23] |
1.73205 08075 68877 29352 [Mw 13][OEIS 13] | Positive root of | |
Square root of 5[24] | 2.23606 79774 99789 69640[OEIS 14] | Positive root of | |
Supergolden ratio[25] | 1.46557123187676802665[OEIS 15] | ||
Tribonacci Constant[26] | 1.83928 67552 14161 [Mw 14][OEIS 16] | ||
Twelfth root of 2[27] | 1.05946 30943 59295 26456[OEIS 17] | Real root of | |
Wallis Constant | 2.09455 14815 42326 59148 [Mw 15][OEIS 18] |
Irrational but not known to be transcendental
Name | Symbol | Decimal expansion | Formula |
---|---|---|---|
Apéry's constant[28] | 1.20205 69031 59594 28539 [Mw 16][OEIS 19] |
| |
Copeland–Erdős constant[29] | 0.23571 11317 19232 93137 [Mw 17][OEIS 20] | ||
Erdős–Borwein constant[30] | 1.60669 51524 15291 76378 [Mw 18][OEIS 21] | ||
Prime constant[31] | 0.41468 25098 51111 66024 [OEIS 22] | ||
Prévost constant, Reciprocal Fibonacci constant[32] | 3.35988 56662 43177 55317 [Mw 19][OEIS 23] |
Fn: Fibonacci series | |
Van der Pauw constant | 4.53236 01418 27193 80962[OEIS 24] |
Transcendental
Name | Symbol | Decimal expansion | Formula |
---|---|---|---|
Pi | 3.14159 26535 89793 23846 [Mw 20][OEIS 25] | Ratio of a circle's circumference to its diameter. | |
Euler's number[33] | 2.71828 18284 59045 23536 [Mw 21][OEIS 26] | [nb 2] | |
Natural logarithm of 2[34] | 0.69314 71805 59945 30941 [Mw 22][OEIS 27] | ||
Lemniscate constant[35] | 2.62205 75542 92119 81046 [Mw 23][OEIS 28] | ||
Omega constant | 0.56714329040978387299 [Mw 24][OEIS 29] |
Where W is the Lambert W function | |
Laplace limit[36] | 0.66274 34193 49181 58097 [Mw 25][OEIS 30] | ||
Gauss's constant[37] | 0.83462 68416 74073 18628 [Mw 26][OEIS 31] |
where agm is the arithmetic–geometric mean | |
Liouville number[38] | 0.11000 10000 00000 00000 0001 [Mw 27][OEIS 32] | ||
Hermite–Ramanujan constant[39] | 262 53741 26407 68743 .99999 99999 99250 073 [Mw 28][OEIS 33] |
||
Dottie number[40] | 0.73908 51332 15160 64165 [Mw 29][OEIS 34] | ||
Hafner–Sarnak–McCurley constant (2) [41] | 0.60792 71018 54026 62866 [Mw 30][OEIS 35] | where pn is a prime | |
Universal parabolic constant[42] | 2.29558 71493 92638 07403 [Mw 31][OEIS 36] | ||
Cahen's constant[43] | 0.64341 05462 88338 02618 [Mw 32][OEIS 37] |
Where sk is the kth term of Sylvester's sequence 2, 3, 7, 43, 1807, ...
| |
Gelfond's constant[44] | 23.14069 26327 79269 0057 [Mw 33][OEIS 38] | ||
Favard constant[45] | 1.23370 05501 36169 82735 [Mw 34][OEIS 39] | ||
Golden angle[46] | 2.39996 32297 28653 32223 [Mw 35][OEIS 40] | = 137.5077640500378546 ...° | |
Nielsen–Ramanujan constant [47] | 0.82246 70334 24113 21823 [Mw 36][OEIS 41] | ||
Base 10 Champernowne constant[48] | 0.12345 67891 01112 13141 [Mw 37][OEIS 42] | ||
Gelfond–Schneider constant[49] | 2.66514 41426 90225 18865 [Mw 38][OEIS 43] | ||
Magic angle[50] | 0.95531 66181 245092 78163[OEIS 44] | ||
Baker constant[51] | 0.83564 88482 64721 05333[OEIS 45] | ||
Chaitin's constants [52] | In general they are uncomputable numbers. But one such number is 0.00787 49969 97812 3844 [Mw 39][OEIS 46] |
| |
Robbins constant[53] | 0.66170 71822 67176 23515 [Mw 40][OEIS 47] | ||
Fractal dimension of the Cantor set[54] | 0.63092 97535 71457 43709 [Mw 41][OEIS 48] | ||
Komornik–Loreti constant[55] | 1.78723 16501 82965 93301 [Mw 42][OEIS 49] |
tk = Thue–Morse sequence | |
Hausdorff dimension, Sierpinski triangle[56] | 1.58496 25007 21156 18145 [Mw 43][OEIS 50] | ||
2nd du Bois-Reymond constant[57] | 0.19452 80494 65325 11361 [Mw 44][OEIS 51] | ||
Prouhet–Thue–Morse constant[58] | 0.41245 40336 40107 59778 [Mw 45][OEIS 52] | where is the Thue–Morse sequence and Where |
Real unknown rationality
No Explicit formula known
Name | Symbol | Decimal expansion | Formula |
---|---|---|---|
Bernstein's constant[105] | 0.28016 94990 23869 13303 [Mw 85][OEIS 96] | ||
Eddington number | ~1080 | The number of protons in the universe | |
de Bruijn–Newman constant | The number where for where has real zeros if and only if λ ≥ Λ
and |
Complex
Name | Symbol | Decimal expansion | Formula |
---|---|---|---|
Imaginary unit[106] | 0 + 1i | Either of the two roots of [nb 3] |
Mathematical constants sorted by their representations as continued fractions
Continued fractions with more than 20 known terms have been truncated, with an ellipsis to show that they continue. Rational numbers have two continued fractions; the version in this list is the shorter one. Decimal representations are rounded or padded to 10 places if the values are known.
Name | Symbol[α] | Member of | decimal | Continued fraction | Notes |
---|---|---|---|---|---|
0.00000 00000 | [0; ] | ||||
Golden ratio conjugate | 0.61803 39887 | [0; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …] | irrational | ||
Cahen's constant | 0.64341 05463 | [0; 1, 1, 1, 22, 32, 132, 1292, 252982, 4209841472, 2694251407415154862, …] | All terms are squares and truncated at 10 terms due to large size. | ||
First Hardy–Littlewood conjecture | 0.66016 18158 | [0; 1, 1, 1, 16, 2, 2, 2, 2, 1, 18, 2, 2, 11, 1, 1, 2, 4, 1, 16, 3, …] | Hardy–Littlewood's twin prime constant. Presumed irrational, but not proved. | ||
Euler-Mascheroni constant | 0.57721 56649[107] | [0; 1, 1, 2, 1, 2, 1, 4, 3, 13, 5, 1, 1, 8, 1, 2, 4, 1, 1, 40, 1, …][107] | Presumed irrational, but not proved. | ||
Omega constant | 0.56714 32904 | [0; 1, 1, 3, 4, 2, 10, 4, 1, 1, 1, 1, 2, 7, 306, 1, 5, 1, 2, 1, 5, …] | |||
Embree–Trefethen constant | 0.70258 | [0; 1, 2, 2, 1, 3, 5, 1, 2, 6, 1, 1, 5, …] | Value only known to 5 decimal places. | ||
Continued fraction constant | Continued fraction constant | 0.69777 46579 | [0; 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, …] | Equal to a ratio of modified Bessel functions of the first kind evaluated at 2 | |
Landau–Ramanujan constant | 0.76422 36535 | [0; 1, 3, 4, 6, 1, 15, 1, 2, 2, 3, 1, 23, 3, 1, 1, 3, 1, 1, 7, 2, …] | May have been proven irrational. | ||
Gauss's constant | 0.83462 68417 | [0; 1, 5, 21, 3, 4, 14, 1, 1, 1, 1, 1, 3, 1, 15, 1, 3, 8, 36, 1, 2, …] | Gauss's constant | ||
Brun's theorem | 0.87058 83800 | [0; 1, 6, 1, 2, 1, 2, 956, 8, 1, 1, 1, 23, …] | Brun's prime quadruplet constant. Estimated value; 99% confidence interval ± 0.00000 00005. | ||
Champernowne constant | 0.86224 01259 | [0; 1, 6, 3, 1, 6, 5, 3, 3, 1, 6, 4, 1, 3, 298, 1, 6, 1, 1, 3, 285, …] | Base 2 Champernowne constant. The binary expansion is | ||
Catalan's constant | 0.91596 55942[108] | [0; 1, 10, 1, 8, 1, 88, 4, 1, 1, 7, 22, 1, 2, 3, 26, 1, 11, 1, 10, 1, …][108] | Presumed irrational, but not proved. | ||
One half | 0.50000 00000 | [0; 2] | |||
Bernstein's constant | 0.28016 94990 | [0; 3, 1, 1, 3, 9, 6, 3, 1, 3, 13, 1, 16, 3, 3, 4, …] | Presumed irrational, but not proved. | ||
Meissel–Mertens constant | 0.26149 72128 | [0; 3, 1, 4, 1, 2, 5, 2, 1, 1, 1, 1, 13, 4, 2, 4, 2, 1, 33, 296, 2, …] | Presumed irrational, but not proved. | ||
MRB constant | 0.18785 96424 | [0; 5, 3, 10, 1, 1, 4, 1, 1, 1, 1, 9, 1, 1, 12, 2, 17, 2, 2, 1, 1, …] | |||
Champernowne constant | 0.12345 67891 | [0; 8, 9, 1, 149083, 1, 1, 1, 4, 1, 1, 1, 3, 4, 1, 1, 1, 15, , 6, 1, …] | Base 10 Champernowne constant. Champernowne constants in any base exhibit sporadic large numbers; the 40th term in has 2504 digits. | ||
1.00000 00000 | [1; ] | ||||
Golden ratio | 1.61803 39887[109] | [1; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …][110] | |||
Erdős–Borwein constant | 1.60669 51524 | [1; 1, 1, 1, 1, 5, 2, 1, 2, 29, 4, 1, 2, 2, 2, 2, 6, 1, 7, 1, 6, …] | Not known whether algebraic or transcendental. | ||
Brun's constant | 1.90216 05831 | [1; 1, 9, 4, 1, 1, 8, 3, 4, 7, 1, 3, 3, 1, 2, 1, 1, 12, 4, 2, 1, …] | Brun's twin prime constant. Estimated value; best bounds . | ||
Square root of 2 | 1.41421 35624 | [1; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, …] | |||
Ramanujan-Soldner constant | 1.45136 92349 | [1; 2, 4, 1, 1, 1, 3, 1, 1, 1, 2, 47, 2, 4, 1, 12, 1, 1, 2, 2, 1, …] | Presumed irrational, but not proved. | ||
Backhouse's constant | 1.45607 49485 | [1; 2, 5, 5, 4, 1, 1, 18, 1, 1, 1, 1, 1, 2, 13, 3, 1, 2, 4, 16, 4, …] | |||
Plastic number | 1.32471 95724 | [1; 3, 12, 1, 1, 3, 2, 3, 2, 4, 2, 141, 80, 2, 5, 1, 2, 8, 2, 1, 1, …] | |||
Apéry's constant | 1.20205 69032[111] | [1; 4, 1, 18, 1, 1, 1, 4, 1, 9, 9, 2, 1, 1, 1, 2, 7, 1, 1, 7, 11, …][111] | |||
Random Fibonacci sequence | 1.13198 82488 | [1; 7, 1, 1, 2, 1, 3, 2, 1, 2, 1, 17, 1, 1, 2, 1, 2, 4, 1, 2, …] | Viswanath's constant. Apparently, Eric Weisstein calculated this constant to be approximately 1.13215 06911 with Mathematica. | ||
2.00000 00000 | [2; ] | ||||
Gelfond–Schneider constant | 2.66514 41426 | [2; 1, 1, 1, 72, 3, 4, 1, 3, 2, 1, 1, 1, 14, 1, 2, 1, 1, 3, 1, 3, …] | |||
Second Feigenbaum constant | 2.50290 78751 | [2; 1, 1, 85, 2, 8, 1, 10, 16, 3, 8, 9, 2, 1, 40, 1, 2, 3, 2, 2, 1, …] | |||
Base of the natural logarithm | 2.71828 18285[112] | [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1, 14, …][113] | |||
Khinchin's constant | 2.68545 20011[114] | [2; 1, 2, 5, 1, 1, 2, 1, 1, 3, 10, 2, 1, 3, 2, 24, 1, 3, 2, 3, 1, …][115] | |||
Fransén–Robinson constant | 2.80777 02420 | [2; 1, 4, 4, 1, 18, 5, 1, 3, 4, 1, 5, 3, 6, 1, 1, 1, 5, 1, 1, 1, …] | |||
Universal parabolic constant | 2.29558 71494 | [2; 3, 2, 1, 1, 1, 1, 3, 3, 1, 1, 4, 2, 3, 2, 7, 1, 6, 1, 8, 7, …] | |||
3.00000 00000 | [3; ] | ||||
Reciprocal Fibonacci constant | 3.35988 56662 | [3; 2, 1, 3, 1, 1, 13, 2, 3, 3, 2, 1, 1, 6, 3, 2, 4, 362, 2, 4, 8, …] | |||
3.14159 26536 | [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, …] | ||||
4.00000 00000 | [4; ] | ||||
First Feigenbaum constant | 4.66920 16091 | [4; 1, 2, 43, 2, 163, 2, 3, 1, 1, 2, 5, 1, 2, 3, 80, 2, 5, 2, 1, 1, …] | |||
5.00000 00000 | [5; ] | ||||
Gelfond's constant | 23.14069 26328 | [23; 7, 9, 3, 1, 1, 591, 2, 9, 1, 2, 34, 1, 16, 1, 30, 1, 1, 4, 1, 2, …] | Gelfond's constant. Can also be expressed as ; from this form, it is transcendental due to the Gelfond–Schneider theorem. |
See also
- Invariant (mathematics)
- List of mathematical symbols
- List of mathematical symbols by subject
- List of numbers
- List of physical constants
- Mathematical constants and functions
- Particular values of the Riemann zeta function
- Physical constant
Notes
- ^ 1 can be given as a primitive notion within Peano arithmetic. Alternatively, 0 can be a primitive notion in Peano arithmetic and 1 defined as the successor to 0. This article uses the former definition for pedagogical and chronological simplicity.
- ^ Can also be defined by the infinite series
- ^ Both i and −i are roots of this equation, though neither root is truly "positive" nor more fundamental than the other as they are algebraically equivalent. The distinction between signs of i and −i is in some ways arbitrary, but a useful notational device. See imaginary unit for more information.
- ^ Although some of the symbols in the "Symbol" column are displayed in black due to math markup peculiarities, all are clickable and link to the respective constant's page.
References
- ^ Weisstein, Eric W. "Constant". mathworld.wolfram.com. Retrieved 2020-08-08.
- ^
Rees, DG (1987), Foundations of Statistics, CRC Press, p. 246, ISBN 0-412-28560-6,
Why 95% confidence? Why not some other confidence level? The use of 95% is partly convention, but levels such as 90%, 98% and sometimes 99.9% are also used.
- ^ "Engineering Statistics Handbook: Confidence Limits for the Mean". National Institute of Standards and Technology. Archived from the original on 5 February 2008. Retrieved 4 February 2008.
Although the choice of confidence coefficient is somewhat arbitrary, in practice 90%, 95%, and 99% intervals are often used, with 95% being the most commonly used.
- ^
Olson, Eric T; Olson, Tammy Perry (2000), Real-Life Math: Statistics, Walch Publishing, p. 66, ISBN 0-8251-3863-9,
While other stricter, or looser, limits may be chosen, the 95 percent interval is very often preferred by statisticians.
- ^ Swift, MB. "Comparison of Confidence Intervals for a Poisson Mean - Further Considerations". Communications in Statistics - Theory and Methods. Vol. 38, no. 5. pp. 748–759. doi:10.1080/03610920802255856.
In modern applied practice, almost all confidence intervals are stated at the 95% level.
- ^ Singh, Simon (31 October 2013). "Homer Simpson's scary maths problems". BBC News. Retrieved 31 October 2013.
- ^ Nishiyama, Yutaka (March 2006). "Mysterious number 6174". Plus Magazine.
- ^ Kaprekar DR (1955). "An Interesting Property of the Number 6174". Scripta Mathematica. 15: 244–245.
- ^ Kaprekar DR (1980). "On Kaprekar Numbers". Journal of Recreational Mathematics. 13 (2): 81–82.
- ^ Elga, Adam. "Large Number Championship" (PDF). Archived from the original (PDF) on 14 July 2019. Retrieved 24 March 2014.
- ^ Manzari, Mandana; Nick Semenkovich (31 January 2007). "Profs Duke It Out in Big Number Duel". The Tech. Retrieved 24 March 2014.
- ^ Mireille Bousquet-Mélou. Two-dimensional self-avoiding walks (PDF). CNRS, LaBRI, Bordeaux, France.
- ^ Hugo Duminil-Copin & Stanislav Smirnov (2011). The connective constant of the honeycomb lattice √ (2 + √ 2) (PDF). Université de Geneve.
- ^ Facts On File, Incorporated (1997). Mathematics Frontiers. p. 46. ISBN 978-0-8160-5427-5.
- ^ Timothy Gowers; June Barrow-Green; Imre Leade (2007). The Princeton Companion to Mathematics. Princeton University Press. p. 316. ISBN 978-0-691-11880-2.
- ^ Steven Finch (2014). Errata and Addenda to Mathematical Constants (PDF). Harvard.edu. Archived from the original (PDF) on 2016-03-16. Retrieved 2013-12-17.
- ^ Pei-Chu Hu, Chung-Chun (2008). Distribution Theory of Algebraic Numbers. Hong Kong University. p. 246. ISBN 978-3-11-020536-7.
- ^ Robin Whitty. Lieb's Square Ice Theorem (PDF).
- ^ Ian Stewart (1996). Professor Stewart's Cabinet of Mathematical Curiosities. Birkhäuser Verlag. ISBN 978-1-84765-128-0.
- ^ Bruce C. Berndt; Robert Alexander Rankin (2001). Ramanujan: essays and surveys. American Mathematical Society, London Mathematical Society. p. 219. ISBN 978-0-8218-2624-9.
- ^ Kapusta, Janos (2004), "The square, the circle, and the golden proportion: a new class of geometrical constructions" (PDF), Forma, 19: 293–313.
- ^ Calvin C Clawson (2001). Mathematical sorcery: revealing the secrets of numbers. p. IV. ISBN 978 0 7382 0496-3.
- ^ Vijaya AV (2007). Figuring Out Mathematics. Dorling Kindcrsley (India) Pvt. Lid. p. 15. ISBN 978-81-317-0359-5.
- ^ P A J Lewis (2008). Essential Mathematics 9. Ratna Sagar. p. 24. ISBN 9788183323673.
- ^ Koshy, Thomas (2017). Fibonacci and Lucas Numbers with Applications (2 ed.). John Wiley & Sons. ISBN 9781118742174. Retrieved 14 August 2018.
- ^ Agronomof, M. (1914). "Sur une suite récurrente". Mathesis. 4: 125–126.
- ^ Christensen, Thomas (2002), The Cambridge History of Western Music Theory, p. 205, ISBN 978-0521686983
- ^ Annie Cuyt; Vigdis Brevik Petersen; Brigitte Verdonk; Haakon Waadelantl; William B. Jones. (2008). Handbook of Continued Fractions for Special Functions. Springer. p. 188. ISBN 978-1-4020-6948-2.
- ^ Yann Bugeaud (2012). Distribution Modulo One and Diophantine Approximation. Cambridge University Press. p. 87. ISBN 978-0-521-11169-0.
- ^ Robert Baillie (2013). "Summing The Curious Series of Kempner and Irwin". arXiv:0806.4410 [math.CA].
- ^ Hardy, G. H. (2008). An introduction to the theory of numbers. E. M. Wright, D. R. Heath-Brown, Joseph H. Silverman (6th ed.). Oxford: Oxford University Press. ISBN 978-0-19-921985-8. OCLC 214305907.
- ^ Gérard P. Michon (2005). Numerical Constants. Numericana.
- ^ E.Kasner y J.Newman. (2007). Mathematics and the Imagination. Conaculta. p. 77. ISBN 978-968-5374-20-0.
- ^ Annie Cuyt; Vigdis Brevik Petersen; Brigitte Verdonk; Haakon Waadeland; William B. Jones (2008). Handbook of Continued Fractions for Special Functions. Springer. p. 182. ISBN 978-1-4020-6948-2.
- ^ J. Coates; Martin J. Taylor (1991). L-Functions and Arithmetic. Cambridge University Press. p. 333. ISBN 978-0-521-38619-7.
- ^ Howard Curtis (2014). Orbital Mechanics for Engineering Students. Elsevier. p. 159. ISBN 978-0-08-097747-8.
- ^ Keith B. Oldham; Jan C. Myland; Jerome Spanier (2009). An Atlas of Functions: With Equator, the Atlas Function Calculator. Springer. p. 15. ISBN 978-0-387-48806-6.
- ^ Calvin C. Clawson (2003). Mathematical Traveler: Exploring the Grand History of Numbers. Perseus. p. 187. ISBN 978-0-7382-0835-0.
- ^ L. J. Lloyd James Peter Kilford (2008). Modular Forms: A Classical and Computational Introduction. Imperial College Press. p. 107. ISBN 978-1-84816-213-6.
- ^ James Stewart (2010). Single Variable Calculus: Concepts and Contexts. Brooks/Cole. p. 314. ISBN 978-0-495-55972-6.
- ^ Holger Hermanns; Roberto Segala (2000). Process Algebra and Probabilistic Methods. Springer-Verlag. p. 270. ISBN 978-3-540-67695-9.
- ^ Steven Finch (2014). Errata and Addenda to Mathematical Constants (PDF). Harvard.edu. p. 59. Archived from the original (PDF) on 2016-03-16. Retrieved 2013-12-17.
- ^ Yann Bugeaud (2004). Series representations for some mathematical constants. p. 72. ISBN 978-0-521-82329-6.
- ^ David Wells (1997). The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books Ltd. p. 4. ISBN 9780141929408.
- ^ Helmut Brass; Knut Petras (2010). Quadrature Theory: The Theory of Numerical Integration on a Compact Interval. AMS. p. 274. ISBN 978-0-8218-5361-0.
- ^ Ángulo áureo.
- ^ Mauro Fiorentini. Nielsen – Ramanujan (costanti di).
- ^ Michael J. Dinneen; Bakhadyr Khoussainov; Prof. Andre Nies (2012). Computation, Physics and Beyond. Springer. p. 110. ISBN 978-3-642-27653-8.
- ^ David Cohen (2006). Precalculus: With Unit Circle Trigonometry. Thomson Learning Inc. p. 328. ISBN 978-0-534-40230-3.
- ^ Andras Bezdek (2003). Discrete Geometry. Marcel Dekkcr, Inc. p. 150. ISBN 978-0-8247-0968-6.
- ^ Jean-Pierre Serre (1969–1970). Travaux de Baker (PDF). NUMDAM, Séminaire N. Bourbaki. p. 74.
- ^ David Darling (2004). The Universal Book of Mathematics: From Abracadabra to Zeno's Paradoxes. Wiley & Sons inc. p. 63. ISBN 978-0-471-27047-8.
- ^ Steven R. Finch (2003). Mathematical Constants. Cambridge University Press. p. 479. ISBN 978-3-540-67695-9.
Schmutz.
- ^ Paul Manneville (2010). Instabilities, Chaos and Turbulence. Imperial College Press. p. 176. ISBN 978-1-84816-392-8.
- ^ Christoph Lanz. k-Automatic Reals (PDF). Technischen Universität Wien.
- ^ Eric W. Weisstein (2002). CRC Concise Encyclopedia of Mathematics (Second ed.). CRC Press. p. 1356. ISBN 978-1-58488-347-0.
- ^ Steven R. Finch (2003). Mathematical Constants. Cambridge University Press. p. 238. ISBN 978-3-540-67695-9.
- ^ Steven Finch (2014). Errata and Addenda to Mathematical Constants (PDF). Harvard.edu. p. 53. Archived from the original (PDF) on 2016-03-16. Retrieved 2013-12-17.
- ^ William Dunham (2005). The Calculus Gallery: Masterpieces from Newton to Lebesgue. Princeton University Press. p. 51. ISBN 978-0-691-09565-3.
- ^ Jean Jacquelin (2010). SOPHOMORE'S DREAM FUNCTION.
- ^ Johann Georg Soldner (1809). Théorie et tables d'une nouvelle fonction transcendante (in French). J. Lindauer, München. p. 42.
- ^ Lorenzo Mascheroni (1792). Adnotationes ad calculum integralem Euleri (in Latin). Petrus Galeatius, Ticini. p. 17.
- ^ Henri Cohen (2000). Number Theory: Volume II: Analytic and Modern Tools. Springer. p. 127. ISBN 978-0-387-49893-5.
- ^ H. M. Srivastava; Choi Junesang (2001). Series Associated With the Zeta and Related Functions. Kluwer Academic Publishers. p. 30. ISBN 978-0-7923-7054-3.
- ^ E. Catalan (1864). Mémoire sur la transformation des séries, et sur quelques intégrales définies, Comptes rendus hebdomadaires des séances de l'Académie des sciences 59. Kluwer Academic éditeurs. p. 618.
- ^ Julian Havil (2003). Gamma: Exploring Euler's Constant. Princeton University Press. p. 64. ISBN 9780691141336.
- ^ Eric W. Weisstein (2003). CRC Concise Encyclopedia of Mathematics, Second Edition. CRC Press. p. 151. ISBN 978-1-58488-347-0.
- ^ Eric W. Weisstein (2002). CRC Concise Encyclopedia of Mathematics, Second Edition. CRC Press. p. 1356. ISBN 9781420035223.
- ^ Steven Finch. Volumes of Hyperbolic 3-Manifolds (PDF). Harvard University. Archived from the original (PDF) on 2015-09-19.
- ^ Eric W. Weisstein (2002). CRC Concise Encyclopedia of Mathematics. Crc Press. p. 1212. ISBN 9781420035223.
- ^ ECKFORD COHEN (1962). SOME ASYMPTOTIC FORMULAS IN THE THEORY OF NUMBERS (PDF). University of Tennessee. p. 220.
- ^ Julian Havil (2003). Gamma: Exploring Euler's Constant. Princeton University Press. p. 161. ISBN 9780691141336.
- ^ Aleksandr I͡Akovlevich Khinchin (1997). Continued Fractions. Courier Dover Publications. p. 66. ISBN 978-0-486-69630-0.
- ^ Marek Wolf (2018). "Two arguments that the nontrivial zeros of the Riemann zeta function are irrational". Computational Methods in Science and Technology. 24 (4): 215–220. arXiv:1002.4171. doi:10.12921/cmst.2018.0000049. S2CID 115174293.
- ^ Laith Saadi (2004). Stealth Ciphers. Trafford Publishing. p. 160. ISBN 978-1-4120-2409-9.
- ^ Annie Cuyt; Viadis Brevik Petersen; Brigitte Verdonk; William B. Jones (2008). Handbook of continued fractions for special functions. Springer Science. p. 190. ISBN 978-1-4020-6948-2.
- ^ Steven Finch (2007). Continued Fraction Transformation (PDF). Harvard University. p. 7. Archived from the original (PDF) on 2016-04-19. Retrieved 2015-02-28.
- ^ Ivan Niven. Averages of exponents in factoring integers (PDF).
- ^ Michel A. Théra (2002). Constructive, Experimental, and Nonlinear Analysis. CMS-AMS. p. 77. ISBN 978-0-8218-2167-1.
- ^ Kathleen T. Alligood (1996). Chaos: An Introduction to Dynamical Systems. Springer. ISBN 978-0-387-94677-1.
- ^ Dusko Letic; Nenad Cakic; Branko Davidovic; Ivana Berkovic. Orthogonal and diagonal dimension fluxes of hyperspherical function (PDF). Springer.
- ^ K. T. Chau; Zheng Wang (201). Chaos in Electric Drive Systems: Analysis, Control and Application. John Wiley & Son. p. 7. ISBN 978-0-470-82633-1.
{{cite book}}
: ISBN / Date incompatibility (help) - ^ Steven Finch (2014). Electrical Capacitance (PDF). Harvard.edu. p. 1. Archived from the original (PDF) on 2016-04-19. Retrieved 2015-10-12.
- ^ Thomas Ransford. Computation of Logarithmic Capacity (PDF). Université Laval, Quebec (QC), Canada. p. 557.[permanent dead link]
- ^ Thomas Koshy (2007). Elementary Number Theory with Applications. Elsevier. p. 119. ISBN 978-0-12-372-487-8.
- ^ Steven R. Finch (2003). Mathematical Constants. p. 110. ISBN 978-3-540-67695-9.
- ^ Benoit Mandelbrot (2004). Fractals and Chaos: The Mandelbrot Set and Beyond. ISBN 978-1-4419-1897-0.
- ^ Curtis T. McMullen (1997). Hausdorff dimension and conformal dynamics III: Computation of dimension (PDF).
- ^ Eric W. Weisstein (2003). CRC Concise Encyclopedia of Mathematics, Second Edition. CRC Press. p. 151. ISBN 978-1-58488-347-0.
- ^ DIVAKAR VISWANATH (1999). RANDOM FIBONACCI SEQUENCES AND THE NUMBER 1.13198824... (PDF). MATHEMATICS OF COMPUTATION.
- ^ Francisco J. Aragón Artacho; David H. Baileyy; Jonathan M. Borweinz; Peter B. Borwein (2012). Tools for visualizing real numbers (PDF). p. 33.
- ^ Papierfalten (PDF). 1998.
- ^ Paulo Ribenboim (2000). My Numbers, My Friends: Popular Lectures on Number Theory. Springer. p. 66. ISBN 978-0-387-98911-2.
- ^ Richard E. Crandall (2012). Unified algorithms for polylogarithm, L-series, and zeta variants (PDF). perfscipress.com. Archived from the original on 2013-04-30.
{{cite book}}
: CS1 maint: bot: original URL status unknown (link) - ^ RICHARD J. MATHAR (2010). "NUMERICAL EVALUATION OF THE OSCILLATORY INTEGRAL OVER exp(I pi x)x^1/x BETWEEN 1 AND INFINITY". arXiv:0912.3844 [math.CA].
- ^ M.R.Burns (1999). Root constant. Marvin Ray Burns.
- ^ Jesus Guillera; Jonathan Sondow (2008). "Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent". The Ramanujan Journal. 16 (3): 247–270. arXiv:math/0506319. doi:10.1007/s11139-007-9102-0. S2CID 119131640.
- ^ Andrei Vernescu (2007). Gazeta Matemetica Seria a revista de cultur Matemetica Anul XXV(CIV)Nr. 1, Constante de tip Euler generalízate (PDF). p. 14.
- ^ Pascal Sebah & Xavier Gourdon (2002). Introduction to twin primes and Brun's constant computation (PDF).
- ^ J. B. Friedlander; A. Perelli; C. Viola; D.R. Heath-Brown; H.Iwaniec; J. Kaczorowski (2002). Analytic Number Theory. Springer. p. 29. ISBN 978-3-540-36363-7.
- ^ Horst Alzer (2002). "Journal of Computational and Applied Mathematics, Volume 139, Issue 2" (PDF). Journal of Computational and Applied Mathematics. 139 (2): 215–230. doi:10.1016/S0377-0427(01)00426-5.
- ^ Richard E. Crandall; Carl B. Pomerance (2005). Prime Numbers: A Computational Perspective. Springer. p. 80. ISBN 978-0387-25282-7.
- ^ a b Steven Finch (2005). Class Number Theory (PDF). Harvard University. p. 8. Archived from the original (PDF) on 2016-04-19. Retrieved 2014-04-15.
- ^ Richard J. Mathar (2013). "Circumscribed Regular Polygons". arXiv:1301.6293 [math.MG].
- ^ Lloyd N. Trefethen (2013). Approximation Theory and Approximation Practice. SIAM. p. 211. ISBN 978-1-611972-39-9.
- ^ Keith J. Devlin (1999). Mathematics: The New Golden Age. Columbia University Press. p. 66. ISBN 978-0-231-11638-1.
- ^ a b Cuyt et al. 2008, p. 182.
- ^ a b Borwein et al. 2014, p. 190.
- ^ Cuyt et al. 2008, p. 185.
- ^ Cuyt et al. 2008, p. 186.
- ^ a b Cuyt et al. 2008, p. 188.
- ^ Cuyt et al. 2008, p. 176.
- ^ Cuyt et al. 2008, p. 179.
- ^ Cuyt et al. 2008, p. 190.
- ^ Cuyt et al. 2008, p. 191.
Site MathWorld Wolfram.com
- ^ Weisstein, Eric W. "Self-Avoiding Walk Connective Constant". MathWorld.
- ^ Weisstein, Eric W. "Conway's Constant". MathWorld.
- ^ Weisstein, Eric W. "Delian Constant". MathWorld.
- ^ Weisstein, Eric W. "Prince Rupert's Cube". MathWorld.
- ^ Weisstein, Eric W. "Golden Ratio". MathWorld.
- ^ Weisstein, Eric W. "Golden Ratio Conjugate". MathWorld.
- ^ Weisstein, Eric W. "Hermite Constants". MathWorld.
- ^ Weisstein, Eric W. "Salem Constants". MathWorld.
- ^ Weisstein, Eric W. "Liebs Square Ice Constant". MathWorld.
- ^ Weisstein, Eric W. "Plastic Constant". MathWorld.
- ^ Weisstein, Eric W. "Silver Ratio". MathWorld.
- ^ Weisstein, Eric W. "Pythagoras's Constant". MathWorld.
- ^ Weisstein, Eric W. "Theodorus's Constant". MathWorld.
- ^ Weisstein, Eric W. "Tribonacci Constant". MathWorld.
- ^ Weisstein, Eric W. "Wallis's Constant". MathWorld.
- ^ Weisstein, Eric W. "Apéry's Constant". MathWorld.
- ^ Weisstein, Eric W. "Copeland-Erdos Constant". MathWorld.
- ^ Weisstein, Eric W. "Erdos-Borwein Constant". MathWorld.
- ^ Weisstein, Eric W. "Reciprocal Fibonacci Constant". MathWorld.
- ^ Weisstein, Eric W. "Pi Formulas". MathWorld.
- ^ Weisstein, Eric W. "e". MathWorld.
- ^ Weisstein, Eric W. "Natural Logarithm of 2". MathWorld.
- ^ Weisstein, Eric W. "Lemniscate Constant". MathWorld.
- ^ Weisstein, Eric W. "Omega Constant". MathWorld.
- ^ Weisstein, Eric W. "Laplace Limit". MathWorld.
- ^ Weisstein, Eric W. "Gauss's Constant". MathWorld.
- ^ Weisstein, Eric W. "Liouville's Constant". MathWorld.
- ^ Weisstein, Eric W. "Ramanujan Constant". MathWorld.
- ^ Weisstein, Eric W. "Dottie Number". MathWorld.
- ^ Weisstein, Eric W. "Relatively Prime". MathWorld.
- ^ Weisstein, Eric W. "Universal Parabolic Constant". MathWorld.
- ^ Weisstein, Eric W. "Cahen's Constant". MathWorld.
- ^ Weisstein, Eric W. "Gelfonds Constant". MathWorld.
- ^ Weisstein, Eric W. "Favard Constants". MathWorld.
- ^ Weisstein, Eric W. "Golden Angle". MathWorld.
- ^ Weisstein, Eric W. "Nielsen-Ramanujan Constants". MathWorld.
- ^ Weisstein, Eric W. "Champernowne Constant". MathWorld.
- ^ Weisstein, Eric W. "Gelfond-Schneider Constant". MathWorld.
- ^ Weisstein, Eric W. "Chaitin's Constant". MathWorld.
- ^ Weisstein, Eric W. "Robbins Constant". MathWorld.
- ^ Weisstein, Eric W. "Cantor Set". MathWorld.
- ^ Weisstein, Eric W. "Komornik-Loreti Constant". MathWorld.
- ^ Weisstein, Eric W. "Pascal's Triangle". MathWorld.
- ^ Weisstein, Eric W. "Du Bois Reymond Constants". MathWorld.
- ^ Weisstein, Eric W. "Thue-Morse Constant". MathWorld.
- ^ Weisstein, Eric W. "Sophomore's Dream". MathWorld.
- ^ Weisstein, Eric W. "Euler–Mascheroni Constant". MathWorld.
- ^ Weisstein, Eric W. "Soldner's Constant". MathWorld.
- ^ Weisstein, Eric W. "Glaisher-Kinkelin Constant". MathWorld.
- ^ Weisstein, Eric W. "Catalan's Constant". MathWorld.
- ^ Weisstein, Eric W. "Mertens Constant". MathWorld.
- ^ Weisstein, Eric W. "Weierstrass Constant". MathWorld.
- ^ Weisstein, Eric W. "Sierpinski Constant". MathWorld.
- ^ Weisstein, Eric W. "Gieseking's Constant". MathWorld.
- ^ Weisstein, Eric W. "Twin Primes Constant". MathWorld.
- ^ Weisstein, Eric W. "Golomb-Dickman Constant". MathWorld.
- ^ Weisstein, Eric W. "Feller-Tornier Constant". MathWorld.
- ^ Weisstein, Eric W. "Khinchin's Constant". MathWorld.
- ^ Weisstein, Eric W. "Levy Constant". MathWorld.
- ^ Weisstein, Eric W. "Levy Constant". MathWorld.
- ^ Weisstein, Eric W. "Mills Constant". MathWorld.
- ^ Weisstein, Eric W. "Gompertz Constant". MathWorld.
- ^ Weisstein, Eric W. "Lochs' Constant". MathWorld.
- ^ Weisstein, Eric W. "Niven's Constant". MathWorld.
- ^ Weisstein, Eric W. "Porter's Constant". MathWorld.
- ^ a b Weisstein, Eric W. "Feigenbaum Constant". MathWorld.
- ^ Weisstein, Eric W. "Fransen-Robinson Constant". MathWorld.
- ^ Weisstein, Eric W. "Chebyshev Constants". MathWorld.
- ^ a b Weisstein, Eric W. "Brun's Constant". MathWorld.
- ^ Weisstein, Eric W. "Hafner-Sarnak-McCurley Constant". MathWorld.
- ^ Weisstein, Eric W. "Apollonian Gasket". MathWorld.
- ^ Weisstein, Eric W. "Backhouse's Constant". MathWorld.
- ^ Weisstein, Eric W. "Random Fibonacci Sequence". MathWorld.
- ^ Weisstein, Eric W. "Paper Folding Constant". MathWorld.
- ^ Weisstein, Eric W. "Artin's Constant". MathWorld.
- ^ Weisstein, Eric W. "MRB Constant". MathWorld.
- ^ Weisstein, Eric W. "SomossQuadraticRecurrence Constant". MathWorld.
- ^ a b Weisstein, Eric W. "Foias Constant". MathWorld.
- ^ Weisstein, Eric W. "Heath-Brown-Moroz Constant". MathWorld.
- ^ Weisstein, Eric W. "Atavoidirc/constants". MathWorld.
- ^ Weisstein, Eric W. "Landau-Ramanujan Constant". MathWorld.
- ^ Weisstein, Eric W. "Stephen's Constant". MathWorld.
- ^ Weisstein, Eric W. "Taniguchis Constant". MathWorld.
- ^ Weisstein, Eric W. "Polygon Inscribing". MathWorld.
- ^ Weisstein, Eric W. "Bernstein's Constant". MathWorld.
Site OEIS.com
- ^ OEIS: A179260
- ^ OEIS: A014715
- ^ OEIS: A002580
- ^ OEIS: A002581
- ^ OEIS: A243309
- ^ OEIS: A001622
- ^ OEIS: A094214
- ^ OEIS: A073011
- ^ OEIS: A118273
- ^ OEIS: A060006
- ^ OEIS: A014176
- ^ OEIS: A002193
- ^ OEIS: A002194
- ^ OEIS: A002163
- ^ OEIS: A092526
- ^ OEIS: A058265
- ^ OEIS: A010774
- ^ OEIS: A007493
- ^ OEIS: A002117
- ^ OEIS: A033308
- ^ OEIS: A065442
- ^ OEIS: A051006
- ^ OEIS: A079586
- ^ OEIS: A163973
- ^ OEIS: A000796
- ^ OEIS: A001113
- ^ OEIS: A002162
- ^ OEIS: A062539
- ^ OEIS: A030178
- ^ OEIS: A033259
- ^ OEIS: A014549
- ^ OEIS: A012245
- ^ OEIS: A060295
- ^ OEIS: A003957
- ^ OEIS: A059956
- ^ OEIS: A103710
- ^ OEIS: A080130
- ^ OEIS: A039661
- ^ OEIS: A111003
- ^ OEIS: A131988
- ^ OEIS: A072691
- ^ OEIS: A033307
- ^ OEIS: A007507
- ^ OEIS: A195696
- ^ OEIS: A113476
- ^ OEIS: A100264
- ^ OEIS: A073012
- ^ OEIS: A102525
- ^ OEIS: A055060
- ^ OEIS: A020857
- ^ OEIS: A062546
- ^ OEIS: A014571
- ^ OEIS: A083648
- ^ OEIS: A073009
- ^ OEIS: A001620
- ^ OEIS: A070769
- ^ OEIS: A074962
- ^ OEIS: A006752
- ^ OEIS: A077761
- ^ OEIS: A094692
- ^ OEIS: A062089
- ^ OEIS: A143298
- ^ OEIS: A005597
- ^ OEIS: A084945
- ^ OEIS: A065493
- ^ OEIS: A002210
- ^ OEIS: A100199
- ^ OEIS: A086702
- ^ OEIS: A051021
- ^ OEIS: A073003
- ^ OEIS: A086819
- ^ OEIS: A033150
- ^ OEIS: A086237
- ^ OEIS: A006890
- ^ OEIS: A058655
- ^ OEIS: A006891
- ^ OEIS: A249205
- ^ OEIS: A065421
- ^ OEIS: A085849
- ^ OEIS: A052483
- ^ OEIS: A072508
- ^ OEIS: A078416
- ^ OEIS: A143347
- ^ OEIS: A005596
- ^ OEIS: A037077
- ^ OEIS: A065481
- ^ OEIS: A085848
- ^ OEIS: A085846
- ^ OEIS: A213007
- ^ OEIS: A118228
- ^ OEIS: A243277
- ^ OEIS: A064533
- ^ OEIS: A065478
- ^ OEIS: A175639
- ^ OEIS: A085365
- ^ OEIS: A073001
Site OEIS Wiki
Bibliography
- Arndt, Jörg; Haenel, Christoph (2006). Pi Unleashed. Springer-Verlag. ISBN 978-3-540-66572-4. Retrieved 2013-06-05. English translation by Catriona and David Lischka.
- Jensen, Johan Ludwig William Valdemar (1895), "Note numéro 245. Deuxième réponse. Remarques relatives aux réponses du MM. Franel et Kluyver", L'Intermédiaire des Mathématiciens, II: 346–347
- Cuyt, Annie A.M.; Petersen, Vigdis; Verdonk, Brigitte; Waadeland, Haakon; Jones, William B. (2008). "Mathematical constants". Handbook of Continued Fractions for Special Functions. Dordrecht, Netherlands: Springer Science + Business Media. ISBN 9781402069499.
- Borwein, Jonathan; van der Poorten, Alf; Shallit, Jeffrey; Zudilin, Wadim (2014). Neverending Fractions: An Introduction to Continued Fractions. Australian Mathematical Society Lecture Series. Vol. 23. Cambridge, United Kingdom: Cambridge University Press. ISBN 9780521186490. ISSN 0950-2815.
Further reading
- Wolfram, Stephen. "4: Systems Based on Numbers". Section 5: Mathematical Constants — Continued fractions.
{{cite book}}
:|work=
ignored (help)
External links
- Inverse Symbolic Calculator, Plouffe's Inverter
- Constants - from Wolfram MathWorld
- On-Line Encyclopedia of Integer Sequences (OEIS)
- Steven Finch's page of mathematical constants
- Xavier Gourdon and Pascal Sebah's page of numbers, mathematical constants and algorithms
[[Category:Mathematical constants|*]/]
[[Category:Mathematics-related lists|mathematical constants]/]
[[Category:Mathematical tables|Constants]/]
[[Category:Articles containing video clips]/]
[[Category:Number-related lists|constants]/]
[[Category:Continued fractions]/]