Incomplete Bessel K function/generalized incomplete gamma function
Appearance
Some mathematicians defined this type incomplete-version of Bessel function or this type generalized-version of incomplete gamma function:[1][2][3][4][5]
Properties
One of the advantage of defining this type incomplete-version of Bessel function is that even for example the associated Anger–Weber function defined in Digital Library of Mathematical Functions[6] can related:
Recurrence relations
satisfy this recurrence relation:
References
- ^ "incompleteBesselK function | R Documentation". www.rdocumentation.org.
- ^ "incompleteBesselK: The Incomplete Bessel K Function in DistributionUtils: Distribution Utilities". rdrr.io.
- ^ Harris, Frank E. (2008). "Incomplete Bessel, generalized incomplete gamma, or leaky aquifer functions" (PDF). Journal of Computational and Applied Mathematics. 215: 260–269. doi:10.1016/j.cam.2007.04.008. Retrieved 2020-01-08.
- ^ "Generalized incomplete gamma function and its application". 2018-01-14. Retrieved 2020-01-08.
- ^ "Archived copy" (PDF) (Document). S2CID 126117454. Archived from the original (PDF) on 2019-12-23. Retrieved 2019-12-23.
{{cite document}}
: Cite document requires|publisher=
(help); Unknown parameter|access-date=
ignored (help); Unknown parameter|archive-date=
ignored (help); Unknown parameter|archive-url=
ignored (help); Unknown parameter|s2cid=
ignored (help); Unknown parameter|url-status=
ignored (help); Unknown parameter|url=
ignored (help)CS1 maint: archived copy as title (link) - ^ Paris, R. B. (2010), "Anger-Weber Functions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.