Transport theorem
A Euclidean vector represents a certain magnitude and direction in space that is independent of the coordinate system in which it is measured. However, when taking a time derivative of such a vector one actually takes the difference between two vectors measured at two different times t and t+dt. In a rotating coordinate system, the coordinate axes can have different directions at these two times, such that even a constant vector can have a non-zero time derivative. As a consequence, the time derivative of a vector measured in a rotating coordinate system can be different from the time derivative of the same vector in a non-rotating reference system. The Transport Theorem[1] [2][3](or Transport Equation, Rate of Change Transport Theorem or Basic Kinematic Equation) provides a way to relate time derivatives of vectors between a rotating and non-rotating coordinate system, it is derived and explained in more detail in Rotating_reference_frame and can be written as:
Here f is the vector of which the time derivative is evaluated in both the non-rotating, and rotating coordinate system. The subscript r designates its time derivative in the rotating coordinate system and the vector Ω is the angular velocity of the rotating coordinate system.
The Transport Theorem is particularly useful for relating velocities and acceleration vectors between rotating and non-rotating coordinate systems[4].
Note that reference[2] states: "Despite of its importance in classical mechanics and its ubiquitous application in engineering, there is no universally-accepted name for the Euler derivative transformation formula [...] Several terminology are used: kinematic theorem, transport theorem, and transport equation. These terms, although terminologically correct, are more prevalent in the subject of fluid mechanics to refer to entirely different physics concepts." An example of such a different physics concept is Reynolds transport theorem.
References
- ^ Rao, Anil Vithala (2006). Dynamics of particles and rigid bodies: a systematic approach. New York: Cambridge University Press. pp. 47, eq. (2–128). ISBN 978-0-511-34840-2.
- ^ a b Harithuddin, A.S.M. (2014). Derivative Kinematics in Relatively Rotating Coordinate Frames: Investigation on the Razi Acceleration. RMIT University. p. 22.
- ^ Baruh, H. (1999). Analytical Dynamics. McGraw Hill.
- ^ "Course Notes MIT" (PDF).