Transport theorem
It is proposed that this article be deleted because of the following concern:
If you can address this concern by improving, copyediting, sourcing, renaming, or merging the page, please edit this page and do so. You may remove this message if you improve the article or otherwise object to deletion for any reason. Although not required, you are encouraged to explain why you object to the deletion, either in your edit summary or on the talk page. If this template is removed, do not replace it. This message has remained in place for seven days, so the article may be deleted without further notice. Find sources: "Transport theorem" – news · newspapers · books · scholar · JSTOR Timestamp: 20220129193742 19:37, 29 January 2022 (UTC) Administrators: delete |
A Euclidean vector represents a certain magnitude and direction in space that is independent of the coordinate system in which it is measured. However, when taking a time derivative of such a vector one actually takes the difference between two vectors measured at two different times t and t+dt. In a rotating coordinate system, the coordinate axes can have different directions at these two times, such that even a constant vector can have a non-zero time derivative. As a consequence, the time derivative of a vector measured in a rotating coordinate system can be different from the time derivative of the same vector in a non-rotating reference system. The Transport Theorem (or Transport Equation or Basic Kinematic Equation) provides a way to relate time derivatives of vectors between a rotating and non-rotating coordinate system, it is derived and explained in more detail in Rotating_reference_frame and can be written as:
Here f is the vector of which the time derivative is evaluated in both the non-rotating, and rotating coordinate system. The subscript r designates its time derivative in the rotating coordinate system and the vector Ω is the angular velocity of the rotating coordinate system.
The Transport Theorem is particularly useful for relating velocities and acceleration vectors between rotating and non-rotating coordinate systems[1].
- ^ "Course Notes MIT" (PDF).