Modular lambda function in the complex plane.
In mathematics , the modular lambda function λ(τ) is a highly symmetric holomorphic function on the complex upper half-plane . It is invariant under the fractional linear action of the congruence group Γ(2), and generates the function field of the corresponding quotient, i.e., it is a Hauptmodul for the modular curve X (2). Over any point τ, its value can be described as a cross ratio of the branch points of a ramified double cover of the projective line by the elliptic curve
C
/
⟨
1
,
τ
⟩
{\displaystyle \mathbb {C} /\langle 1,\tau \rangle }
, where the map is defined as the quotient by the [−1] involution.
The q-expansion, where
q
=
e
π
i
τ
{\displaystyle q=e^{\pi i\tau }}
is the nome , is given by:
λ
(
τ
)
=
16
q
−
128
q
2
+
704
q
3
−
3072
q
4
+
11488
q
5
−
38400
q
6
+
…
{\displaystyle \lambda (\tau )=16q-128q^{2}+704q^{3}-3072q^{4}+11488q^{5}-38400q^{6}+\dots }
. OEIS : A115977
By symmetrizing the lambda function under the canonical action of the symmetric group S 3 on X (2), and then normalizing suitably, one obtains a function on the upper half-plane that is invariant under the full modular group
SL
2
(
Z
)
{\displaystyle \operatorname {SL} _{2}(\mathbb {Z} )}
, and it is in fact Klein's modular j-invariant .
A plot of x→ λ(ix)
Modular properties
The function
λ
(
τ
)
{\displaystyle \lambda (\tau )}
is invariant under the group generated by[ 1]
τ
↦
τ
+
2
;
τ
↦
τ
1
−
2
τ
.
{\displaystyle \tau \mapsto \tau +2\ ;\ \tau \mapsto {\frac {\tau }{1-2\tau }}\ .}
The generators of the modular group act by[ 2]
τ
↦
τ
+
1
:
λ
↦
λ
λ
−
1
;
{\displaystyle \tau \mapsto \tau +1\ :\ \lambda \mapsto {\frac {\lambda }{\lambda -1}}\,;}
τ
↦
−
1
τ
:
λ
↦
1
−
λ
.
{\displaystyle \tau \mapsto -{\frac {1}{\tau }}\ :\ \lambda \mapsto 1-\lambda \ .}
Consequently, the action of the modular group on
λ
(
τ
)
{\displaystyle \lambda (\tau )}
is that of the anharmonic group , giving the six values of the cross-ratio :[ 3]
{
λ
,
1
1
−
λ
,
λ
−
1
λ
,
1
λ
,
λ
λ
−
1
,
1
−
λ
}
.
{\displaystyle \left\lbrace {\lambda ,{\frac {1}{1-\lambda }},{\frac {\lambda -1}{\lambda }},{\frac {1}{\lambda }},{\frac {\lambda }{\lambda -1}},1-\lambda }\right\rbrace \ .}
Relations to other functions
It is the square of the elliptic modulus,[ 4] that is,
λ
(
τ
)
=
k
2
(
τ
)
{\displaystyle \lambda (\tau )=k^{2}(\tau )}
. In terms of the Dedekind eta function
η
(
τ
)
{\displaystyle \eta (\tau )}
and theta functions ,[ 4]
λ
(
τ
)
=
(
2
η
(
τ
2
)
η
2
(
2
τ
)
η
3
(
τ
)
)
8
=
16
(
η
(
τ
/
2
)
η
(
2
τ
)
)
8
+
16
=
θ
2
4
(
τ
)
θ
3
4
(
τ
)
{\displaystyle \lambda (\tau )={\Bigg (}{\frac {{\sqrt {2}}\,\eta ({\tfrac {\tau }{2}})\eta ^{2}(2\tau )}{\eta ^{3}(\tau )}}{\Bigg )}^{8}={\frac {16}{\left({\frac {\eta (\tau /2)}{\eta (2\tau )}}\right)^{8}+16}}={\frac {\theta _{2}^{4}(\tau )}{\theta _{3}^{4}(\tau )}}}
and,
1
(
λ
(
τ
)
)
1
/
4
−
(
λ
(
τ
)
)
1
/
4
=
1
2
(
η
(
τ
4
)
η
(
τ
)
)
4
=
2
θ
4
2
(
τ
2
)
θ
2
2
(
τ
2
)
{\displaystyle {\frac {1}{{\big (}\lambda (\tau ){\big )}^{1/4}}}-{\big (}\lambda (\tau ){\big )}^{1/4}={\frac {1}{2}}\left({\frac {\eta ({\tfrac {\tau }{4}})}{\eta (\tau )}}\right)^{4}=2\,{\frac {\theta _{4}^{2}({\tfrac {\tau }{2}})}{\theta _{2}^{2}({\tfrac {\tau }{2}})}}}
where[ 5]
θ
2
(
τ
)
=
∑
n
=
−
∞
∞
e
π
i
τ
(
n
+
1
/
2
)
2
{\displaystyle \theta _{2}(\tau )=\sum _{n=-\infty }^{\infty }e^{\pi i\tau (n+1/2)^{2}}}
θ
3
(
τ
)
=
∑
n
=
−
∞
∞
e
π
i
τ
n
2
{\displaystyle \theta _{3}(\tau )=\sum _{n=-\infty }^{\infty }e^{\pi i\tau n^{2}}}
θ
4
(
τ
)
=
∑
n
=
−
∞
∞
(
−
1
)
n
e
π
i
τ
n
2
{\displaystyle \theta _{4}(\tau )=\sum _{n=-\infty }^{\infty }(-1)^{n}e^{\pi i\tau n^{2}}}
In terms of the half-periods of Weierstrass's elliptic functions , let
[
ω
1
,
ω
2
]
{\displaystyle [\omega _{1},\omega _{2}]}
be a fundamental pair of periods with
τ
=
ω
2
ω
1
{\displaystyle \tau ={\frac {\omega _{2}}{\omega _{1}}}}
.
e
1
=
℘
(
ω
1
2
)
,
e
2
=
℘
(
ω
2
2
)
,
e
3
=
℘
(
ω
1
+
ω
2
2
)
{\displaystyle e_{1}=\wp \left({\frac {\omega _{1}}{2}}\right),e_{2}=\wp \left({\frac {\omega _{2}}{2}}\right),e_{3}=\wp \left({\frac {\omega _{1}+\omega _{2}}{2}}\right)}
we have[ 4]
λ
=
e
3
−
e
2
e
1
−
e
2
.
{\displaystyle \lambda ={\frac {e_{3}-e_{2}}{e_{1}-e_{2}}}\,.}
Since the three half-period values are distinct, this shows that λ does not take the value 0 or 1.[ 4]
The relation to the j-invariant is[ 6] [ 7]
j
(
τ
)
=
256
(
1
−
λ
(
1
−
λ
)
)
3
(
λ
(
1
−
λ
)
)
2
=
256
(
1
−
λ
+
λ
2
)
3
λ
2
(
1
−
λ
)
2
.
{\displaystyle j(\tau )={\frac {256(1-\lambda (1-\lambda ))^{3}}{(\lambda (1-\lambda ))^{2}}}={\frac {256(1-\lambda +\lambda ^{2})^{3}}{\lambda ^{2}(1-\lambda )^{2}}}\ .}
which is the j -invariant of the elliptic curve of Legendre form
y
2
=
x
(
x
−
1
)
(
x
−
λ
)
{\displaystyle y^{2}=x(x-1)(x-\lambda )}
Modular equations
The modular equation of degree
p
{\displaystyle p}
(where
p
{\displaystyle p}
is a prime number) is an algebraic equation in
α
=
λ
(
p
τ
)
{\displaystyle \alpha =\lambda (p\tau )}
and
β
=
λ
(
τ
)
{\displaystyle \beta =\lambda (\tau )}
. If
α
=
u
8
{\displaystyle \alpha =u^{8}}
and
β
=
v
8
{\displaystyle \beta =v^{8}}
, the modular equations of degrees
p
=
2
,
3
,
5
,
7
{\displaystyle p=2,3,5,7}
are, respectively,[ 8]
(
1
+
u
4
)
2
v
8
−
4
u
4
=
0
,
{\displaystyle (1+u^{4})^{2}v^{8}-4u^{4}=0,}
u
4
−
v
4
+
2
u
v
(
1
−
u
2
v
2
)
=
0
,
{\displaystyle u^{4}-v^{4}+2uv(1-u^{2}v^{2})=0,}
u
6
−
v
6
+
5
u
2
v
2
(
u
2
−
v
2
)
+
4
u
v
(
1
−
u
4
v
4
)
=
0
,
{\displaystyle u^{6}-v^{6}+5u^{2}v^{2}(u^{2}-v^{2})+4uv(1-u^{4}v^{4})=0,}
(
1
−
u
8
)
(
1
−
v
8
)
−
(
1
−
u
v
)
8
=
0.
{\displaystyle (1-u^{8})(1-v^{8})-(1-uv)^{8}=0.}
The quantities
u
{\displaystyle u}
and
v
{\displaystyle v}
have the following product representations which define them as holomorphic functions in the whole upper half-plane:
u
=
2
e
p
π
i
τ
/
8
∏
k
=
1
∞
1
+
e
2
k
p
π
i
τ
1
+
e
(
2
k
−
1
)
p
π
i
τ
,
v
=
2
e
π
i
τ
/
8
∏
k
=
1
∞
1
+
e
2
k
π
i
τ
1
+
e
(
2
k
−
1
)
π
i
τ
.
{\displaystyle u={\sqrt {2}}e^{p\pi i\tau /8}\prod _{k=1}^{\infty }{\frac {1+e^{2kp\pi i\tau }}{1+e^{(2k-1)p\pi i\tau }}},\quad v={\sqrt {2}}e^{\pi i\tau /8}\prod _{k=1}^{\infty }{\frac {1+e^{2k\pi i\tau }}{1+e^{(2k-1)\pi i\tau }}}.}
Since
λ
(
i
)
=
1
/
2
{\displaystyle \lambda (i)=1/2}
, the modular equations can be used to give algebraic values of
λ
(
p
i
)
{\displaystyle \lambda (pi)}
for any prime
p
{\displaystyle p}
. For any odd
n
{\displaystyle n}
, the algebraic values of
λ
(
n
i
)
{\displaystyle \lambda (ni)}
are given by[ 9] [ note 1]
λ
(
n
i
)
=
1
2
n
∏
k
=
1
n
−
1
(
1
−
sl
2
k
ϖ
n
)
2
{\displaystyle \lambda (ni)={\frac {1}{2^{n}}}\prod _{k=1}^{n-1}\left(1-\operatorname {sl} ^{2}{\frac {k\varpi }{n}}\right)^{2}}
where
sl
{\displaystyle \operatorname {sl} }
is the lemniscate sine and
ϖ
{\displaystyle \varpi }
is the lemniscate constant .
Lambda-star
Definition and computation of lambda-star
The function λ*(x)[ 10] gives the value of the elliptic modulus
k
{\displaystyle k}
, for which the complete elliptic integral of the first kind
K
(
k
)
{\displaystyle K(k)}
and its complementary counterpart
K
(
1
−
k
2
)
{\displaystyle K\left({\sqrt {1-k^{2}}}\right)}
are related by following expression:
K
[
1
−
λ
∗
(
x
)
2
]
K
[
λ
∗
(
x
)
]
=
x
{\displaystyle {\frac {K\left[{\sqrt {1-\lambda ^{*}(x)^{2}}}\right]}{K[\lambda ^{*}(x)]}}={\sqrt {x}}}
The values of λ*(x) can be computed as follows:
λ
∗
(
x
)
=
θ
2
2
(
i
x
)
θ
3
2
(
i
x
)
{\displaystyle \lambda ^{*}(x)={\frac {\theta _{2}^{2}(i{\sqrt {x}})}{\theta _{3}^{2}(i{\sqrt {x}})}}}
λ
∗
(
x
)
=
[
∑
a
=
−
∞
∞
exp
[
−
(
a
+
1
/
2
)
2
π
x
]
]
2
[
∑
a
=
−
∞
∞
exp
(
−
a
2
π
x
)
]
−
2
{\displaystyle \lambda ^{*}(x)=\left[\sum _{a=-\infty }^{\infty }\exp[-(a+1/2)^{2}\pi {\sqrt {x}}]\right]^{2}\left[\sum _{a=-\infty }^{\infty }\exp(-a^{2}\pi {\sqrt {x}})\right]^{-2}}
λ
∗
(
x
)
=
[
∑
a
=
−
∞
∞
sech
[
(
a
+
1
/
2
)
π
x
]
]
[
∑
a
=
−
∞
∞
sech
(
a
π
x
)
]
−
1
{\displaystyle \lambda ^{*}(x)=\left[\sum _{a=-\infty }^{\infty }\operatorname {sech} [(a+1/2)\pi {\sqrt {x}}]\right]\left[\sum _{a=-\infty }^{\infty }\operatorname {sech} (a\pi {\sqrt {x}})\right]^{-1}}
The functions λ* and λ are related to each other in this way:
λ
∗
(
x
)
=
λ
(
i
x
)
{\displaystyle \lambda ^{*}(x)={\sqrt {\lambda (i{\sqrt {x}})}}}
Properties of lambda-star
Every λ*-value of a positive rational number is a positive algebraic number :
λ
∗
(
x
∈
Q
+
)
∈
A
+
{\displaystyle \lambda ^{*}(x\in \mathbb {Q} ^{+})\in \mathbb {A} ^{+}}
Elliptic integrals of the first and second kind of these special λ*-values can be expressed in terms of the gamma function , as Selberg and Chowla proved in 1949.[ 11] [ 12]
Following expression is valid for all n ∈
N
{\displaystyle \mathbb {N} }
:
n
=
∑
a
=
1
n
dn
[
2
a
n
K
[
λ
∗
(
1
n
)
]
;
λ
∗
(
1
n
)
]
{\displaystyle {\sqrt {n}}=\sum _{a=1}^{n}\operatorname {dn} \left[{\frac {2a}{n}}K\left[\lambda ^{*}\left({\frac {1}{n}}\right)\right];\lambda ^{*}\left({\frac {1}{n}}\right)\right]}
In this formula, dn is the Jacobi elliptic function delta amplitudinis.
By knowing one λ*-value, this formula can be used to compute related λ*-values:[ 9]
λ
∗
(
n
2
x
)
=
λ
∗
(
x
)
n
∏
a
=
1
n
sn
{
2
a
−
1
n
K
[
λ
∗
(
x
)
]
;
λ
∗
(
x
)
}
2
{\displaystyle \lambda ^{*}(n^{2}x)=\lambda ^{*}(x)^{n}\prod _{a=1}^{n}\operatorname {sn} \left\{{\frac {2a-1}{n}}K[\lambda ^{*}(x)];\lambda ^{*}(x)\right\}^{2}}
In that formula, sn is the Jacobi elliptic function sinus amplitudinis.
That formula works for all natural numbers.
Further relations:
λ
∗
(
x
)
2
+
λ
∗
(
1
/
x
)
2
=
1
{\displaystyle \lambda ^{*}(x)^{2}+\lambda ^{*}(1/x)^{2}=1}
[
λ
∗
(
x
)
+
1
]
[
λ
∗
(
4
/
x
)
+
1
]
=
2
{\displaystyle [\lambda ^{*}(x)+1][\lambda ^{*}(4/x)+1]=2}
λ
∗
(
4
x
)
=
1
−
1
−
λ
∗
(
x
)
2
1
+
1
−
λ
∗
(
x
)
2
=
tan
{
1
2
arcsin
[
λ
∗
(
x
)
]
}
2
{\displaystyle \lambda ^{*}(4x)={\frac {1-{\sqrt {1-\lambda ^{*}(x)^{2}}}}{1+{\sqrt {1-\lambda ^{*}(x)^{2}}}}}=\tan \left\{{\frac {1}{2}}\arcsin[\lambda ^{*}(x)]\right\}^{2}}
λ
∗
(
x
)
−
λ
∗
(
9
x
)
=
2
[
λ
∗
(
x
)
λ
∗
(
9
x
)
]
1
/
4
−
2
[
λ
∗
(
x
)
λ
∗
(
9
x
)
]
3
/
4
{\displaystyle \lambda ^{*}(x)-\lambda ^{*}(9x)=2[\lambda ^{*}(x)\lambda ^{*}(9x)]^{1/4}-2[\lambda ^{*}(x)\lambda ^{*}(9x)]^{3/4}}
[
2
λ
∗
(
x
)
1
−
λ
∗
(
x
)
2
]
1
/
2
−
[
2
λ
∗
(
25
x
)
1
−
λ
∗
(
25
x
)
2
]
1
/
2
=
2
[
2
λ
∗
(
x
)
1
−
λ
∗
(
x
)
2
]
1
/
12
[
2
λ
∗
(
25
x
)
1
−
λ
∗
(
25
x
)
2
]
1
/
12
+
2
[
2
λ
∗
(
x
)
1
−
λ
∗
(
x
)
2
]
5
/
12
[
2
λ
∗
(
25
x
)
1
−
λ
∗
(
25
x
)
2
]
5
/
12
{\displaystyle \left[{\frac {2\lambda ^{*}(x)}{1-\lambda ^{*}(x)^{2}}}\right]^{1/2}-\left[{\frac {2\lambda ^{*}(25x)}{1-\lambda ^{*}(25x)^{2}}}\right]^{1/2}=2\left[{\frac {2\lambda ^{*}(x)}{1-\lambda ^{*}(x)^{2}}}\right]^{1/12}\left[{\frac {2\lambda ^{*}(25x)}{1-\lambda ^{*}(25x)^{2}}}\right]^{1/12}+2\left[{\frac {2\lambda ^{*}(x)}{1-\lambda ^{*}(x)^{2}}}\right]^{5/12}\left[{\frac {2\lambda ^{*}(25x)}{1-\lambda ^{*}(25x)^{2}}}\right]^{5/12}}
a
8
+
b
8
−
7
a
4
b
4
=
2
2
a
b
+
2
2
a
7
b
7
(
a
=
[
2
λ
∗
(
x
)
1
−
λ
∗
(
x
)
2
]
1
/
12
)
(
b
=
[
2
λ
∗
(
49
x
)
1
−
λ
∗
(
49
x
)
2
]
1
/
12
)
{\displaystyle a^{8}+b^{8}-7a^{4}b^{4}=2{\sqrt {2}}ab+2{\sqrt {2}}a^{7}b^{7}\,\left(a=\left[{\frac {2\lambda ^{*}(x)}{1-\lambda ^{*}(x)^{2}}}\right]^{1/12}\right)\left(b=\left[{\frac {2\lambda ^{*}(49x)}{1-\lambda ^{*}(49x)^{2}}}\right]^{1/12}\right)}
a
12
−
c
12
=
2
2
(
a
c
+
a
3
c
3
)
(
1
+
3
a
2
c
2
+
a
4
c
4
)
(
2
+
3
a
2
c
2
+
2
a
4
c
4
)
(
a
=
[
2
λ
∗
(
x
)
1
−
λ
∗
(
x
)
2
]
1
/
12
)
(
c
=
[
2
λ
∗
(
121
x
)
1
−
λ
∗
(
121
x
)
2
]
1
/
12
)
{\displaystyle a^{12}-c^{12}=2{\sqrt {2}}(ac+a^{3}c^{3})(1+3a^{2}c^{2}+a^{4}c^{4})(2+3a^{2}c^{2}+2a^{4}c^{4})\,\left(a=\left[{\frac {2\lambda ^{*}(x)}{1-\lambda ^{*}(x)^{2}}}\right]^{1/12}\right)\left(c=\left[{\frac {2\lambda ^{*}(121x)}{1-\lambda ^{*}(121x)^{2}}}\right]^{1/12}\right)}
(
a
2
−
d
2
)
(
a
4
+
d
4
−
7
a
2
d
2
)
[
(
a
2
−
d
2
)
4
−
a
2
d
2
(
a
2
+
d
2
)
2
]
=
8
a
d
+
8
a
13
d
13
(
a
=
[
2
λ
∗
(
x
)
1
−
λ
∗
(
x
)
2
]
1
/
12
)
(
d
=
[
2
λ
∗
(
169
x
)
1
−
λ
∗
(
169
x
)
2
]
1
/
12
)
{\displaystyle (a^{2}-d^{2})(a^{4}+d^{4}-7a^{2}d^{2})[(a^{2}-d^{2})^{4}-a^{2}d^{2}(a^{2}+d^{2})^{2}]=8ad+8a^{13}d^{13}\,\left(a=\left[{\frac {2\lambda ^{*}(x)}{1-\lambda ^{*}(x)^{2}}}\right]^{1/12}\right)\left(d=\left[{\frac {2\lambda ^{*}(169x)}{1-\lambda ^{*}(169x)^{2}}}\right]^{1/12}\right)}
Ramanujan's class invariants
Ramanujan's class invariants
G
n
{\displaystyle G_{n}}
and
g
n
{\displaystyle g_{n}}
are defined as[ 13]
G
n
=
2
−
1
/
4
e
π
n
/
24
∏
k
=
0
∞
(
1
+
e
−
(
2
k
+
1
)
π
n
)
,
{\displaystyle G_{n}=2^{-1/4}e^{\pi {\sqrt {n}}/24}\prod _{k=0}^{\infty }\left(1+e^{-(2k+1)\pi {\sqrt {n}}}\right),}
g
n
=
2
−
1
/
4
e
π
n
/
24
∏
k
=
0
∞
(
1
−
e
−
(
2
k
+
1
)
π
n
)
,
{\displaystyle g_{n}=2^{-1/4}e^{\pi {\sqrt {n}}/24}\prod _{k=0}^{\infty }\left(1-e^{-(2k+1)\pi {\sqrt {n}}}\right),}
where
n
∈
Q
+
{\displaystyle n\in \mathbb {Q} ^{+}}
.
These are the relations between lambda-star and Ramanujan's class invariants:
G
n
=
sin
{
2
arcsin
[
λ
∗
(
n
)
]
}
−
1
/
12
=
1
/
[
2
λ
∗
(
n
)
12
1
−
λ
∗
(
n
)
2
24
]
{\displaystyle G_{n}=\sin\{2\arcsin[\lambda ^{*}(n)]\}^{-1/12}=1{\Big /}\left[{\sqrt[{12}]{2\lambda ^{*}(n)}}{\sqrt[{24}]{1-\lambda ^{*}(n)^{2}}}\right]}
g
n
=
tan
{
2
arctan
[
λ
∗
(
n
)
]
}
−
1
/
12
=
[
1
−
λ
∗
(
n
)
2
]
/
[
2
λ
∗
(
n
)
]
12
{\displaystyle g_{n}=\tan\{2\arctan[\lambda ^{*}(n)]\}^{-1/12}={\sqrt[{12}]{[1-\lambda ^{*}(n)^{2}]/[2\lambda ^{*}(n)]}}}
λ
∗
(
n
)
=
tan
{
1
2
arctan
[
g
n
−
12
]
}
=
g
n
24
+
1
−
g
n
12
{\displaystyle \lambda ^{*}(n)=\tan \left\{{\frac {1}{2}}\arctan[g_{n}^{-12}]\right\}={\sqrt {g_{n}^{24}+1}}-g_{n}^{12}}
Special Values
Lambda-star-values of integer numbers of 4n-3-type:
λ
∗
(
1
)
=
1
2
{\displaystyle \lambda ^{*}(1)={\frac {1}{\sqrt {2}}}}
λ
∗
(
5
)
=
sin
[
1
2
arcsin
(
5
−
2
)
]
{\displaystyle \lambda ^{*}(5)=\sin \left[{\frac {1}{2}}\arcsin \left({\sqrt {5}}-2\right)\right]}
λ
∗
(
9
)
=
1
2
(
3
−
1
)
(
2
−
3
4
)
{\displaystyle \lambda ^{*}(9)={\frac {1}{2}}({\sqrt {3}}-1)({\sqrt {2}}-{\sqrt[{4}]{3}})}
λ
∗
(
13
)
=
sin
[
1
2
arcsin
(
5
13
−
18
)
]
{\displaystyle \lambda ^{*}(13)=\sin \left[{\frac {1}{2}}\arcsin(5{\sqrt {13}}-18)\right]}
λ
∗
(
17
)
=
sin
{
1
2
arcsin
[
1
64
(
5
+
17
−
10
17
+
26
)
3
]
}
{\displaystyle \lambda ^{*}(17)=\sin \left\{{\frac {1}{2}}\arcsin \left[{\frac {1}{64}}\left(5+{\sqrt {17}}-{\sqrt {10{\sqrt {17}}+26}}\right)^{3}\right]\right\}}
λ
∗
(
21
)
=
sin
{
1
2
arcsin
[
(
8
−
3
7
)
(
2
7
−
3
3
)
]
}
{\displaystyle \lambda ^{*}(21)=\sin \left\{{\frac {1}{2}}\arcsin[(8-3{\sqrt {7}})(2{\sqrt {7}}-3{\sqrt {3}})]\right\}}
λ
∗
(
25
)
=
1
2
(
5
−
2
)
(
3
−
2
5
4
)
{\displaystyle \lambda ^{*}(25)={\frac {1}{\sqrt {2}}}({\sqrt {5}}-2)(3-2{\sqrt[{4}]{5}})}
λ
∗
(
33
)
=
sin
{
1
2
arcsin
[
(
10
−
3
11
)
(
2
−
3
)
3
]
}
{\displaystyle \lambda ^{*}(33)=\sin \left\{{\frac {1}{2}}\arcsin[(10-3{\sqrt {11}})(2-{\sqrt {3}})^{3}]\right\}}
λ
∗
(
37
)
=
sin
{
1
2
arcsin
[
(
37
−
6
)
3
]
}
{\displaystyle \lambda ^{*}(37)=\sin \left\{{\frac {1}{2}}\arcsin[({\sqrt {37}}-6)^{3}]\right\}}
λ
∗
(
45
)
=
sin
{
1
2
arcsin
[
(
4
−
15
)
2
(
5
−
2
)
3
]
}
{\displaystyle \lambda ^{*}(45)=\sin \left\{{\frac {1}{2}}\arcsin[(4-{\sqrt {15}})^{2}({\sqrt {5}}-2)^{3}]\right\}}
λ
∗
(
49
)
=
1
4
(
8
+
3
7
)
(
5
−
7
−
28
4
)
(
14
−
2
−
28
8
5
−
7
)
{\displaystyle \lambda ^{*}(49)={\frac {1}{4}}(8+3{\sqrt {7}})(5-{\sqrt {7}}-{\sqrt[{4}]{28}})\left({\sqrt {14}}-{\sqrt {2}}-{\sqrt[{8}]{28}}{\sqrt {5-{\sqrt {7}}}}\right)}
λ
∗
(
57
)
=
sin
{
1
2
arcsin
[
(
170
−
39
19
)
(
2
−
3
)
3
]
}
{\displaystyle \lambda ^{*}(57)=\sin \left\{{\frac {1}{2}}\arcsin[(170-39{\sqrt {19}})(2-{\sqrt {3}})^{3}]\right\}}
λ
∗
(
73
)
=
sin
{
1
2
arcsin
[
1
64
(
45
+
5
73
−
3
50
73
+
426
)
3
]
}
{\displaystyle \lambda ^{*}(73)=\sin \left\{{\frac {1}{2}}\arcsin \left[{\frac {1}{64}}\left(45+5{\sqrt {73}}-3{\sqrt {50{\sqrt {73}}+426}}\right)^{3}\right]\right\}}
Lambda-star-values of integer numbers of 4n-2-type:
λ
∗
(
2
)
=
2
−
1
{\displaystyle \lambda ^{*}(2)={\sqrt {2}}-1}
λ
∗
(
6
)
=
(
2
−
3
)
(
3
−
2
)
{\displaystyle \lambda ^{*}(6)=(2-{\sqrt {3}})({\sqrt {3}}-{\sqrt {2}})}
λ
∗
(
10
)
=
(
10
−
3
)
(
2
−
1
)
2
{\displaystyle \lambda ^{*}(10)=({\sqrt {10}}-3)({\sqrt {2}}-1)^{2}}
λ
∗
(
14
)
=
tan
{
1
2
arctan
[
1
8
(
2
2
+
1
−
4
2
+
5
)
3
]
}
{\displaystyle \lambda ^{*}(14)=\tan \left\{{\frac {1}{2}}\arctan \left[{\frac {1}{8}}\left(2{\sqrt {2}}+1-{\sqrt {4{\sqrt {2}}+5}}\right)^{3}\right]\right\}}
λ
∗
(
18
)
=
(
2
−
1
)
3
(
2
−
3
)
2
{\displaystyle \lambda ^{*}(18)=({\sqrt {2}}-1)^{3}(2-{\sqrt {3}})^{2}}
λ
∗
(
22
)
=
(
10
−
3
11
)
(
3
11
−
7
2
)
{\displaystyle \lambda ^{*}(22)=(10-3{\sqrt {11}})(3{\sqrt {11}}-7{\sqrt {2}})}
λ
∗
(
30
)
=
tan
{
1
2
arctan
[
(
10
−
3
)
2
(
5
−
2
)
2
]
}
{\displaystyle \lambda ^{*}(30)=\tan \left\{{\frac {1}{2}}\arctan[({\sqrt {10}}-3)^{2}({\sqrt {5}}-2)^{2}]\right\}}
λ
∗
(
34
)
=
tan
{
1
4
arcsin
[
1
9
(
17
−
4
)
2
]
}
{\displaystyle \lambda ^{*}(34)=\tan \left\{{\frac {1}{4}}\arcsin \left[{\frac {1}{9}}({\sqrt {17}}-4)^{2}\right]\right\}}
λ
∗
(
42
)
=
tan
{
1
2
arctan
[
(
2
7
−
3
3
)
2
(
2
2
−
7
)
2
]
}
{\displaystyle \lambda ^{*}(42)=\tan \left\{{\frac {1}{2}}\arctan[(2{\sqrt {7}}-3{\sqrt {3}})^{2}(2{\sqrt {2}}-{\sqrt {7}})^{2}]\right\}}
λ
∗
(
46
)
=
tan
{
1
2
arctan
[
1
64
(
3
+
2
−
6
2
+
7
)
6
]
}
{\displaystyle \lambda ^{*}(46)=\tan \left\{{\frac {1}{2}}\arctan \left[{\frac {1}{64}}\left(3+{\sqrt {2}}-{\sqrt {6{\sqrt {2}}+7}}\right)^{6}\right]\right\}}
λ
∗
(
58
)
=
(
13
58
−
99
)
(
2
−
1
)
6
{\displaystyle \lambda ^{*}(58)=(13{\sqrt {58}}-99)({\sqrt {2}}-1)^{6}}
λ
∗
(
70
)
=
tan
{
1
2
arctan
[
(
5
−
2
)
4
(
2
−
1
)
6
]
}
{\displaystyle \lambda ^{*}(70)=\tan \left\{{\frac {1}{2}}\arctan[({\sqrt {5}}-2)^{4}({\sqrt {2}}-1)^{6}]\right\}}
λ
∗
(
78
)
=
tan
{
1
2
arctan
[
(
5
13
−
18
)
2
(
26
−
5
)
2
]
}
{\displaystyle \lambda ^{*}(78)=\tan \left\{{\frac {1}{2}}\arctan[(5{\sqrt {13}}-18)^{2}({\sqrt {26}}-5)^{2}]\right\}}
λ
∗
(
82
)
=
tan
{
1
4
arcsin
[
1
4761
(
8
41
−
51
)
2
]
}
{\displaystyle \lambda ^{*}(82)=\tan \left\{{\frac {1}{4}}\arcsin \left[{\frac {1}{4761}}(8{\sqrt {41}}-51)^{2}\right]\right\}}
Lambda-star-values of integer numbers of 4n-1-type:
λ
∗
(
3
)
=
1
2
2
(
3
−
1
)
{\displaystyle \lambda ^{*}(3)={\frac {1}{2{\sqrt {2}}}}({\sqrt {3}}-1)}
λ
∗
(
7
)
=
1
4
2
(
3
−
7
)
{\displaystyle \lambda ^{*}(7)={\frac {1}{4{\sqrt {2}}}}(3-{\sqrt {7}})}
λ
∗
(
11
)
=
1
8
2
(
11
+
3
)
(
1
3
6
3
+
2
11
3
−
1
3
6
3
−
2
11
3
+
1
3
11
−
1
)
4
{\displaystyle \lambda ^{*}(11)={\frac {1}{8{\sqrt {2}}}}({\sqrt {11}}+3)\left({\frac {1}{3}}{\sqrt[{3}]{6{\sqrt {3}}+2{\sqrt {11}}}}-{\frac {1}{3}}{\sqrt[{3}]{6{\sqrt {3}}-2{\sqrt {11}}}}+{\frac {1}{3}}{\sqrt {11}}-1\right)^{4}}
λ
∗
(
15
)
=
1
8
2
(
3
−
5
)
(
5
−
3
)
(
2
−
3
)
{\displaystyle \lambda ^{*}(15)={\frac {1}{8{\sqrt {2}}}}(3-{\sqrt {5}})({\sqrt {5}}-{\sqrt {3}})(2-{\sqrt {3}})}
λ
∗
(
19
)
=
1
8
2
(
3
19
+
13
)
[
1
6
(
19
−
2
+
3
)
3
3
−
19
3
−
1
6
(
19
−
2
−
3
)
3
3
+
19
3
−
1
3
(
5
−
19
)
]
4
{\displaystyle \lambda ^{*}(19)={\frac {1}{8{\sqrt {2}}}}(3{\sqrt {19}}+13)\left[{\frac {1}{6}}({\sqrt {19}}-2+{\sqrt {3}}){\sqrt[{3}]{3{\sqrt {3}}-{\sqrt {19}}}}-{\frac {1}{6}}({\sqrt {19}}-2-{\sqrt {3}}){\sqrt[{3}]{3{\sqrt {3}}+{\sqrt {19}}}}-{\frac {1}{3}}(5-{\sqrt {19}})\right]^{4}}
λ
∗
(
23
)
=
1
16
2
(
5
+
23
)
[
1
6
(
3
+
1
)
100
−
12
69
3
−
1
6
(
3
−
1
)
100
+
12
69
3
+
2
3
]
4
{\displaystyle \lambda ^{*}(23)={\frac {1}{16{\sqrt {2}}}}(5+{\sqrt {23}})\left[{\frac {1}{6}}({\sqrt {3}}+1){\sqrt[{3}]{100-12{\sqrt {69}}}}-{\frac {1}{6}}({\sqrt {3}}-1){\sqrt[{3}]{100+12{\sqrt {69}}}}+{\frac {2}{3}}\right]^{4}}
λ
∗
(
27
)
=
1
16
2
(
3
−
1
)
3
[
1
3
3
(
4
3
−
2
3
+
1
)
−
2
3
+
1
]
4
{\displaystyle \lambda ^{*}(27)={\frac {1}{16{\sqrt {2}}}}({\sqrt {3}}-1)^{3}\left[{\frac {1}{3}}{\sqrt {3}}({\sqrt[{3}]{4}}-{\sqrt[{3}]{2}}+1)-{\sqrt[{3}]{2}}+1\right]^{4}}
λ
∗
(
39
)
=
sin
{
1
2
arcsin
[
1
16
(
6
−
13
−
3
6
13
−
21
)
]
}
{\displaystyle \lambda ^{*}(39)=\sin \left\{{\frac {1}{2}}\arcsin \left[{\frac {1}{16}}\left(6-{\sqrt {13}}-3{\sqrt {6{\sqrt {13}}-21}}\right)\right]\right\}}
λ
∗
(
55
)
=
sin
{
1
2
arcsin
[
1
512
(
3
5
−
3
−
6
5
−
2
)
3
]
}
{\displaystyle \lambda ^{*}(55)=\sin \left\{{\frac {1}{2}}\arcsin \left[{\frac {1}{512}}\left(3{\sqrt {5}}-3-{\sqrt {6{\sqrt {5}}-2}}\right)^{3}\right]\right\}}
Lambda-star-values of integer numbers of 4n-type:
λ
∗
(
4
)
=
(
2
−
1
)
2
{\displaystyle \lambda ^{*}(4)=({\sqrt {2}}-1)^{2}}
λ
∗
(
8
)
=
(
2
+
1
−
2
2
+
2
)
2
{\displaystyle \lambda ^{*}(8)=\left({\sqrt {2}}+1-{\sqrt {2{\sqrt {2}}+2}}\right)^{2}}
λ
∗
(
12
)
=
(
3
−
2
)
2
(
2
−
1
)
2
{\displaystyle \lambda ^{*}(12)=({\sqrt {3}}-{\sqrt {2}})^{2}({\sqrt {2}}-1)^{2}}
λ
∗
(
16
)
=
(
2
+
1
)
2
(
2
4
−
1
)
4
{\displaystyle \lambda ^{*}(16)=({\sqrt {2}}+1)^{2}({\sqrt[{4}]{2}}-1)^{4}}
λ
∗
(
20
)
=
tan
[
1
4
arcsin
(
5
−
2
)
]
2
{\displaystyle \lambda ^{*}(20)=\tan \left[{\frac {1}{4}}\arcsin({\sqrt {5}}-2)\right]^{2}}
λ
∗
(
24
)
=
tan
{
1
2
arcsin
[
(
2
−
3
)
(
3
−
2
)
]
}
2
{\displaystyle \lambda ^{*}(24)=\tan \left\{{\frac {1}{2}}\arcsin[(2-{\sqrt {3}})({\sqrt {3}}-{\sqrt {2}})]\right\}^{2}}
λ
∗
(
28
)
=
(
2
2
−
7
)
2
(
2
−
1
)
4
{\displaystyle \lambda ^{*}(28)=(2{\sqrt {2}}-{\sqrt {7}})^{2}({\sqrt {2}}-1)^{4}}
λ
∗
(
32
)
=
tan
{
1
2
arcsin
[
(
2
+
1
−
2
2
+
2
)
2
]
}
2
{\displaystyle \lambda ^{*}(32)=\tan \left\{{\frac {1}{2}}\arcsin \left[\left({\sqrt {2}}+1-{\sqrt {2{\sqrt {2}}+2}}\right)^{2}\right]\right\}^{2}}
Lambda-star-values of rational fractions:
λ
∗
(
1
2
)
=
2
2
−
2
{\displaystyle \lambda ^{*}\left({\frac {1}{2}}\right)={\sqrt {2{\sqrt {2}}-2}}}
λ
∗
(
1
3
)
=
1
2
2
(
3
+
1
)
{\displaystyle \lambda ^{*}\left({\frac {1}{3}}\right)={\frac {1}{2{\sqrt {2}}}}({\sqrt {3}}+1)}
λ
∗
(
2
3
)
=
(
2
−
3
)
(
3
+
2
)
{\displaystyle \lambda ^{*}\left({\frac {2}{3}}\right)=(2-{\sqrt {3}})({\sqrt {3}}+{\sqrt {2}})}
λ
∗
(
1
4
)
=
2
2
4
(
2
−
1
)
{\displaystyle \lambda ^{*}\left({\frac {1}{4}}\right)=2{\sqrt[{4}]{2}}({\sqrt {2}}-1)}
λ
∗
(
3
4
)
=
8
4
(
3
−
2
)
(
2
+
1
)
(
3
−
1
)
3
{\displaystyle \lambda ^{*}\left({\frac {3}{4}}\right)={\sqrt[{4}]{8}}({\sqrt {3}}-{\sqrt {2}})({\sqrt {2}}+1){\sqrt {({\sqrt {3}}-1)^{3}}}}
λ
∗
(
1
5
)
=
1
2
2
(
2
5
−
2
+
5
−
1
)
{\displaystyle \lambda ^{*}\left({\frac {1}{5}}\right)={\frac {1}{2{\sqrt {2}}}}\left({\sqrt {2{\sqrt {5}}-2}}+{\sqrt {5}}-1\right)}
λ
∗
(
2
5
)
=
(
10
−
3
)
(
2
+
1
)
2
{\displaystyle \lambda ^{*}\left({\frac {2}{5}}\right)=({\sqrt {10}}-3)({\sqrt {2}}+1)^{2}}
λ
∗
(
3
5
)
=
1
8
2
(
3
+
5
)
(
5
−
3
)
(
2
+
3
)
{\displaystyle \lambda ^{*}\left({\frac {3}{5}}\right)={\frac {1}{8{\sqrt {2}}}}(3+{\sqrt {5}})({\sqrt {5}}-{\sqrt {3}})(2+{\sqrt {3}})}
λ
∗
(
4
5
)
=
tan
[
π
4
−
1
4
arcsin
(
5
−
2
)
]
2
{\displaystyle \lambda ^{*}\left({\frac {4}{5}}\right)=\tan \left[{\frac {\pi }{4}}-{\frac {1}{4}}\arcsin({\sqrt {5}}-2)\right]^{2}}
Other appearances
Little Picard theorem
The lambda function is used in the original proof of the Little Picard theorem , that an entire non-constant function on the complex plane cannot omit more than one value. This theorem was proved by Picard in 1879.[ 14] Suppose if possible that f is entire and does not take the values 0 and 1. Since λ is holomorphic, it has a local holomorphic inverse ω defined away from 0,1,∞. Consider the function z → ω(f (z )). By the Monodromy theorem this is holomorphic and maps the complex plane C to the upper half plane. From this it is easy to construct a holomorphic function from C to the unit disc, which by Liouville's theorem must be constant.[ 15]
Moonshine
The function
τ
↦
16
λ
(
2
τ
)
−
8
{\displaystyle \tau \mapsto {\frac {16}{\lambda (2\tau )}}-8}
is the normalized Hauptmodul for the group
Γ
0
(
4
)
{\displaystyle \Gamma _{0}(4)}
, and its q -expansion
q
−
1
+
20
q
−
62
q
3
+
…
{\displaystyle q^{-1}+20q-62q^{3}+\dots }
, OEIS : A007248 where
q
=
e
2
π
i
τ
{\displaystyle q=e^{2\pi i\tau }}
, is the graded character of any element in conjugacy class 4C of the monster group acting on the monster vertex algebra .
^ Chandrasekharan (1985) p.115
^ Chandrasekharan (1985) p.109
^ Chandrasekharan (1985) p.110
^ a b c d Chandrasekharan (1985) p.108
^ Chandrasekharan (1985) p.63
^ Chandrasekharan (1985) p.117
^ Rankin (1977) pp.226–228
^ Borwein, Jonathan M.; Borwein, Peter B. (1987). Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity (First ed.). Wiley-Interscience. ISBN 0-471-83138-7 . p. 103–109, 134
^ a b Jacobi, Carl Gustav Jacob (1829). Fundamenta nova theoriae functionum ellipticarum . p. 42
^ Borwein, Jonathan M.; Borwein, Peter B. (1987). Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity (First ed.). Wiley-Interscience. ISBN 0-471-83138-7 . p. 152
^ Chowla, S.; Selberg, A. "On Epstein's Zeta Function (I)" . Semantic Scholar . p. 373.
^ Chowla, S.; Selberg, A. "On Epstein's Zeta-Function" . EuDML . p. 86–110.
^ Zhang, Liang-Cheng "Ramanujan's class invariants, Kronecker's limit formula and modular equations (III)"
^ Chandrasekharan (1985) p.121
^ Chandrasekharan (1985) p.118
References
Notes
^
sl
a
ϖ
{\displaystyle \operatorname {sl} a\varpi }
is algebraic for every
a
∈
Q
.
{\displaystyle a\in \mathbb {Q} .}
Other
Abramowitz, Milton ; Stegun, Irene A. , eds. (1972), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , New York: Dover Publications , ISBN 978-0-486-61272-0 , Zbl 0543.33001
Chandrasekharan, K. (1985), Elliptic Functions , Grundlehren der mathematischen Wissenschaften, vol. 281, Springer-Verlag , pp. 108– 121, ISBN 3-540-15295-4 , Zbl 0575.33001
Conway, John Horton ; Norton, Simon (1979), "Monstrous moonshine", Bulletin of the London Mathematical Society , 11 (3): 308– 339, doi :10.1112/blms/11.3.308 , MR 0554399 , Zbl 0424.20010
Rankin, Robert A. (1977), Modular Forms and Functions , Cambridge University Press , ISBN 0-521-21212-X , Zbl 0376.10020
Reinhardt, W. P.; Walker, P. L. (2010), "Elliptic Modular Function" , in Olver, Frank W. J. ; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions , Cambridge University Press, ISBN 978-0-521-19225-5 , MR 2723248 .
Borwein, J. M. and Borwein, P. B. Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, pp. 139 and 298, 1987.
Conway, J. H. and Norton, S. P. "Monstrous Moonshine." Bull. London Math. Soc. 11, 308-339, 1979.
Selberg, A. and Chowla, S. "On Epstein's Zeta-Function." J. reine angew. Math. 227, 86-110, 1967.
External links