SmartPLS
![]() | |
Original author(s) | Christian M. Ringle, Sven Wende, Jan-Michael Becker |
---|---|
Developer(s) | SmartPLS GmbH |
Initial release | 2005 |
Stable release | Smart PLS 3.3.3
/ January 11, 2021 |
Operating system | Windows and Mac |
Platform | Java |
Available in | English (default language), Arabic, Chinese, French, German, Indonesian, Italian, Japanese, Korean, Malay, Persian, Polish, Portuguese, Romanian, Spanish, Urdu |
Type | Statistical analysis, multivariate analysis, structural equation modeling, partial least squares path modeling |
License | SmartPLS 2: Freeware, SmartPLS 3: Proprietary software |
Website | www |
SmartPLS is a software with graphical user interface for variance-based structural equation modeling (SEM) using the partial least squares (PLS) path modeling method.[1][2][3][4] [5] Users can estimate models with their data by using basic PLS-SEM, weighted PLS-SEM (WPLS), consistent PLS-SEM (PLSc-SEM), and sumscores regression algorithms.[6][7] The software computes standard results assessment criteria (e.g., for the reflective and formative measurement models and the structural model, including the HTMT criterion, bootstrap based significance testing, PLSpredict, and goodness of fit)[8] and it supports additional statistical analyses (e.g., confirmatory tetrad analysis, higher-order models, importance-performance map analysis, latent class segmentation, mediation, moderation, measurement invariance assessment, multigroup analysis).[9][10][11] Since SmartPLS is programmed in Java, it can be executed and run on different computer operating systems such as Windows and Mac.[12]
See also
- Estimation theory
- Partial least squares path modeling
- Partial least squares regression
- Principal component analysis
- Regression analysis
- Regression validation
- WarpPLS
References
- ^ Wong, K. K. K. (2013). Partial least squares structural equation modeling (PLS-SEM) techniques using SmartPLS. Marketing Bulletin, 24(1), pp. 1-32, p. 1, p. 15, and p. 30.
- ^ Hair, J. F., Hult, G. T. M., Ringle, C., & Sarstedt, M. (2022). A primer on partial least squares structural equation modeling (PLS-SEM) (3rd ed.), Thousand Oaks, CA: Sage Publications.
- ^ Hair Jr, J. F., Sarstedt, M., Ringle, C. M., & Gudergan, S. P. (2018). Advanced issues in partial least squares structural equation modeling (PLS-SEM), Thousand Oaks, CA: Sage Publications.
- ^ Wong, Ken Kwong-Kay (2019-02-22). Mastering Partial Least Squares Structural Equation Modeling (Pls-Sem) with Smartpls in 38 Hours. iUniverse. ISBN 9781532066481.
- ^ Mumtaz Ali Memona, T. Ramayah, Jun-Hwa Cheah, Hiram Ting, Francis Chuah and Tat Huei Cham (2021). "PLS-SEM STATISTICAL PROGRAMS: A REVIEW" (PDF). Journal of Applied Structural Equation Modeling. 5(i): i–xiv.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Lohmöller, J.-B. (1989). Latent variable path modeling with partial least squares. Physica: Heidelberg, p. 29.
- ^ Wold, H.. (1982). Soft modeling: The basic design and some extensions, in: K. G. Jöreskog and H. Wold (eds.), Systems under indirect observations: Part II, North-Holland: Amsterdam, pp. 1-54, pp. 2-3.
- ^ Ramayah, T., Cheah, J., Chuah, F., Ting, H., and Memon, M. A. (2018). Partial least squares structural equation modeling (PLS-SEM) using SmartPLS 3.0: An updated and practical guide to statistical analysis (2nd ed.), Singapore et al.: Pearson.
- ^ Garson, G. D. (2016). Partial least squares regression and structural equation models, Statistical Associates: Asheboro, pp. 122-188.
- ^ Sarstedt, Marko; Cheah, Jun-Hwa (2019-06-27). "Partial least squares structural equation modeling using SmartPLS: A software review" (PDF). Journal of Marketing Analytics. 7 (3): 196–202. doi:10.1057/s41270-019-00058-3. ISSN 2050-3318.
- ^ Hair, Joseph F.; Risher, Jeffrey J.; Sarstedt, Marko; Ringle, Christian M. (2019). "When to use and how to report the results of PLS-SEM". European Business Review. 31 (1): 2–24. doi:10.1108/EBR-11-2018-0203. ISSN 0955-534X.
- ^ Temme, D., Kreis, H., and Hildebrandt, L. (2010). A comparison of current PLS path modeling software: Features, ease-of-use, and performance, in: V. Esposito Vinzi, W. W. Chin, J. Henseler, and H. Wang (eds.), Handbook of partial least squares: Concepts, methods and applications, Springer: Berlin-Heidelberg, pp. 737-756, p.745.