Buchholz's psi-functions are a hierarchy of single-argument ordinal functions
ψ
ν
(
α
)
{\displaystyle \psi _{\nu }(\alpha )}
introduced by German mathematician Wilfried Buchholz in 1986. These functions are a simplified version of the
θ
{\displaystyle \theta }
-functions, but nevertheless have the same strength[clarification needed ] as those. Later on this approach was extended by Jaiger[ note 1] and Schütte .[ 1]
Definition
Buchholz defined his functions as follows:
C
ν
0
(
α
)
=
Ω
ν
,
C
ν
n
+
1
(
α
)
=
C
ν
n
(
α
)
∪
{
γ
∣
P
(
γ
)
⊆
C
ν
n
(
α
)
}
∪
{
ψ
μ
(
ξ
)
∣
ξ
∈
α
∩
C
ν
n
(
α
)
∧
ξ
∈
C
μ
(
ξ
)
∧
μ
≤
ω
}
,
C
ν
(
α
)
=
⋃
n
<
ω
C
ν
n
(
α
)
,
ψ
ν
(
α
)
=
min
{
γ
∣
γ
∉
C
ν
(
α
)
}
,
{\displaystyle {\begin{aligned}C_{\nu }^{0}(\alpha )={}&\Omega _{\nu },\\[6pt]C_{\nu }^{n+1}(\alpha )={}&C_{\nu }^{n}(\alpha )\cup \{\gamma \mid P(\gamma )\subseteq C_{\nu }^{n}(\alpha )\}\\&{}\cup \{\psi _{\mu }(\xi )\mid \xi \in \alpha \cap C_{\nu }^{n}(\alpha )\wedge \xi \in C_{\mu }(\xi )\wedge \mu \leq \omega \},\\[6pt]C_{\nu }(\alpha )={}&\bigcup _{n<\omega }C_{\nu }^{n}(\alpha ),\\\psi _{\nu }(\alpha )={}&\min\{\gamma \mid \gamma \not \in C_{\nu }(\alpha )\},\end{aligned}}}
where
Ω
ν
=
{
1
if
ν
=
0
ℵ
ν
if
ν
>
0
{\displaystyle \Omega _{\nu }={\begin{cases}1{\text{ if }}\nu =0\\\aleph _{\nu }{\text{ if }}\nu >0\end{cases}}}
and
P
(
γ
)
=
{
γ
1
,
…
,
γ
k
}
{\displaystyle P(\gamma )=\{\gamma _{1},\ldots ,\gamma _{k}\}}
is the set of additive principal numbers in form
ω
ξ
{\displaystyle \omega ^{\xi }}
,
P
=
{
α
∈
On
:
0
<
α
∧
∀
ξ
,
η
<
α
(
ξ
+
η
<
α
)
}
=
{
ω
ξ
:
ξ
∈
On
}
,
{\displaystyle P=\{\alpha \in \operatorname {On} :0<\alpha \wedge \forall \xi ,\eta <\alpha (\xi +\eta <\alpha )\}=\{\omega ^{\xi }:\xi \in \operatorname {On} \},}
the sum of which gives this ordinal
γ
{\displaystyle \gamma }
:
γ
=
α
1
+
α
2
+
⋯
+
α
k
{\displaystyle \gamma =\alpha _{1}+\alpha _{2}+\cdots +\alpha _{k}}
where
α
1
≥
α
2
≥
⋯
≥
α
k
{\displaystyle \alpha _{1}\geq \alpha _{2}\geq \cdots \geq \alpha _{k}}
and
α
1
,
α
2
,
…
,
α
k
∈
P
(
γ
)
.
{\displaystyle \alpha _{1},\alpha _{2},\ldots ,\alpha _{k}\in P(\gamma ).}
Note: Greek letters always denotes ordinals.
The limit of this notation is the Takeuti–Feferman–Buchholz ordinal .
Properties
Buchholz showed following properties of this functions:
ψ
ν
(
0
)
=
Ω
ν
,
{\displaystyle \psi _{\nu }(0)=\Omega _{\nu },}
ψ
ν
(
α
)
∈
P
,
{\displaystyle \psi _{\nu }(\alpha )\in P,}
ψ
ν
(
α
+
1
)
=
min
{
γ
∈
P
:
ψ
ν
(
α
)
<
γ
}
if
α
∈
C
ν
(
α
)
,
{\displaystyle \psi _{\nu }(\alpha +1)=\min\{\gamma \in P:\psi _{\nu }(\alpha )<\gamma \}{\text{ if }}\alpha \in C_{\nu }(\alpha ),}
Ω
ν
≤
ψ
ν
(
α
)
<
Ω
ν
+
1
{\displaystyle \Omega _{\nu }\leq \psi _{\nu }(\alpha )<\Omega _{\nu +1}}
ψ
0
(
α
)
=
ω
α
if
α
<
ε
0
,
{\displaystyle \psi _{0}(\alpha )=\omega ^{\alpha }{\text{ if }}\alpha <\varepsilon _{0},}
ψ
ν
(
α
)
=
ω
Ω
ν
+
α
if
α
<
ε
Ω
ν
+
1
and
ν
≠
0
,
{\displaystyle \psi _{\nu }(\alpha )=\omega ^{\Omega _{\nu }+\alpha }{\text{ if }}\alpha <\varepsilon _{\Omega _{\nu }+1}{\text{ and }}\nu \neq 0,}
θ
(
ε
Ω
ν
+
1
,
0
)
=
ψ
(
ε
Ω
ν
+
1
)
for
0
<
ν
≤
ω
.
{\displaystyle \theta (\varepsilon _{\Omega _{\nu }+1},0)=\psi (\varepsilon _{\Omega _{\nu }+1}){\text{ for }}0<\nu \leq \omega .}
The normal form for 0 is 0. If
α
{\displaystyle \alpha }
is a nonzero ordinal number
α
<
Ω
ω
{\displaystyle \alpha <\Omega _{\omega }}
then the normal form for
α
{\displaystyle \alpha }
is
α
=
ψ
ν
1
(
β
1
)
+
ψ
ν
2
(
β
2
)
+
⋯
+
ψ
ν
k
(
β
k
)
{\displaystyle \alpha =\psi _{\nu _{1}}(\beta _{1})+\psi _{\nu _{2}}(\beta _{2})+\cdots +\psi _{\nu _{k}}(\beta _{k})}
where
ν
i
∈
N
0
,
k
∈
N
>
0
,
β
i
∈
C
ν
i
(
β
i
)
{\displaystyle \nu _{i}\in \mathbb {N} _{0},k\in \mathbb {N} _{>0},\beta _{i}\in C_{\nu _{i}}(\beta _{i})}
and
ψ
ν
1
(
β
1
)
≥
ψ
ν
2
(
β
2
)
≥
⋯
≥
ψ
ν
k
(
β
k
)
{\displaystyle \psi _{\nu _{1}}(\beta _{1})\geq \psi _{\nu _{2}}(\beta _{2})\geq \cdots \geq \psi _{\nu _{k}}(\beta _{k})}
and each
β
i
{\displaystyle \beta _{i}}
is also written in normal form.
Fundamental sequences
The fundamental sequence for an ordinal number
α
{\displaystyle \alpha }
with cofinality
cof
(
α
)
=
β
{\displaystyle \operatorname {cof} (\alpha )=\beta }
is a strictly increasing sequence
(
α
[
η
]
)
η
<
β
{\displaystyle (\alpha [\eta ])_{\eta <\beta }}
with length
β
{\displaystyle \beta }
and with limit
α
{\displaystyle \alpha }
, where
α
[
η
]
{\displaystyle \alpha [\eta ]}
is the
η
{\displaystyle \eta }
-th element of this sequence. If
α
{\displaystyle \alpha }
is a successor ordinal then
cof
(
α
)
=
1
{\displaystyle \operatorname {cof} (\alpha )=1}
and the fundamental sequence has only one element
α
[
0
]
=
α
−
1
{\displaystyle \alpha [0]=\alpha -1}
. If
α
{\displaystyle \alpha }
is a limit ordinal then
cof
(
α
)
∈
{
ω
}
∪
{
Ω
μ
+
1
∣
μ
≥
0
}
{\displaystyle \operatorname {cof} (\alpha )\in \{\omega \}\cup \{\Omega _{\mu +1}\mid \mu \geq 0\}}
.
For nonzero ordinals
α
<
Ω
ω
{\displaystyle \alpha <\Omega _{\omega }}
, written in normal form, fundamental sequences are defined as follows:
If
α
=
ψ
ν
1
(
β
1
)
+
ψ
ν
2
(
β
2
)
+
⋯
+
ψ
ν
k
(
β
k
)
{\displaystyle \alpha =\psi _{\nu _{1}}(\beta _{1})+\psi _{\nu _{2}}(\beta _{2})+\cdots +\psi _{\nu _{k}}(\beta _{k})}
where
k
≥
2
{\displaystyle k\geq 2}
then
cof
(
α
)
=
cof
(
ψ
ν
k
(
β
k
)
)
{\displaystyle \operatorname {cof} (\alpha )=\operatorname {cof} (\psi _{\nu _{k}}(\beta _{k}))}
and
α
[
η
]
=
ψ
ν
1
(
β
1
)
+
⋯
+
ψ
ν
k
−
1
(
β
k
−
1
)
+
(
ψ
ν
k
(
β
k
)
[
η
]
)
{\displaystyle \alpha [\eta ]=\psi _{\nu _{1}}(\beta _{1})+\cdots +\psi _{\nu _{k-1}}(\beta _{k-1})+(\psi _{\nu _{k}}(\beta _{k})[\eta ])}
,
If
α
=
ψ
0
(
0
)
=
1
{\displaystyle \alpha =\psi _{0}(0)=1}
, then
cof
(
α
)
=
1
{\displaystyle \operatorname {cof} (\alpha )=1}
and
α
[
0
]
=
0
{\displaystyle \alpha [0]=0}
,
If
α
=
ψ
ν
+
1
(
0
)
{\displaystyle \alpha =\psi _{\nu +1}(0)}
, then
cof
(
α
)
=
Ω
ν
+
1
{\displaystyle \operatorname {cof} (\alpha )=\Omega _{\nu +1}}
and
α
[
η
]
=
Ω
ν
+
1
[
η
]
=
η
{\displaystyle \alpha [\eta ]=\Omega _{\nu +1}[\eta ]=\eta }
,
If
α
=
ψ
ν
(
β
+
1
)
{\displaystyle \alpha =\psi _{\nu }(\beta +1)}
then
cof
(
α
)
=
ω
{\displaystyle \operatorname {cof} (\alpha )=\omega }
and
α
[
η
]
=
ψ
ν
(
β
)
⋅
η
{\displaystyle \alpha [\eta ]=\psi _{\nu }(\beta )\cdot \eta }
(and note:
ψ
ν
(
0
)
=
Ω
ν
{\displaystyle \psi _{\nu }(0)=\Omega _{\nu }}
),
If
α
=
ψ
ν
(
β
)
{\displaystyle \alpha =\psi _{\nu }(\beta )}
and
cof
(
β
)
∈
{
ω
}
∪
{
Ω
μ
+
1
∣
μ
<
ν
}
{\displaystyle \operatorname {cof} (\beta )\in \{\omega \}\cup \{\Omega _{\mu +1}\mid \mu <\nu \}}
then
cof
(
α
)
=
cof
(
β
)
{\displaystyle \operatorname {cof} (\alpha )=\operatorname {cof} (\beta )}
and
α
[
η
]
=
ψ
ν
(
β
[
η
]
)
{\displaystyle \alpha [\eta ]=\psi _{\nu }(\beta [\eta ])}
,
If
α
=
ψ
ν
(
β
)
{\displaystyle \alpha =\psi _{\nu }(\beta )}
and
cof
(
β
)
∈
{
Ω
μ
+
1
∣
μ
≥
ν
}
{\displaystyle \operatorname {cof} (\beta )\in \{\Omega _{\mu +1}\mid \mu \geq \nu \}}
then
cof
(
α
)
=
ω
{\displaystyle \operatorname {cof} (\alpha )=\omega }
and
α
[
η
]
=
ψ
ν
(
β
[
γ
[
η
]
]
)
{\displaystyle \alpha [\eta ]=\psi _{\nu }(\beta [\gamma [\eta ]])}
where
{
γ
[
0
]
=
Ω
μ
γ
[
η
+
1
]
=
ψ
μ
(
β
[
γ
[
η
]
]
)
{\displaystyle \left\{{\begin{array}{lcr}\gamma [0]=\Omega _{\mu }\\\gamma [\eta +1]=\psi _{\mu }(\beta [\gamma [\eta ]])\\\end{array}}\right.}
.
Explanation
Buchholz is working in Zermelo–Fraenkel set theory, that means every ordinal
α
{\displaystyle \alpha }
is equal to set
{
β
∣
β
<
α
}
{\displaystyle \{\beta \mid \beta <\alpha \}}
. Then condition
C
ν
0
(
α
)
=
Ω
ν
{\displaystyle C_{\nu }^{0}(\alpha )=\Omega _{\nu }}
means that set
C
ν
0
(
α
)
{\displaystyle C_{\nu }^{0}(\alpha )}
includes all ordinals less than
Ω
ν
{\displaystyle \Omega _{\nu }}
in other words
C
ν
0
(
α
)
=
{
β
∣
β
<
Ω
ν
}
{\displaystyle C_{\nu }^{0}(\alpha )=\{\beta \mid \beta <\Omega _{\nu }\}}
.
The condition
C
ν
n
+
1
(
α
)
=
C
ν
n
(
α
)
∪
{
γ
∣
P
(
γ
)
⊆
C
ν
n
(
α
)
}
∪
{
ψ
μ
(
ξ
)
∣
ξ
∈
α
∩
C
ν
n
(
α
)
∧
μ
≤
ω
}
{\displaystyle C_{\nu }^{n+1}(\alpha )=C_{\nu }^{n}(\alpha )\cup \{\gamma \mid P(\gamma )\subseteq C_{\nu }^{n}(\alpha )\}\cup \{\psi _{\mu }(\xi )\mid \xi \in \alpha \cap C_{\nu }^{n}(\alpha )\wedge \mu \leq \omega \}}
means that set
C
ν
n
+
1
(
α
)
{\displaystyle C_{\nu }^{n+1}(\alpha )}
includes:
all ordinals from previous set
C
ν
n
(
α
)
{\displaystyle C_{\nu }^{n}(\alpha )}
,
all ordinals that can be obtained by summation the additively principal ordinals from previous set
C
ν
n
(
α
)
{\displaystyle C_{\nu }^{n}(\alpha )}
,
all ordinals that can be obtained by applying ordinals less than
α
{\displaystyle \alpha }
from the previous set
C
ν
n
(
α
)
{\displaystyle C_{\nu }^{n}(\alpha )}
as arguments of functions
ψ
μ
{\displaystyle \psi _{\mu }}
, where
μ
≤
ω
{\displaystyle \mu \leq \omega }
.
That is why we can rewrite this condition as:
C
ν
n
+
1
(
α
)
=
{
β
+
γ
,
ψ
μ
(
η
)
∣
β
,
γ
,
η
∈
C
ν
n
(
α
)
∧
η
<
α
∧
μ
≤
ω
}
.
{\displaystyle C_{\nu }^{n+1}(\alpha )=\{\beta +\gamma ,\psi _{\mu }(\eta )\mid \beta ,\gamma ,\eta \in C_{\nu }^{n}(\alpha )\wedge \eta <\alpha \wedge \mu \leq \omega \}.}
Thus union of all sets
C
ν
n
(
α
)
{\displaystyle C_{\nu }^{n}(\alpha )}
with
n
<
ω
{\displaystyle n<\omega }
i.e.
C
ν
(
α
)
=
⋃
n
<
ω
C
ν
n
(
α
)
{\displaystyle C_{\nu }(\alpha )=\bigcup _{n<\omega }C_{\nu }^{n}(\alpha )}
denotes the set of all ordinals which can be generated from ordinals
<
ℵ
ν
{\displaystyle <\aleph _{\nu }}
by the functions + (addition) and
ψ
μ
(
η
)
{\displaystyle \psi _{\mu }(\eta )}
, where
μ
≤
ω
{\displaystyle \mu \leq \omega }
and
η
<
α
{\displaystyle \eta <\alpha }
.
Then
ψ
ν
(
α
)
=
min
{
γ
∣
γ
∉
C
ν
(
α
)
}
{\displaystyle \psi _{\nu }(\alpha )=\min\{\gamma \mid \gamma \not \in C_{\nu }(\alpha )\}}
is the smallest ordinal that does not belong to this set.
Examples
Consider the following examples:
C
0
0
(
α
)
=
{
0
}
=
{
β
∣
β
<
1
}
,
{\displaystyle C_{0}^{0}(\alpha )=\{0\}=\{\beta \mid \beta <1\},}
C
0
(
0
)
=
{
0
}
{\displaystyle C_{0}(0)=\{0\}}
(since no functions
ψ
(
η
<
0
)
{\displaystyle \psi (\eta <0)}
and 0 + 0 = 0).
Then
ψ
0
(
0
)
=
1
{\displaystyle \psi _{0}(0)=1}
.
C
0
(
1
)
{\displaystyle C_{0}(1)}
includes
ψ
0
(
0
)
=
1
{\displaystyle \psi _{0}(0)=1}
and all possible sums of natural numbers and therefore
ψ
0
(
1
)
=
ω
{\displaystyle \psi _{0}(1)=\omega }
– first transfinite ordinal, which is greater than all natural numbers by its definition.
C
0
(
2
)
{\displaystyle C_{0}(2)}
includes
ψ
0
(
0
)
=
1
,
ψ
0
(
1
)
=
ω
{\displaystyle \psi _{0}(0)=1,\psi _{0}(1)=\omega }
and all possible sums of them and therefore
ψ
0
(
2
)
=
ω
2
{\displaystyle \psi _{0}(2)=\omega ^{2}}
.
If
α
=
ω
{\displaystyle \alpha =\omega }
then
C
0
(
α
)
=
{
0
,
ψ
(
0
)
=
1
,
…
,
ψ
(
1
)
=
ω
,
…
,
ψ
(
2
)
=
ω
2
,
…
,
ψ
(
3
)
=
ω
3
,
…
}
{\displaystyle C_{0}(\alpha )=\{0,\psi (0)=1,\ldots ,\psi (1)=\omega ,\ldots ,\psi (2)=\omega ^{2},\ldots ,\psi (3)=\omega ^{3},\ldots \}}
and
ψ
0
(
ω
)
=
ω
ω
{\displaystyle \psi _{0}(\omega )=\omega ^{\omega }}
.
If
α
=
Ω
{\displaystyle \alpha =\Omega }
then
C
0
(
α
)
=
{
0
,
ψ
(
0
)
=
1
,
…
,
ψ
(
1
)
=
ω
,
…
,
ψ
(
ω
)
=
ω
ω
,
…
,
ψ
(
ω
ω
)
=
ω
ω
ω
,
…
}
{\displaystyle C_{0}(\alpha )=\{0,\psi (0)=1,\ldots ,\psi (1)=\omega ,\ldots ,\psi (\omega )=\omega ^{\omega },\ldots ,\psi (\omega ^{\omega })=\omega ^{\omega ^{\omega }},\ldots \}}
and
ψ
0
(
Ω
)
=
ε
0
{\displaystyle \psi _{0}(\Omega )=\varepsilon _{0}}
– the smallest epsilon number i.e. first fixed point of
α
=
ω
α
{\displaystyle \alpha =\omega ^{\alpha }}
.
If
α
=
Ω
+
1
{\displaystyle \alpha =\Omega +1}
then
C
0
(
α
)
=
{
0
,
1
,
…
,
ψ
0
(
Ω
)
=
ε
0
,
…
,
ε
0
+
ε
0
,
…
,
ψ
1
(
0
)
=
Ω
,
…
}
{\displaystyle C_{0}(\alpha )=\{0,1,\ldots ,\psi _{0}(\Omega )=\varepsilon _{0},\ldots ,\varepsilon _{0}+\varepsilon _{0},\ldots ,\psi _{1}(0)=\Omega ,\ldots \}}
and
ψ
0
(
Ω
+
1
)
=
ε
0
ω
=
ω
ε
0
+
1
{\displaystyle \psi _{0}(\Omega +1)=\varepsilon _{0}\omega =\omega ^{\varepsilon _{0}+1}}
.
ψ
0
(
Ω
2
)
=
ε
1
{\displaystyle \psi _{0}(\Omega 2)=\varepsilon _{1}}
the second epsilon number,
ψ
0
(
Ω
2
)
=
ε
ε
⋯
=
ζ
0
{\displaystyle \psi _{0}(\Omega ^{2})=\varepsilon _{\varepsilon _{\cdots }}=\zeta _{0}}
i.e. first fixed point of
α
=
ε
α
{\displaystyle \alpha =\varepsilon _{\alpha }}
,
φ
(
α
,
β
)
=
ψ
0
(
Ω
α
(
1
+
β
)
)
{\displaystyle \varphi (\alpha ,\beta )=\psi _{0}(\Omega ^{\alpha }(1+\beta ))}
, where
φ
{\displaystyle \varphi }
denotes the Veblen's function,
ψ
0
(
Ω
Ω
)
=
Γ
0
=
φ
(
1
,
0
,
0
)
=
θ
(
Ω
,
0
)
{\displaystyle \psi _{0}(\Omega ^{\Omega })=\Gamma _{0}=\varphi (1,0,0)=\theta (\Omega ,0)}
, where
θ
{\displaystyle \theta }
denotes the Feferman's function,
ψ
0
(
Ω
Ω
2
)
=
φ
(
1
,
0
,
0
,
0
)
{\displaystyle \psi _{0}(\Omega ^{\Omega ^{2}})=\varphi (1,0,0,0)}
is the Ackermann ordinal,
ψ
0
(
Ω
Ω
ω
)
{\displaystyle \psi _{0}(\Omega ^{\Omega ^{\omega }})}
is the small Veblen ordinal,
ψ
0
(
Ω
Ω
Ω
)
{\displaystyle \psi _{0}(\Omega ^{\Omega ^{\Omega }})}
is the large Veblen ordinal,
ψ
0
(
Ω
↑↑
ω
)
=
ψ
0
(
ε
Ω
+
1
)
=
θ
(
ε
Ω
+
1
,
0
)
.
{\displaystyle \psi _{0}(\Omega \uparrow \uparrow \omega )=\psi _{0}(\varepsilon _{\Omega +1})=\theta (\varepsilon _{\Omega +1},0).}
Now let's research how
ψ
1
{\displaystyle \psi _{1}}
works:
C
1
0
(
0
)
=
{
β
∣
β
<
Ω
1
}
=
{
0
,
ψ
(
0
)
=
1
,
2
,
…
googol
,
…
,
ψ
0
(
1
)
=
ω
,
…
,
ψ
0
(
Ω
)
=
ε
0
,
…
{\displaystyle C_{1}^{0}(0)=\{\beta \mid \beta <\Omega _{1}\}=\{0,\psi (0)=1,2,\ldots {\text{googol}},\ldots ,\psi _{0}(1)=\omega ,\ldots ,\psi _{0}(\Omega )=\varepsilon _{0},\ldots }
…
,
ψ
0
(
Ω
Ω
)
=
Γ
0
,
…
,
ψ
(
Ω
Ω
Ω
+
Ω
2
)
,
…
}
{\displaystyle \ldots ,\psi _{0}(\Omega ^{\Omega })=\Gamma _{0},\ldots ,\psi (\Omega ^{\Omega ^{\Omega }+\Omega ^{2}}),\ldots \}}
i.e. includes all countable ordinals. And therefore
C
1
(
0
)
{\displaystyle C_{1}(0)}
includes all possible sums of all countable ordinals and
ψ
1
(
0
)
=
Ω
1
{\displaystyle \psi _{1}(0)=\Omega _{1}}
first uncountable ordinal which is greater than all countable ordinal by its definition i.e. smallest number with cardinality
ℵ
1
{\displaystyle \aleph _{1}}
.
If
α
=
1
{\displaystyle \alpha =1}
then
C
1
(
α
)
=
{
0
,
…
,
ψ
0
(
0
)
=
ω
,
…
,
ψ
1
(
0
)
=
Ω
,
…
,
Ω
+
ω
,
…
,
Ω
+
Ω
,
…
}
{\displaystyle C_{1}(\alpha )=\{0,\ldots ,\psi _{0}(0)=\omega ,\ldots ,\psi _{1}(0)=\Omega ,\ldots ,\Omega +\omega ,\ldots ,\Omega +\Omega ,\ldots \}}
and
ψ
1
(
1
)
=
Ω
ω
=
ω
Ω
+
1
{\displaystyle \psi _{1}(1)=\Omega \omega =\omega ^{\Omega +1}}
.
ψ
1
(
2
)
=
Ω
ω
2
=
ω
Ω
+
2
,
{\displaystyle \psi _{1}(2)=\Omega \omega ^{2}=\omega ^{\Omega +2},}
ψ
1
(
ψ
1
(
0
)
)
=
ψ
1
(
Ω
)
=
Ω
2
=
ω
Ω
+
Ω
,
{\displaystyle \psi _{1}(\psi _{1}(0))=\psi _{1}(\Omega )=\Omega ^{2}=\omega ^{\Omega +\Omega },}
ψ
1
(
ψ
1
(
ψ
1
(
0
)
)
)
=
ω
Ω
+
ω
Ω
+
Ω
=
ω
Ω
⋅
Ω
=
(
ω
Ω
)
Ω
=
Ω
Ω
,
{\displaystyle \psi _{1}(\psi _{1}(\psi _{1}(0)))=\omega ^{\Omega +\omega ^{\Omega +\Omega }}=\omega ^{\Omega \cdot \Omega }=(\omega ^{\Omega })^{\Omega }=\Omega ^{\Omega },}
ψ
1
4
(
0
)
=
Ω
Ω
Ω
,
{\displaystyle \psi _{1}^{4}(0)=\Omega ^{\Omega ^{\Omega }},}
ψ
1
k
+
1
(
0
)
=
Ω
↑↑
k
{\displaystyle \psi _{1}^{k+1}(0)=\Omega \uparrow \uparrow k}
where
k
{\displaystyle k}
is a natural number,
k
≥
2
{\displaystyle k\geq 2}
,
ψ
1
(
Ω
2
)
=
ψ
1
ω
(
0
)
=
Ω
↑↑
ω
=
ε
Ω
+
1
.
{\displaystyle \psi _{1}(\Omega _{2})=\psi _{1}^{\omega }(0)=\Omega \uparrow \uparrow \omega =\varepsilon _{\Omega +1}.}
For case
ψ
(
ψ
2
(
0
)
)
=
ψ
(
Ω
2
)
{\displaystyle \psi (\psi _{2}(0))=\psi (\Omega _{2})}
the set
C
0
(
Ω
2
)
{\displaystyle C_{0}(\Omega _{2})}
includes functions
ψ
0
{\displaystyle \psi _{0}}
with all arguments less than
Ω
2
{\displaystyle \Omega _{2}}
i.e. such arguments as
0
,
ψ
1
(
0
)
,
ψ
1
(
ψ
1
(
0
)
)
,
ψ
1
3
(
0
)
,
…
,
ψ
1
ω
(
0
)
{\displaystyle 0,\psi _{1}(0),\psi _{1}(\psi _{1}(0)),\psi _{1}^{3}(0),\ldots ,\psi _{1}^{\omega }(0)}
and then
ψ
0
(
Ω
2
)
=
ψ
0
(
ψ
1
(
Ω
2
)
)
=
ψ
0
(
ε
Ω
+
1
)
.
{\displaystyle \psi _{0}(\Omega _{2})=\psi _{0}(\psi _{1}(\Omega _{2}))=\psi _{0}(\varepsilon _{\Omega +1}).}
In the general case:
ψ
0
(
Ω
ν
+
1
)
=
ψ
0
(
ψ
ν
(
Ω
ν
+
1
)
)
=
ψ
0
(
ε
Ω
ν
+
1
)
=
θ
(
ε
Ω
ν
+
1
,
0
)
.
{\displaystyle \psi _{0}(\Omega _{\nu +1})=\psi _{0}(\psi _{\nu }(\Omega _{\nu +1}))=\psi _{0}(\varepsilon _{\Omega _{\nu }+1})=\theta (\varepsilon _{\Omega _{\nu }+1},0).}
We also can write:
θ
(
Ω
ν
,
0
)
=
ψ
0
(
Ω
ν
Ω
)
(for
1
≤
ν
)
<
ω
{\displaystyle \theta (\Omega _{\nu },0)=\psi _{0}(\Omega _{\nu }^{\Omega }){\text{ (for }}1\leq \nu )<\omega }
Extension
This OCF is a sophisticated extension of Buchholz's
ψ
{\displaystyle \psi }
by mathematician Denis Maksudov. The countable limit of this system is much greater, equal to
ψ
0
(
Ω
Ω
Ω
.
.
.
)
{\displaystyle \psi _{0}(\Omega _{\Omega _{\Omega _{...}}})}
where
Ω
Ω
Ω
.
.
.
{\displaystyle \Omega _{\Omega _{\Omega _{...}}}}
denotes the first omega fixed point, sometimes referred to as Extended Buchholz's ordinal. The function is defined as follows:
Define
Ω
0
=
1
{\displaystyle \Omega _{0}=1}
and
Ω
ν
=
ℵ
ν
{\displaystyle \Omega _{\nu }=\aleph _{\nu }}
for
ν
>
0
{\displaystyle \nu >0}
.
C
ν
0
(
α
)
=
{
β
|
β
<
Ω
ν
}
{\displaystyle C_{\nu }^{0}(\alpha )=\{\beta |\beta <\Omega _{\nu }\}}
C
ν
n
+
1
(
α
)
=
{
β
+
γ
,
ψ
μ
(
η
)
|
μ
,
β
,
γ
,
η
∈
C
ν
n
(
α
)
∧
η
<
α
}
{\displaystyle C_{\nu }^{n+1}(\alpha )=\{\beta +\gamma ,\psi _{\mu }(\eta )|\mu ,\beta ,\gamma ,\eta \in C_{\nu }^{n}(\alpha )\land \eta <\alpha \}}
C
ν
(
α
)
=
⋃
n
<
ω
C
ν
n
(
α
)
{\displaystyle C_{\nu }(\alpha )=\bigcup \limits _{n<\omega }C_{\nu }^{n}(\alpha )}
ψ
ν
(
α
)
=
m
i
n
(
{
γ
|
γ
∉
C
ν
(
α
)
}
)
{\displaystyle \psi _{\nu }(\alpha )=min(\{\gamma |\gamma \notin C_{\nu }(\alpha )\})}
Ordinal notation
Buchholz[ note 2] defined an ordinal notation
(
O
T
,
<
)
{\displaystyle {\mathsf {(OT,<)}}}
associated to the
ψ
{\displaystyle \psi }
function. We simultaneously define the sets
T
{\displaystyle T}
and
P
T
{\displaystyle PT}
as formal strings consisting of
0
,
D
v
{\displaystyle 0,D_{v}}
indexed by
v
∈
ω
+
1
{\displaystyle v\in \omega +1}
, braces and commas in the following way:
0
∈
T
∧
0
∈
P
T
{\displaystyle 0\in T\land 0\in PT}
,
∀
(
v
,
a
)
∈
(
ω
+
1
)
×
T
(
D
v
a
∈
T
∧
D
v
a
∈
P
T
)
{\displaystyle \forall (v,a)\in (\omega +1)\times T(D_{v}a\in T\land D_{v}a\in PT)}
.
∀
(
a
0
,
a
1
)
∈
P
T
2
(
(
a
0
,
a
1
)
∈
T
)
{\displaystyle \forall (a_{0},a_{1})\in PT^{2}((a_{0},a_{1})\in T)}
.
∃
s
(
a
0
=
s
)
∧
(
a
0
,
a
1
)
∈
T
×
P
T
→
(
s
,
a
1
)
∈
T
{\displaystyle \exists s(a_{0}=s)\land (a_{0},a_{1})\in T\times PT\rightarrow (s,a_{1})\in T}
.
An element of
T
{\displaystyle T}
is called a term , and an element of
P
T
{\displaystyle PT}
is called a principal term . By definition,
T
{\displaystyle T}
is a recursive set and
P
T
{\displaystyle PT}
is a recursive subset of
T
{\displaystyle T}
. Every term is either
0
{\displaystyle 0}
, a principal term or a braced array of principal terms of length
≥
2
{\displaystyle \geq 2}
. We denote
a
∈
P
T
{\displaystyle a\in PT}
by
(
a
)
{\displaystyle (a)}
. By convention, every term can be uniquely expressed as either
0
{\displaystyle 0}
or a braced, non-empty array of principal terms. Since clauses 3 and 4 in the definition of
T
{\displaystyle T}
and
P
T
{\displaystyle PT}
are applicable only to arrays of length
≥
2
{\displaystyle \geq 2}
, this convention does not cause serious ambiguity.
We then define a binary relation
a
<
b
{\displaystyle a<b}
on
T
{\displaystyle T}
in the following way:
b
=
0
→
a
<
b
=
⊥
{\displaystyle b=0\rightarrow a<b=\bot }
a
=
0
→
(
a
<
b
↔
b
≠
0
)
{\displaystyle a=0\rightarrow (a<b\leftrightarrow b\neq 0)}
If
a
≠
0
∧
b
≠
0
{\displaystyle a\neq 0\land b\neq 0}
, then:
If
a
=
D
u
a
′
∧
b
=
D
v
b
′
{\displaystyle a=D_{u}a'\land b=D_{v}b'}
for some
(
(
u
,
a
′
)
,
(
v
,
b
′
)
)
∈
(
(
ω
+
1
)
×
T
)
2
{\displaystyle ((u,a'),(v,b'))\in ((\omega +1)\times T)^{2}}
, then
a
<
b
{\displaystyle a<b}
is true if either of the following are true:
u
<
v
{\displaystyle u<v}
u
=
v
∧
a
′
<
b
′
{\displaystyle u=v\land a'<b'}
If
a
=
(
a
0
,
.
.
.
,
a
n
)
∧
b
=
(
b
0
,
.
.
.
,
b
m
)
{\displaystyle a=(a_{0},...,a_{n})\land b=(b_{0},...,b_{m})}
for some
(
n
,
m
)
∈
N
2
∧
1
≤
n
+
m
{\displaystyle (n,m)\in \mathbb {N} ^{2}\land 1\leq n+m}
, then
a
<
b
{\displaystyle a<b}
is true if either of the following are true:
∀
i
∈
N
∧
i
≤
n
(
n
<
m
∧
a
i
=
b
i
)
{\displaystyle \forall i\in \mathbb {N} \land i\leq n(n<m\land a_{i}=b_{i})}
∃
k
∈
N
∀
i
∈
N
∧
i
<
k
(
k
≤
m
i
n
{
n
,
m
}
∧
a
k
<
b
k
∧
a
i
=
b
1
)
{\displaystyle \exists k\in \mathbb {N} \forall i\in \mathbb {N} \land i<k(k\leq min\{n,m\}\land a_{k}<b_{k}\land a_{i}=b_{1})}
<
{\displaystyle <}
is a recursive strict total ordering on
T
{\displaystyle T}
. We abbreviate
(
a
<
b
)
∨
(
a
=
b
)
{\displaystyle (a<b)\lor (a=b)}
as
a
≤
b
{\displaystyle a\leq b}
. Although
≤
{\displaystyle \leq }
itself is not a well-ordering, its restriction to a recursive subset
O
T
⊂
T
{\displaystyle OT\subset T}
, which will be described later, forms a well-ordering. In order to define
O
T
{\displaystyle OT}
, we define a subset
G
u
a
⊂
T
{\displaystyle G_{u}a\subset T}
for each
(
u
,
a
)
∈
(
ω
+
1
)
×
T
{\displaystyle (u,a)\in (\omega +1)\times T}
in the following way:
a
=
0
→
G
u
a
=
∅
{\displaystyle a=0\rightarrow G_{u}a=\varnothing }
Suppose that
a
=
D
v
a
′
{\displaystyle a=D_{v}a'}
for some
(
v
,
a
′
)
∈
(
ω
+
1
)
×
T
{\displaystyle (v,a')\in (\omega +1)\times T}
, then:
u
≤
v
→
G
u
a
=
{
a
′
}
∪
G
u
a
′
{\displaystyle u\leq v\rightarrow G_{u}a=\{a'\}\cup G_{u}a'}
u
>
v
→
G
u
a
=
∅
{\displaystyle u>v\rightarrow G_{u}a=\varnothing }
If
a
=
(
a
0
,
.
.
.
,
a
k
)
{\displaystyle a=(a_{0},...,a_{k})}
for some
(
a
i
)
i
=
0
k
∈
P
T
k
+
1
{\displaystyle (a_{i})_{i=0}^{k}\in PT^{k+1}}
for some
k
∈
N
∖
{
0
}
,
G
u
a
=
⋃
i
=
0
k
G
u
a
i
{\displaystyle k\in \mathbb {N} \backslash \{0\},G_{u}a=\bigcup _{i=0}^{k}G_{u}a_{i}}
.
b
∈
G
u
a
{\displaystyle b\in G_{u}a}
is a recursive relation on
(
u
,
a
,
b
)
∈
(
ω
+
1
)
×
T
2
{\displaystyle (u,a,b)\in (\omega +1)\times T^{2}}
. Finally, we define a subset
O
T
⊂
T
{\displaystyle OT\subset T}
in the following way:
0
∈
O
T
{\displaystyle 0\in OT}
For any
(
v
,
a
)
∈
(
ω
+
1
)
×
T
{\displaystyle (v,a)\in (\omega +1)\times T}
,
D
v
a
∈
O
T
{\displaystyle D_{v}a\in OT}
is equivalent to
a
∈
O
T
{\displaystyle a\in OT}
and, for any
a
′
∈
G
v
a
{\displaystyle a'\in G_{v}a}
,
a
′
<
a
{\displaystyle a'<a}
.
For any
(
a
i
)
i
=
0
k
∈
P
T
k
+
1
{\displaystyle (a_{i})_{i=0}^{k}\in PT^{k+1}}
,
(
a
0
,
.
.
.
,
a
k
)
∈
O
T
{\displaystyle (a_{0},...,a_{k})\in OT}
is equivalent to
(
a
i
)
i
=
0
k
∈
O
T
{\displaystyle (a_{i})_{i=0}^{k}\in OT}
and
a
k
≤
.
.
.
≤
a
0
{\displaystyle a_{k}\leq ...\leq a_{0}}
.
O
T
{\displaystyle OT}
is a recursive subset of
T
{\displaystyle T}
, and an element of
O
T
{\displaystyle OT}
is called an ordinal term . We can then define a map
o
:
O
T
→
C
0
(
ε
Ω
ω
+
1
)
{\displaystyle o:OT\rightarrow C_{0}(\varepsilon _{\Omega _{\omega }+1})}
in the following way:
a
=
0
→
o
(
a
)
=
0
{\displaystyle a=0\rightarrow o(a)=0}
If
a
=
D
v
a
′
{\displaystyle a=D_{v}a'}
for some
(
v
,
a
′
)
∈
(
ω
+
1
)
×
O
T
{\displaystyle (v,a')\in (\omega +1)\times OT}
, then
o
(
a
)
=
ψ
v
(
o
(
a
′
)
)
{\displaystyle o(a)=\psi _{v}(o(a'))}
.
If
a
=
(
a
0
,
.
.
.
,
a
k
)
{\displaystyle a=(a_{0},...,a_{k})}
for some
(
a
i
)
i
=
0
k
∈
(
O
T
∩
P
T
)
k
+
1
{\displaystyle (a_{i})_{i=0}^{k}\in (OT\cap PT)^{k+1}}
with
k
∈
N
∖
{
0
}
{\displaystyle k\in \mathbb {N} \backslash \{0\}}
, then
o
(
a
)
=
o
(
a
0
)
#
.
.
.
#
o
(
a
k
)
{\displaystyle o(a)=o(a_{0})\#...\#o(a_{k})}
, where
#
{\displaystyle \#}
denotes the descending sum of ordinals, which coincides with the usual addition by the definition of
O
T
{\displaystyle OT}
.
Buchholz verified the following properties of
o
{\displaystyle o}
:
The map
o
{\displaystyle o}
is an order-preserving bijective map with respect to
<
{\displaystyle <}
and
∈
{\displaystyle \in }
. In particular,
o
{\displaystyle o}
is a recursive strict well-ordering on
O
T
{\displaystyle OT}
.
For any
a
∈
O
T
{\displaystyle a\in OT}
satisfying
a
<
D
1
0
{\displaystyle a<D_{1}0}
,
o
(
a
)
{\displaystyle o(a)}
coincides with the ordinal type of
<
{\displaystyle <}
restricted to the countable subset
{
x
∈
O
T
|
x
<
a
}
{\displaystyle \{x\in OT\;|\;x<a\}}
.
The Takeuti-Feferman-Buchholz ordinal coincides with the ordinal type of
<
{\displaystyle <}
restricted to the recursive subset
{
x
∈
O
T
|
x
<
D
1
0
}
{\displaystyle \{x\in OT\;|\;x<D_{1}0\}}
.
The ordinal type of
(
O
T
,
<
)
{\displaystyle (OT,<)}
is greater than the Takeuti-Feferman-Buchholz ordinal .
For any
v
∈
N
∖
{
0
}
{\displaystyle v\in \mathbb {N} \;\backslash \;\{0\}}
, the well-foundedness of
<
{\displaystyle <}
restricted to the recursive subset
{
x
∈
O
T
|
x
<
D
0
D
v
+
1
0
}
{\displaystyle \{x\in OT\;|\;x<D_{0}D_{v+1}0\}}
in the sense of the non-existence of a primitive recursive infinite descending sequence is not provable under
I
D
v
{\displaystyle {\mathsf {ID}}_{v}}
.
The well-foundedness of
<
{\displaystyle <}
restricted to the recursive subset
{
x
∈
O
T
|
x
<
D
0
D
ω
0
}
{\displaystyle \{x\in OT\;|\;x<D_{0}D_{\omega }0\}}
in the same sense as above is not provable under
Π
1
1
−
C
A
0
{\displaystyle \Pi _{1}^{1}-CA_{0}}
.
The normal form for Buchholz's function can be defined by the pull-back of standard form for the ordinal notation associated to it by
o
{\displaystyle o}
. Namely, the set
N
F
{\displaystyle NF}
of predicates on ordinals in
C
0
(
ε
Ω
ω
+
1
)
{\displaystyle C_{0}(\varepsilon _{\Omega _{\omega }+1})}
is defined in the following way:
The predicate
α
=
N
F
0
{\displaystyle \alpha =_{NF}0}
on an ordinal
α
∈
C
0
(
ε
Ω
ω
+
1
)
{\displaystyle \alpha \in C_{0}(\varepsilon _{\Omega _{\omega }+1})}
defined as
α
=
0
{\displaystyle \alpha =0}
belongs to
N
F
{\displaystyle NF}
.
The predicate
α
0
=
N
F
ψ
k
1
(
α
1
)
{\displaystyle \alpha _{0}=_{NF}\psi _{k_{1}}(\alpha _{1})}
on ordinals
α
0
,
α
1
∈
C
0
(
ε
Ω
ω
+
1
)
{\displaystyle \alpha _{0},\alpha _{1}\in C_{0}(\varepsilon _{\Omega _{\omega }+1})}
with
k
1
=
ω
+
1
{\displaystyle k_{1}=\omega +1}
defined as
α
0
=
ψ
k
1
(
α
1
)
{\displaystyle \alpha _{0}=\psi _{k_{1}}(\alpha _{1})}
and
α
1
=
C
k
1
(
α
1
)
{\displaystyle \alpha _{1}=C_{k_{1}}(\alpha _{1})}
belongs to
N
F
{\displaystyle NF}
.
The predicate
α
0
=
N
F
α
1
+
.
.
.
+
α
n
{\displaystyle \alpha _{0}=_{NF}\alpha _{1}+...+\alpha _{n}}
on ordinals
α
0
,
α
1
,
.
.
.
,
α
n
∈
C
0
(
ε
Ω
ω
+
1
)
{\displaystyle \alpha _{0},\alpha _{1},...,\alpha _{n}\in C_{0}(\varepsilon _{\Omega _{\omega }+1})}
with an integer
n
>
1
{\displaystyle n>1}
defined as
α
0
=
α
1
+
.
.
.
+
α
n
{\displaystyle \alpha _{0}=\alpha _{1}+...+\alpha _{n}}
,
α
1
≥
.
.
.
≥
α
n
{\displaystyle \alpha _{1}\geq ...\geq \alpha _{n}}
, and
α
1
,
.
.
.
,
α
n
∈
A
P
{\displaystyle \alpha _{1},...,\alpha _{n}\in AP}
belongs to
N
F
{\displaystyle NF}
. Here
+
{\displaystyle +}
is a function symbol rather than an actual addition, and
A
P
{\displaystyle AP}
denotes the class of additive princpal numbers.
It is also useful to replace the third case by the following one obtained by combining the second condition:
The predicate
α
0
=
N
F
ψ
k
1
(
α
1
)
+
.
.
.
+
ψ
k
n
(
α
n
)
{\displaystyle \alpha _{0}=_{NF}\psi _{k_{1}}(\alpha _{1})+...+\psi _{k_{n}}(\alpha _{n})}
on ordinals
α
0
,
α
1
,
.
.
.
,
α
n
∈
C
0
(
ε
Ω
ω
+
1
)
{\displaystyle \alpha _{0},\alpha _{1},...,\alpha _{n}\in C_{0}(\varepsilon _{\Omega _{\omega }+1})}
with an integer
n
>
1
{\displaystyle n>1}
and
k
1
,
.
.
.
,
k
n
∈
ω
+
1
{\displaystyle k_{1},...,k_{n}\in \omega +1}
defined as
α
0
=
ψ
k
1
(
α
1
)
+
.
.
.
+
ψ
k
n
(
α
n
)
{\displaystyle \alpha _{0}=\psi _{k_{1}}(\alpha _{1})+...+\psi _{k_{n}}(\alpha _{n})}
,
ψ
k
1
(
α
1
)
≥
.
.
.
≥
ψ
k
n
(
α
n
)
{\displaystyle \psi _{k_{1}}(\alpha _{1})\geq ...\geq \psi _{k_{n}}(\alpha _{n})}
, and
α
1
∈
C
k
1
(
α
1
)
,
.
.
.
,
α
n
∈
C
k
n
(
α
n
)
∈
A
P
{\displaystyle \alpha _{1}\in C_{k_{1}}(\alpha _{1}),...,\alpha _{n}\in C_{k_{n}}(\alpha _{n})\in AP}
belongs to
N
F
{\displaystyle NF}
.
We note that those two formulations are not equivalent. For example,
ψ
0
(
Ω
)
+
1
=
N
F
ψ
0
(
ζ
1
)
+
ψ
0
(
0
)
{\displaystyle \psi _{0}(\Omega )+1=_{NF}\psi _{0}(\zeta _{1})+\psi _{0}(0)}
is a valid formula which is false with respect to the second formulation because of
ζ
1
≠
C
0
(
ζ
1
)
{\displaystyle \zeta _{1}\neq C_{0}(\zeta _{1})}
, while it is a valid formula which is true with respect to the first formulation because of
ψ
0
(
Ω
)
+
1
=
ψ
0
(
ζ
1
)
+
ψ
0
(
0
)
{\displaystyle \psi _{0}(\Omega )+1=\psi _{0}(\zeta _{1})+\psi _{0}(0)}
,
ψ
0
(
ζ
1
)
,
ψ
0
(
0
)
∈
A
P
{\displaystyle \psi _{0}(\zeta _{1}),\psi _{0}(0)\in AP}
, and
ψ
0
(
ζ
1
)
≥
ψ
0
(
0
)
{\displaystyle \psi _{0}(\zeta _{1})\geq \psi _{0}(0)}
. In this way, the notion of normal form heavily depends on the context. In both formulations, every ordinal in
C
0
(
ε
Ω
ω
+
1
)
{\displaystyle C_{0}(\varepsilon _{\Omega _{\omega }+1})}
can be uniquely expressed in normal form for Buchholz's function.
Extension(s)
The ordinal notation
(
O
T
,
<
)
{\displaystyle (OT,<)}
associated to Buchholz's function was extended by a Japanese mathematician p進大好きbot in a natural way, and is further extended to a
3
{\displaystyle 3}
-ary notation by a Japanese mathematician kanrokoti. Also, the notions of normal form and fundamental sequences have been extended by Denis Maksudov.
Initial extension by p進大好きbot
We define the sets
T
{\displaystyle T}
and
P
T
{\displaystyle PT}
as formal strings consisting of parentheses
(
)
{\displaystyle ()}
, angle brackets
⟨
⟩
{\displaystyle \langle \rangle }
and commas in the following way:
(
)
∈
T
{\displaystyle ()\in T}
∀
X
1
,
X
2
∈
T
,
⟨
X
1
,
X
2
⟩
∈
T
∧
⟨
X
1
,
X
2
⟩
∈
P
T
{\displaystyle \forall X_{1},X_{2}\in T,\langle X_{1},X_{2}\rangle \in T\land \langle X_{1},X_{2}\rangle \in PT}
∀
X
1
,
.
.
.
,
X
m
∈
P
T
(
2
≤
m
<
ω
)
,
(
X
1
,
.
.
.
,
X
m
)
∈
T
{\displaystyle \forall X_{1},...,X_{m}\in PT(2\leq m<\omega ),(X_{1},...,X_{m})\in T}
We will define an ordinal notation
O
T
{\displaystyle OT}
whose underlying subset is a recursive subset of
T
{\displaystyle T}
. In
O
T
{\displaystyle OT}
,
(
)
{\displaystyle ()}
plays a role of
0
{\displaystyle 0}
,
⟨
,
⟩
{\displaystyle \langle \;,\;\rangle }
plays a role of extended Buchholz's OCF, and
(
,
.
.
.
,
)
{\displaystyle (\;,...,\;)}
plays a role of the addition. We will denote
0
_
∈
T
{\displaystyle {\underline {0}}\in T}
by
(
)
{\displaystyle ()}
,
1
_
∈
T
{\displaystyle {\underline {1}}\in T}
by
⟨
0
_
,
0
_
⟩
{\displaystyle \langle {\underline {0}},{\underline {0}}\rangle }
,
n
_
∈
T
{\displaystyle {\underline {n}}\in T}
for
1
<
n
∈
N
{\displaystyle 1<n\in \mathbb {N} }
by
(
1
_
,
.
.
.
,
1
_
)
⏟
n
{\displaystyle \underbrace {({\underline {1}},...,{\underline {1}})} _{n}}
, and
ω
_
∈
T
{\displaystyle {\underline {\omega }}\in T}
by
⟨
0
_
,
1
_
⟩
{\displaystyle \langle {\underline {0}},{\underline {1}}\rangle }
.
Then, for an
(
X
,
Y
)
∈
T
2
{\displaystyle (X,Y)\in T^{2}}
, we define the recursive
2
{\displaystyle 2}
-ary relation
X
<
Y
{\displaystyle X<Y}
in the following way:
X
=
0
_
→
(
X
<
Y
↔
Y
≠
0
)
{\displaystyle X={\underline {0}}\rightarrow (X<Y\leftrightarrow Y\neq 0)}
Suppose
X
=
⟨
X
1
,
X
2
⟩
{\displaystyle X=\langle X_{1},X_{2}\rangle }
for some
X
1
,
X
2
∈
T
{\displaystyle X_{1},X_{2}\in T}
. Then:
Y
=
0
_
→
X
<
Y
=
⊥
{\displaystyle Y={\underline {0}}\rightarrow X<Y=\bot }
Suppose
Y
=
⟨
Y
1
,
Y
2
⟩
{\displaystyle Y=\langle Y_{1},Y_{2}\rangle }
for some
Y
1
,
Y
2
∈
T
{\displaystyle Y_{1},Y_{2}\in T}
. Then:
X
1
=
Y
1
→
(
X
<
Y
↔
X
2
<
Y
2
)
{\displaystyle X_{1}=Y_{1}\rightarrow (X<Y\leftrightarrow X_{2}<Y_{2})}
X
1
≠
Y
1
→
(
X
<
Y
↔
X
1
<
Y
1
)
{\displaystyle X_{1}\neq Y_{1}\rightarrow (X<Y\leftrightarrow X_{1}<Y_{1})}
If
Y
=
(
Y
1
,
.
.
.
,
Y
m
′
)
{\displaystyle Y=(Y_{1},...,Y_{m'})}
for some
Y
1
,
.
.
.
,
Y
m
′
∈
P
T
∧
2
≤
m
′
<
ω
{\displaystyle Y_{1},...,Y_{m'}\in PT\land 2\leq m'<\omega }
. Then,
X
<
Y
{\displaystyle X<Y}
is true if either of the following are true:
X
=
Y
1
{\displaystyle X=Y_{1}}
X
<
Y
1
{\displaystyle X<Y_{1}}
Suppose
X
=
(
X
1
,
.
.
.
,
X
m
)
{\displaystyle X=(X_{1},...,X_{m})}
for some
X
1
,
.
.
.
,
X
m
∈
P
T
∧
2
≤
m
′
<
ω
{\displaystyle X_{1},...,X_{m}\in PT\land 2\leq m'<\omega }
. Then:
Y
=
0
_
→
X
<
Y
=
⊥
{\displaystyle Y={\underline {0}}\rightarrow X<Y=\bot }
If
Y
=
⟨
Y
1
,
Y
2
⟩
{\displaystyle Y=\langle Y_{1},Y_{2}\rangle }
for some
Y
1
,
Y
2
∈
T
{\displaystyle Y_{1},Y_{2}\in T}
. Then,
X
<
Y
↔
X
1
<
Y
{\displaystyle X<Y\leftrightarrow X_{1}<Y}
Suppose
Y
=
(
Y
1
,
.
.
.
,
Y
m
′
)
{\displaystyle Y=(Y_{1},...,Y_{m'})}
for some
Y
1
,
.
.
.
,
Y
m
′
∈
P
T
∧
2
≤
m
′
<
ω
{\displaystyle Y_{1},...,Y_{m'}\in PT\land 2\leq m'<\omega }
. Then,
X
<
Y
{\displaystyle X<Y}
is true if either of the following are true:
Suppose
X
1
=
Y
1
{\displaystyle X_{1}=Y_{1}}
. Then:
m
=
2
∧
m
′
=
2
→
(
X
<
Y
↔
X
2
<
Y
2
)
{\displaystyle m=2\land m'=2\rightarrow (X<Y\leftrightarrow X_{2}<Y_{2})}
m
=
2
∧
m
′
>
2
→
(
X
<
Y
↔
X
2
<
(
Y
2
,
.
.
.
,
Y
m
′
)
)
{\displaystyle m=2\land m'>2\rightarrow (X<Y\leftrightarrow X_{2}<(Y_{2},...,Y_{m'}))}
m
>
2
∧
m
′
=
2
→
(
X
<
Y
↔
(
X
2
,
.
.
.
,
X
m
)
<
Y
2
)
{\displaystyle m>2\land m'=2\rightarrow (X<Y\leftrightarrow (X_{2},...,X_{m})<Y_{2})}
m
>
2
∧
m
′
>
2
→
(
X
<
Y
↔
(
X
2
,
.
.
.
,
X
m
)
<
(
Y
2
,
.
.
.
,
Y
m
′
)
)
{\displaystyle m>2\land m'>2\rightarrow (X<Y\leftrightarrow (X_{2},...,X_{m})<(Y_{2},...,Y_{m'}))}
X
1
≠
Y
1
→
(
X
<
Y
↔
X
1
<
Y
1
)
{\displaystyle X_{1}\neq Y_{1}\rightarrow (X<Y\leftrightarrow X_{1}<Y_{1})}
<
{\displaystyle <}
is not a strict well-ordering, but it is a total ordering. We abbreviate
X
<
Y
∨
X
=
Y
{\displaystyle X<Y\lor X=Y}
to
X
≤
Y
{\displaystyle X\leq Y}
. We then define total recursive maps:
d
o
m
:
X
→
d
o
m
(
X
)
{\displaystyle dom:X\rightarrow dom(X)}
[
]
:
(
X
,
Y
)
→
X
[
Y
]
{\displaystyle []:(X,Y)\rightarrow X[Y]}
in the following way:
X
=
0
_
→
d
o
m
(
X
)
=
0
_
∧
X
[
Y
]
=
0
_
{\displaystyle X={\underline {0}}\rightarrow dom(X)={\underline {0}}\land X[Y]={\underline {0}}}
Suppose
X
=
⟨
X
1
,
X
2
⟩
{\displaystyle X=\langle X_{1},X_{2}\rangle }
for some
X
1
,
X
2
∈
T
{\displaystyle X_{1},X_{2}\in T}
. Then:
Suppose
d
o
m
(
X
2
)
=
0
_
{\displaystyle dom(X_{2})={\underline {0}}}
d
o
m
(
X
1
)
=
0
_
→
d
o
m
(
X
)
=
X
∧
X
[
Y
]
=
0
_
{\displaystyle dom(X_{1})={\underline {0}}\rightarrow dom(X)=X\land X[Y]={\underline {0}}}
d
o
m
(
X
1
)
=
1
_
→
d
o
m
(
X
)
=
X
∧
X
[
Y
]
=
Y
{\displaystyle dom(X_{1})={\underline {1}}\rightarrow dom(X)=X\land X[Y]=Y}
d
o
m
(
X
1
)
∉
{
0
_
,
1
_
}
→
d
o
m
(
X
)
=
d
o
m
(
X
1
)
∧
X
[
Y
]
=
⟨
X
1
[
Y
]
,
0
_
⟩
{\displaystyle dom(X_{1})\notin \{{\underline {0}},{\underline {1}}\}\rightarrow dom(X)=dom(X_{1})\land X[Y]=\langle X_{1}[Y],{\underline {0}}\rangle }
d
o
m
(
X
2
)
=
1
_
→
d
o
m
(
X
)
=
ω
_
{\displaystyle dom(X_{2})={\underline {1}}\rightarrow dom(X)={\underline {\omega }}}
Y
=
1
_
→
X
[
Y
]
=
⟨
X
1
,
X
2
[
0
_
]
⟩
{\displaystyle Y={\underline {1}}\rightarrow X[Y]=\langle X_{1},X_{2}[{\underline {0}}]\rangle }
Y
=
k
_
(
2
≤
k
<
ω
)
→
X
[
Y
]
=
(
⟨
X
1
,
X
2
[
0
_
]
⟩
,
.
.
.
,
⟨
X
1
,
X
2
[
0
_
]
⟩
)
⏟
k
{\displaystyle Y={\underline {k}}(2\leq k<\omega )\rightarrow X[Y]=\underbrace {(\langle X_{1},X_{2}[{\underline {0}}]\rangle ,...,\langle X_{1},X_{2}[{\underline {0}}]\rangle )} _{k}}
Otherwise,
X
[
Y
]
=
0
_
{\displaystyle X[Y]={\underline {0}}}
d
o
m
(
X
2
)
=
ω
_
→
d
o
m
(
X
)
=
ω
_
∧
X
[
Y
]
=
⟨
X
1
,
X
2
[
Y
]
⟩
{\displaystyle dom(X_{2})={\underline {\omega }}\rightarrow dom(X)={\underline {\omega }}\land X[Y]=\langle X_{1},X_{2}[Y]\rangle }
Suppose
d
o
m
(
X
2
)
∉
{
0
_
,
1
_
,
ω
_
}
{\displaystyle dom(X_{2})\notin \{{\underline {0}},{\underline {1}},{\underline {\omega }}\}}
. Then:
d
o
m
(
X
2
)
<
X
→
d
o
m
(
X
)
=
d
o
m
(
X
2
)
∧
X
[
Y
]
=
⟨
X
1
,
X
2
[
Y
]
⟩
{\displaystyle dom(X_{2})<X\rightarrow dom(X)=dom(X_{2})\land X[Y]=\langle X_{1},X_{2}[Y]\rangle }
Otherwise,
d
o
m
(
X
)
=
ω
{\displaystyle dom(X)=\omega }
. Then:
∃
!
Z
∈
T
(
d
o
m
(
X
2
)
=
⟨
Z
,
0
_
⟩
)
{\displaystyle \exists !Z\in T(dom(X_{2})=\langle Z,{\underline {0}}\rangle )}
, where
∃
!
{\displaystyle \exists !}
is uniqueness quantification .
Y
=
h
_
(
1
≤
h
<
ω
)
∧
X
[
Y
[
0
_
]
]
=
⟨
X
1
,
Γ
⟩
{\displaystyle Y={\underline {h}}(1\leq h<\omega )\land X[Y[{\underline {0}}]]=\langle X_{1},\Gamma \rangle }
for a unique
Γ
∈
T
{\displaystyle \Gamma \in T}
, then
X
[
Y
]
=
⟨
X
1
,
X
2
[
⟨
Z
[
0
_
]
,
Γ
⟩
]
⟩
{\displaystyle X[Y]=\langle X_{1},X_{2}[\langle Z[{\underline {0}}],\Gamma \rangle ]\rangle }
.
Otherwise,
X
[
Y
]
=
⟨
X
1
,
X
2
[
⟨
Z
[
0
_
]
,
0
_
⟩
]
⟩
{\displaystyle X[Y]=\langle X_{1},X_{2}[\langle Z[{\underline {0}}],{\underline {0}}\rangle ]\rangle }
.
If
X
=
(
X
1
,
.
.
.
,
X
m
)
{\displaystyle X=(X_{1},...,X_{m})}
for some
X
1
,
.
.
.
,
X
m
∈
P
T
∧
2
≤
m
<
ω
{\displaystyle X_{1},...,X_{m}\in PT\land 2\leq m<\omega }
,
d
o
m
(
X
)
=
d
o
m
(
X
m
)
{\displaystyle dom(X)=dom(X_{m})}
. Then:
X
m
[
Y
]
=
0
_
∧
m
=
2
→
X
[
Y
]
=
X
1
{\displaystyle X_{m}[Y]={\underline {0}}\land m=2\rightarrow X[Y]=X_{1}}
X
m
[
Y
]
=
0
_
∧
m
>
2
→
X
[
Y
]
=
(
X
1
,
.
.
.
,
X
m
−
1
)
{\displaystyle X_{m}[Y]={\underline {0}}\land m>2\rightarrow X[Y]=(X_{1},...,X_{m-1})}
X
m
[
Y
]
∈
P
T
→
X
[
Y
]
=
(
X
1
,
.
.
.
,
X
m
−
1
,
X
m
[
Y
]
)
{\displaystyle X_{m}[Y]\in PT\rightarrow X[Y]=(X_{1},...,X_{m-1},X_{m}[Y])}
If
X
m
[
Y
]
=
(
Z
1
,
.
.
.
,
Z
m
′
)
{\displaystyle X_{m}[Y]=(Z_{1},...,Z_{m'})}
for some
Z
1
,
.
.
.
,
Z
m
′
∈
P
T
(
2
≤
m
′
<
ω
)
{\displaystyle Z_{1},...,Z_{m'}\in PT(2\leq m'<\omega )}
, then
X
[
Y
]
=
(
X
1
,
.
.
.
,
X
m
−
1
,
Z
1
,
.
.
.
,
Z
m
′
)
{\displaystyle X[Y]=(X_{1},...,X_{m-1},Z_{1},...,Z_{m'})}
Next we will construct a recursive subset
O
T
⊂
T
{\displaystyle OT\subset T}
of standard forms closed under
{
[
n
_
]
|
n
∈
N
}
{\displaystyle \{[{\underline {n}}]|n\in \mathbb {N} \}}
such that
[
]
{\displaystyle []}
restricted to
{
X
∈
O
T
|
X
<
⟨
1
_
,
0
_
⟩
}
×
{
n
_
|
n
∈
N
}
{\displaystyle \{X\in OT|X<\langle {\underline {1}},{\underline {0}}\rangle \}\times \{{\underline {n}}|n\in \mathbb {N} \}}
forms a recursive system of fundamental sequences with respect to
<
{\displaystyle <}
. For any
(
X
,
Y
,
Z
)
∈
T
3
{\displaystyle (X,Y,Z)\in T^{3}}
, we define a
3
{\displaystyle 3}
-ary relation
G
(
X
,
Y
)
⊲
Z
{\displaystyle G(X,Y)\vartriangleleft Z}
in the following way:
Y
=
0
_
→
G
(
X
,
Y
)
⊲
Z
=
⊤
{\displaystyle Y={\underline {0}}\rightarrow G(X,Y)\vartriangleleft Z=\top }
Suppose
Y
=
⟨
W
1
,
W
2
⟩
{\displaystyle Y=\langle W_{1},W_{2}\rangle }
for some
W
1
,
W
2
∈
T
{\displaystyle W_{1},W_{2}\in T}
:
X
≤
W
1
→
(
G
(
X
,
Y
)
⊲
Z
↔
(
W
2
<
Z
)
∨
(
G
(
X
,
W
1
)
⊲
Z
)
∨
(
G
(
X
,
W
2
)
⊲
Z
)
)
{\displaystyle X\leq W_{1}\rightarrow (G(X,Y)\vartriangleleft Z\leftrightarrow (W_{2}<Z)\lor (G(X,W_{1})\vartriangleleft Z)\lor (G(X,W_{2})\vartriangleleft Z))}
W
1
<
X
→
G
(
X
,
Y
)
⊲
Z
=
⊤
{\displaystyle W_{1}<X\rightarrow G(X,Y)\vartriangleleft Z=\top }
If
Y
=
(
W
1
,
.
.
.
,
W
m
′
)
{\displaystyle Y=(W_{1},...,W_{m'})}
for some
(
W
1
,
.
.
.
,
W
m
′
)
∈
P
T
(
2
≤
m
′
<
ω
)
{\displaystyle (W_{1},...,W_{m'})\in PT(2\leq m'<\omega )}
, then
∀
i
∈
N
∧
i
<
m
′
(
G
(
X
,
Y
)
⊲
Z
↔
G
(
X
,
W
i
+
1
)
⊲
Z
)
{\displaystyle \forall i\in \mathbb {N} \land i<m'(G(X,Y)\vartriangleleft Z\leftrightarrow G(X,W_{i+1})\vartriangleleft Z)}
We define a recursive subset
O
T
⊂
T
{\displaystyle OT\subset T}
in the following way:
0
_
∈
O
T
{\displaystyle {\underline {0}}\in OT}
∀
X
1
,
X
2
∈
T
,
⟨
X
1
,
X
2
⟩
∈
O
T
↔
X
1
∈
O
T
∧
X
2
∈
O
T
∧
G
(
X
1
,
X
2
)
⊲
X
2
{\displaystyle \forall X_{1},X_{2}\in T,\langle X_{1},X_{2}\rangle \in OT\leftrightarrow X_{1}\in OT\land X_{2}\in OT\land G(X_{1},X_{2})\vartriangleleft X_{2}}
∀
i
∈
N
∧
i
<
m
∀
j
∈
N
∧
j
<
m
−
1
(
X
j
+
2
≤
X
j
+
1
)
∀
X
1
,
.
.
.
,
X
m
∈
P
T
(
2
≤
M
<
ω
)
(
(
X
1
,
.
.
.
,
X
m
)
∈
O
T
↔
X
i
+
1
∈
O
T
)
{\displaystyle \forall i\in \mathbb {N} \land i<m\forall j\in \mathbb {N} \land j<m-1(X_{j+2}\leq X_{j+1})\forall X_{1},...,X_{m}\in PT(2\leq M<\omega )((X_{1},...,X_{m})\in OT\leftrightarrow X_{i+1}\in OT)}
Ω
Ω
.
.
.
{\displaystyle \Omega _{\Omega _{...}}}
denotes the least
Ω
{\displaystyle \Omega }
fixed point. We then define a map
o
:
T
→
Ω
Ω
.
.
.
{\displaystyle o:T\rightarrow \Omega _{\Omega _{...}}}
in the following way:
X
=
0
_
→
o
(
X
)
=
0
{\displaystyle X={\underline {0}}\rightarrow o(X)=0}
If
X
=
⟨
Y
1
,
Y
2
⟩
{\displaystyle X=\langle Y_{1},Y_{2}\rangle }
for some
Y
1
,
Y
2
∈
T
{\displaystyle Y_{1},Y_{2}\in T}
, then
o
(
X
)
=
ψ
o
(
Y
1
)
(
o
(
Y
2
)
)
{\displaystyle o(X)=\psi _{o(Y_{1})}(o(Y_{2}))}
, where
ψ
{\displaystyle \psi }
is extended Buchholz's function.
If
X
=
(
Y
1
,
.
.
.
,
Y
m
)
{\displaystyle X=(Y_{1},...,Y_{m})}
for some
Y
1
,
.
.
.
,
Y
m
∈
P
T
(
2
≤
m
<
ω
)
{\displaystyle Y_{1},...,Y_{m}\in PT(2\leq m<\omega )}
then
o
(
X
)
=
∑
i
=
1
m
o
(
Y
i
)
{\displaystyle o(X)=\sum _{i=1}^{m}o(Y_{i})}
, where
Σ
{\displaystyle \Sigma }
is summation.
By the construction,
(
O
T
,
<
)
{\displaystyle (OT,<)}
forms an ordinal notation, and the restriction of
o
{\displaystyle o}
gives the isomorphisms
(
O
T
,
<
)
→
(
C
0
(
Ω
Ω
.
.
.
)
,
∈
)
{\displaystyle (OT,<)\rightarrow (C_{0}(\Omega _{\Omega _{...}}),\in )}
(
{
X
∈
O
T
|
X
<
⟨
1
_
,
0
_
⟩
}
,
<
)
→
(
C
0
(
Ω
Ω
.
.
.
)
∩
Ω
,
∈
)
{\displaystyle (\{X\in OT|X<\langle {\underline {1}},{\underline {0}}\rangle \},<)\rightarrow (C_{0}(\Omega _{\Omega _{...}})\cap \Omega ,\in )}
of strictly ordered sets.
3-ary notation
EBOCF (Extended Buchholz's OCF) is a
2
{\displaystyle 2}
-ary function. So, kanrokoti decided to extend it:
ψ
A
(
B
)
⟹
ψ
0
(
A
,
B
)
{\displaystyle \psi _{A}(B)\implies \psi _{0}(A,B)}
. Please be careful that the 3 variables ψ is neither an OCF nor ordinal notation. Kanoroki named this notation "くまくま 3 variables ψ". "くま" means "bear" in Japanese. Here is the definition:
We define sets
T
{\displaystyle T}
and
P
T
{\displaystyle PT}
as formal strings consisting of
0
{\displaystyle 0}
, the
ψ
{\displaystyle \psi }
function, parentheses
(
)
{\displaystyle ()}
, addition
+
{\displaystyle +}
and commas in the following way:
0
∈
T
{\displaystyle 0\in T}
∀
X
1
,
X
2
,
X
3
∈
T
(
ψ
X
1
(
X
2
,
X
3
)
∈
T
∧
ψ
X
1
(
X
2
,
X
3
)
∈
P
T
)
{\displaystyle \forall X_{1},X_{2},X_{3}\in T(\psi _{X_{1}}(X_{2},X_{3})\in T\land \psi _{X_{1}}(X_{2},X_{3})\in PT)}
∀
X
1
,
.
.
.
,
X
m
∈
P
T
(
2
≤
m
<
ω
)
(
∑
i
=
1
m
X
1
∈
T
)
{\displaystyle \forall X_{1},...,X_{m}\in PT(2\leq m<\omega )(\sum _{i=1}^{m}X_{1}\in T)}
0
{\displaystyle 0}
is written as
$
0
{\displaystyle \$0}
,
ψ
0
(
0
,
0
)
=
1
{\displaystyle \psi _{0}(0,0)=1}
is written as
$
1
{\displaystyle \$1}
, and
$
1
+
.
.
.
+
$
1
⏟
n
{\displaystyle \underbrace {\$1+...+\$1} _{n}}
is written as
$
n
{\displaystyle \$n}
for all
n
∈
N
∧
n
>
1
{\displaystyle n\in \mathbb {N} \land n>1}
, and
ψ
0
(
0
,
$
1
)
=
ω
{\displaystyle \psi _{0}(0,\$1)=\omega }
is written as
$
ω
{\displaystyle \$\omega }
. Next, we will define the "magnitude" relation for the notation:
X
=
0
→
(
X
<
Y
↔
Y
≠
0
)
{\displaystyle X=0\rightarrow (X<Y\leftrightarrow Y\neq 0)}
Suppose
X
=
ψ
X
1
(
X
2
,
X
3
)
{\displaystyle X=\psi _{X_{1}}(X_{2},X_{3})}
for some
X
1
,
X
2
,
X
3
∈
T
{\displaystyle X_{1},X_{2},X_{3}\in T}
. Then:
Y
=
0
→
X
<
Y
=
⊥
{\displaystyle Y=0\rightarrow X<Y=\bot }
Suppose
Y
=
ψ
Y
1
(
Y
2
,
Y
3
)
{\displaystyle Y=\psi _{Y_{1}}(Y_{2},Y_{3})}
for some
Y
1
,
Y
2
,
Y
3
∈
T
{\displaystyle Y_{1},Y_{2},Y_{3}\in T}
. Then:
X
1
=
Y
1
∧
X
2
=
Y
2
→
(
X
<
Y
↔
X
3
<
Y
3
)
{\displaystyle X_{1}=Y_{1}\land X_{2}=Y_{2}\rightarrow (X<Y\leftrightarrow X_{3}<Y_{3})}
X
1
=
Y
1
∧
X
2
≠
Y
2
→
(
X
<
Y
↔
X
2
<
Y
2
)
{\displaystyle X_{1}=Y_{1}\land X_{2}\neq Y_{2}\rightarrow (X<Y\leftrightarrow X_{2}<Y_{2})}
X
1
≠
Y
1
→
(
X
<
Y
↔
X
1
<
Y
1
)
{\displaystyle X_{1}\neq Y_{1}\rightarrow (X<Y\leftrightarrow X_{1}<Y_{1})}
If
Y
=
∑
i
=
1
m
′
Y
i
{\displaystyle Y=\sum _{i=1}^{m'}Y_{i}}
for some
Y
1
,
.
.
.
,
Y
m
′
∈
P
T
(
2
≤
m
′
<
ω
)
{\displaystyle Y_{1},...,Y_{m'}\in PT(2\leq m'<\omega )}
, then
X
<
Y
↔
(
X
=
Y
1
∨
X
<
Y
1
)
{\displaystyle X<Y\leftrightarrow (X=Y_{1}\lor X<Y_{1})}
Suppose
X
=
∑
i
=
1
m
′
X
i
{\displaystyle X=\sum _{i=1}^{m'}X_{i}}
for some
X
1
,
.
.
.
,
X
m
∈
P
T
(
2
≤
m
′
<
ω
)
{\displaystyle X_{1},...,X_{m}\in PT(2\leq m'<\omega )}
. Then:
Y
=
0
→
X
<
Y
=
⊥
{\displaystyle Y=0\rightarrow X<Y=\bot }
Suppose
Y
=
ψ
Y
1
(
Y
2
,
Y
3
)
{\displaystyle Y=\psi _{Y_{1}}(Y_{2},Y_{3})}
for some
Y
1
,
Y
2
,
Y
3
∈
T
{\displaystyle Y_{1},Y_{2},Y_{3}\in T}
, then
X
<
Y
↔
X
1
<
Y
{\displaystyle X<Y\leftrightarrow X_{1}<Y}
.
Suppose
Y
=
∑
i
=
1
m
′
Y
i
{\displaystyle Y=\sum _{i=1}^{m'}Y_{i}}
for some
Y
1
,
.
.
.
,
Y
m
′
∈
P
T
(
2
≤
m
′
<
ω
)
{\displaystyle Y_{1},...,Y_{m'}\in PT(2\leq m'<\omega )}
, then
X
<
Y
↔
(
X
=
Y
1
∨
X
<
Y
1
)
{\displaystyle X<Y\leftrightarrow (X=Y_{1}\lor X<Y_{1})}
. Then:
Suppose
X
1
=
Y
1
{\displaystyle X_{1}=Y_{1}}
. Then:
m
=
2
∧
m
′
=
2
→
(
X
<
Y
↔
X
2
<
Y
2
)
{\displaystyle m=2\land m'=2\rightarrow (X<Y\leftrightarrow X_{2}<Y_{2})}
m
=
2
∧
m
′
>
2
→
(
X
<
Y
↔
X
2
<
∑
i
=
2
m
′
Y
i
)
{\displaystyle m=2\land m'>2\rightarrow (X<Y\leftrightarrow X_{2}<\sum _{i=2}^{m'}Y_{i})}
m
>
2
∧
m
′
=
2
→
(
X
<
Y
↔
∑
i
=
2
m
X
i
<
Y
2
)
{\displaystyle m>2\land m'=2\rightarrow (X<Y\leftrightarrow \sum _{i=2}^{m}X_{i}<Y_{2})}
m
>
2
∧
m
′
>
2
→
(
X
<
Y
↔
∑
i
=
2
m
X
i
<
∑
i
=
2
m
′
Y
i
)
{\displaystyle m>2\land m'>2\rightarrow (X<Y\leftrightarrow \sum _{i=2}^{m}X_{i}<\sum _{i=2}^{m'}Y_{i})}
.
X
1
≠
Y
1
→
(
X
<
Y
↔
X
1
<
Y
1
)
{\displaystyle X_{1}\neq Y_{1}\rightarrow (X<Y\leftrightarrow X_{1}<Y_{1})}
We then define a total recursive map
d
o
m
:
X
→
d
o
m
(
X
)
{\displaystyle dom:X\rightarrow dom(X)}
like so:
X
=
0
→
d
o
m
(
X
)
=
0
{\displaystyle X=0\rightarrow dom(X)=0}
Suppose
X
=
ψ
X
1
(
X
2
,
X
3
)
{\displaystyle X=\psi _{X_{1}}(X_{2},X_{3})}
for some
X
1
,
X
2
,
X
3
∈
T
{\displaystyle X_{1},X_{2},X_{3}\in T}
. Then:
Suppose
d
o
m
(
X
3
)
=
0
{\displaystyle dom(X_{3})=0}
. Then:
Suppose
d
o
m
(
X
2
)
=
0
{\displaystyle dom(X_{2})=0}
. Then:
d
o
m
(
X
1
)
=
0
∨
d
o
m
(
X
1
)
=
$
1
→
d
o
m
(
X
)
=
X
{\displaystyle dom(X_{1})=0\lor dom(X_{1})=\$1\rightarrow dom(X)=X}
.
d
o
m
(
X
1
)
∉
{
0
,
$
1
}
→
d
o
m
(
X
)
=
d
o
m
(
X
1
)
{\displaystyle dom(X_{1})\notin \{0,\$1\}\rightarrow dom(X)=dom(X_{1})}
.
d
o
m
(
X
2
)
=
$
1
→
d
o
m
(
X
)
=
X
{\displaystyle dom(X_{2})=\$1\rightarrow dom(X)=X}
.
Suppose
d
o
m
(
X
2
)
∉
{
0
,
$
1
}
{\displaystyle dom(X_{2})\notin \{0,\$1\}}
. Then:
d
o
m
(
X
2
)
<
X
→
d
o
m
(
X
)
=
d
o
m
(
X
2
)
{\displaystyle dom(X_{2})<X\rightarrow dom(X)=dom(X_{2})}
Otherwise,
d
o
m
(
X
)
=
$
ω
{\displaystyle dom(X)=\$\omega }
d
o
m
(
X
3
)
=
$
1
∨
d
o
m
(
X
3
)
=
$
ω
→
d
o
m
(
X
)
=
$
ω
{\displaystyle dom(X_{3})=\$1\lor dom(X_{3})=\$\omega \rightarrow dom(X)=\$\omega }
Suppose
d
o
m
(
X
3
)
∉
{
0
,
$
1
,
$
ω
}
{\displaystyle dom(X_{3})\notin \{0,\$1,\$\omega \}}
. Then:
d
o
m
(
X
3
)
<
X
→
d
o
m
(
X
)
=
d
o
m
(
X
3
)
{\displaystyle dom(X_{3})<X\rightarrow dom(X)=dom(X_{3})}
Otherwise,
d
o
m
(
X
)
=
$
ω
{\displaystyle dom(X)=\$\omega }
If
X
=
∑
i
=
1
m
X
i
{\displaystyle X=\sum _{i=1}^{m}X_{i}}
for some
X
1
,
.
.
.
,
X
m
∈
P
T
(
2
≤
m
<
ω
)
{\displaystyle X_{1},...,X_{m}\in PT(2\leq m<\omega )}
, then
d
o
m
(
X
)
=
d
o
m
(
X
m
)
{\displaystyle dom(X)=dom(X_{m})}
.
Next, we define the fundamental sequences. We define total recursive maps
[
]
:
(
X
,
Y
)
→
X
[
Y
]
{\displaystyle []:(X,Y)\rightarrow X[Y]}
in the following way:
X
=
0
→
X
[
Y
]
=
0
{\displaystyle X=0\rightarrow X[Y]=0}
Suppose
X
=
ψ
X
1
(
X
2
,
X
3
)
{\displaystyle X=\psi _{X_{1}}(X_{2},X_{3})}
for some
X
1
,
X
2
,
X
3
∈
T
{\displaystyle X_{1},X_{2},X_{3}\in T}
. Then:
Suppose
d
o
m
(
X
3
)
=
0
{\displaystyle dom(X_{3})=0}
. Then:
Suppose
d
o
m
(
X
2
)
=
0
{\displaystyle dom(X_{2})=0}
. Then:
d
o
m
(
X
1
)
=
0
→
X
[
Y
]
=
0
{\displaystyle dom(X_{1})=0\rightarrow X[Y]=0}
d
o
m
(
X
1
)
=
$
1
→
X
[
Y
]
=
Y
{\displaystyle dom(X_{1})=\$1\rightarrow X[Y]=Y}
d
o
m
(
X
1
)
∉
{
0
,
$
1
}
→
X
[
Y
]
=
ψ
X
1
[
Y
]
(
X
2
,
X
3
)
{\displaystyle dom(X_{1})\notin \{0,\$1\}\rightarrow X[Y]=\psi _{X_{1}[Y]}(X_{2},X_{3})}
d
o
m
(
X
2
)
=
$
1
→
X
[
Y
]
=
Y
{\displaystyle dom(X_{2})=\$1\rightarrow X[Y]=Y}
Suppose
d
o
m
(
X
2
)
∉
{
0
,
$
1
}
{\displaystyle dom(X_{2})\notin \{0,\$1\}}
. Then:
d
o
m
(
X
2
)
<
X
→
X
[
Y
]
=
ψ
X
1
(
X
2
[
Y
]
,
X
3
)
{\displaystyle dom(X_{2})<X\rightarrow X[Y]=\psi _{X_{1}}(X_{2}[Y],X_{3})}
Otherwise,
∃
!
P
,
Q
∈
T
(
d
o
m
(
X
3
)
=
ψ
P
(
Q
,
0
)
)
{\displaystyle \exists !P,Q\in T(dom(X_{3})=\psi _{P}(Q,0))}
. Then:
Suppose
Q
=
0
{\displaystyle Q=0}
. Then:
∃
!
Γ
∈
T
(
Y
=
$
h
(
1
≤
h
<
ω
)
∧
X
[
Y
[
0
]
]
=
ψ
X
1
(
Γ
,
X
3
)
→
X
[
Y
]
=
ψ
X
1
(
X
2
[
ψ
P
[
0
]
(
Γ
,
0
)
]
,
X
3
)
)
{\displaystyle \exists !\Gamma \in T(Y=\$h(1\leq h<\omega )\land X[Y[0]]=\psi _{X_{1}}(\Gamma ,X_{3})\rightarrow X[Y]=\psi _{X_{1}}(X_{2}[\psi _{P[0]}(\Gamma ,0)],X_{3}))}
Otherwise,
X
[
Y
]
=
ψ
X
1
(
X
2
[
ψ
P
[
0
]
(
Q
,
0
)
]
,
X
3
)
{\displaystyle X[Y]=\psi _{X_{1}}(X_{2}[\psi _{P[0]}(Q,0)],X_{3})}
Suppose
Q
≠
0
{\displaystyle Q\neq 0}
. Then:
∃
!
Γ
∈
T
(
Y
=
$
h
(
1
≤
h
<
ω
)
∧
X
[
Y
[
0
]
]
=
ψ
X
1
(
Γ
,
X
3
)
→
X
[
Y
]
=
ψ
X
1
(
X
2
[
ψ
P
(
Q
[
0
]
,
Γ
)
]
,
X
3
)
)
{\displaystyle \exists !\Gamma \in T(Y=\$h(1\leq h<\omega )\land X[Y[0]]=\psi _{X_{1}}(\Gamma ,X_{3})\rightarrow X[Y]=\psi _{X_{1}}(X_{2}[\psi _{P}(Q[0],\Gamma )],X_{3}))}
Otherwise,
X
[
Y
]
=
ψ
X
1
(
X
2
[
ψ
P
(
Q
[
0
]
,
0
)
]
,
X
3
)
{\displaystyle X[Y]=\psi _{X_{1}}(X_{2}[\psi _{P}(Q[0],0)],X_{3})}
Suppose
d
o
m
(
X
3
)
=
$
1
{\displaystyle dom(X_{3})=\$1}
. Then:
Y
=
$
1
→
X
[
Y
]
=
ψ
X
1
(
X
2
,
X
3
[
0
]
)
{\displaystyle Y=\$1\rightarrow X[Y]=\psi _{X_{1}}(X_{2},X_{3}[0])}
If
Y
=
$
k
(
2
≤
k
<
ω
)
{\displaystyle Y=\$k(2\leq k<\omega )}
, then
X
[
Y
]
=
ψ
X
1
(
X
2
,
X
3
[
0
]
)
+
.
.
.
+
ψ
X
1
(
X
2
,
X
3
[
0
]
)
⏟
k
{\displaystyle X[Y]=\underbrace {\psi _{X_{1}}(X_{2},X_{3}[0])+...+\psi _{X_{1}}(X_{2},X_{3}[0])} _{k}}
Otherwise,
X
[
Y
]
=
0
{\displaystyle X[Y]=0}
d
o
m
(
X
3
)
=
$
ω
→
X
[
Y
]
=
ψ
X
1
(
X
2
,
X
3
[
Y
]
)
{\displaystyle dom(X_{3})=\$\omega \rightarrow X[Y]=\psi _{X_{1}}(X_{2},X_{3}[Y])}
Suppose
d
o
m
(
X
3
)
∉
{
0
,
$
1
,
$
ω
}
{\displaystyle dom(X_{3})\notin \{0,\$1,\$\omega \}}
. Then:
d
o
m
(
X
3
)
<
X
→
X
[
Y
]
=
ψ
X
1
(
X
2
,
X
3
[
Y
]
)
{\displaystyle dom(X_{3})<X\rightarrow X[Y]=\psi _{X_{1}}(X_{2},X_{3}[Y])}
Otherwise,
∃
!
P
,
Q
∈
T
(
d
o
m
(
X
3
)
=
ψ
P
(
Q
,
0
)
)
{\displaystyle \exists !P,Q\in T(dom(X_{3})=\psi _{P}(Q,0))}
.
Suppose
Q
=
0
{\displaystyle Q=0}
. Then:
∃
!
Γ
∈
T
(
Y
=
$
h
(
1
≤
h
<
ω
)
∧
X
[
Y
[
0
]
]
=
ψ
X
1
(
X
2
,
Γ
)
)
→
X
[
Y
]
=
ψ
X
1
(
X
2
,
X
3
[
ψ
P
(
Q
[
0
]
,
Γ
)
]
)
{\displaystyle \exists !\Gamma \in T(Y=\$h(1\leq h<\omega )\land X[Y[0]]=\psi _{X_{1}}(X_{2},\Gamma ))\rightarrow X[Y]=\psi _{X_{1}}(X_{2},X_{3}[\psi _{P}(Q[0],\Gamma )])}
Otherwise,
X
[
Y
]
=
ψ
X
1
(
X
2
,
X
3
[
ψ
P
(
Q
[
0
]
,
Γ
)
]
)
{\displaystyle X[Y]=\psi _{X_{1}}(X_{2},X_{3}[\psi _{P}(Q[0],\Gamma )])}
.
Suppose
Q
≠
0
{\displaystyle Q\neq 0}
. Then:
∃
!
Γ
∈
T
(
Y
=
$
h
(
1
≤
h
<
ω
)
∧
X
[
Y
[
0
]
]
=
ψ
X
1
(
X
2
,
Γ
)
)
→
X
[
Y
]
=
ψ
X
1
(
X
2
,
X
3
[
ψ
P
(
Q
[
0
]
,
0
)
]
)
{\displaystyle \exists !\Gamma \in T(Y=\$h(1\leq h<\omega )\land X[Y[0]]=\psi _{X_{1}}(X_{2},\Gamma ))\rightarrow X[Y]=\psi _{X_{1}}(X_{2},X_{3}[\psi _{P}(Q[0],0)])}
Otherwise,
X
[
Y
]
=
ψ
X
1
(
X
2
,
X
3
[
ψ
P
(
Q
[
0
]
,
Γ
)
]
)
{\displaystyle X[Y]=\psi _{X_{1}}(X_{2},X_{3}[\psi _{P}(Q[0],\Gamma )])}
Suppose
X
=
∑
i
=
1
m
X
i
{\displaystyle X=\sum _{i=1}^{m}X_{i}}
for some
X
1
,
.
.
.
,
X
m
∈
P
T
(
2
≤
m
<
ω
)
{\displaystyle X_{1},...,X_{m}\in PT(2\leq m<\omega )}
. Then:
X
m
[
Y
]
=
0
∧
m
=
2
→
X
[
Y
]
=
X
1
{\displaystyle X_{m}[Y]=0\land m=2\rightarrow X[Y]=X_{1}}
X
m
[
Y
]
=
0
∧
m
>
2
→
X
[
Y
]
=
∑
i
=
1
m
−
1
X
i
{\displaystyle X_{m}[Y]=0\land m>2\rightarrow X[Y]=\sum _{i=1}^{m-1}X_{i}}
X
m
[
Y
]
≠
0
→
X
[
Y
]
=
(
∑
i
=
1
m
−
1
X
i
)
+
X
m
[
Y
]
{\displaystyle X_{m}[Y]\neq 0\rightarrow X[Y]=(\sum _{i=1}^{m-1}X_{i})+X_{m}[Y]}
For some reason, kanrokoti never included the definition for the
ψ
x
(
y
,
z
)
{\displaystyle \psi _{x}(y,z)}
function for
x
≥
1
{\displaystyle x\geq 1}
.[citation needed ] But here we have some numbers defined using the psi function:
KumaKuma 3 variables
ψ
{\displaystyle \psi }
ordinal:
We define the function
g
{\displaystyle g}
such that
n
=
0
→
g
(
n
)
=
1
{\displaystyle n=0\rightarrow g(n)=1}
, otherwise
g
(
n
)
=
ψ
g
(
n
−
1
)
(
0
,
0
)
{\displaystyle g(n)=\psi _{g(n-1)}(0,0)}
.
We define the function
F
{\displaystyle F}
such that
F
(
n
)
=
f
ψ
0
(
0
,
g
(
n
)
)
(
n
)
{\displaystyle F(n)=f_{\psi _{0}(0,g(n))}(n)}
in the fast-growing hierarchy .
The KumaKuma 3 variables
ψ
{\displaystyle \psi }
ordinal is an ordinal
x
{\displaystyle x}
such that
f
x
(
n
)
=
F
10
100
(
10
100
)
{\displaystyle f_{x}(n)=F^{10^{100}}(10^{100})}
.
Kuma-Bachmann-Howard ordinal:
The KBHO is the ordinal
ψ
0
(
0
,
ψ
$
2
(
0
,
0
)
)
{\displaystyle \psi _{0}(0,\psi _{\$2}(0,0))}
.
Kuma-Buchholz ordinal:
The KBO is the ordinal
ψ
0
(
0
,
ψ
$
ω
(
0
,
0
)
)
{\displaystyle \psi _{0}(0,\psi _{\$\omega }(0,0))}
.
Extended Kuma-Buchholz ordinal:
The EKBO is the ordinal
ψ
0
(
0
,
ψ
Ω
Ω
.
.
.
(
0
,
0
)
)
{\displaystyle \psi _{0}(0,\psi _{\Omega _{\Omega _{...}}}(0,0))}
where
Ω
Ω
.
.
.
{\displaystyle \Omega _{\Omega _{...}}}
is the least omega fixed point.
ψ
0
(
0
,
Ω
Ω
.
.
.
)
{\displaystyle \psi _{0}(0,\Omega _{\Omega _{...}})}
KumaKuma-Bachmann-Howard ordinal:
The KKBHO is the ordinal
ψ
0
,
0
(
0
,
ψ
$
2
,
0
(
0
,
0
)
)
{\displaystyle \psi _{0,0}(0,\psi _{\$2,0}(0,0))}
in the extended
4
{\displaystyle 4}
-ary system.
KumaKuma-Buchholz ordinal:
The KKBO is the ordinal
ψ
0
,
0
(
0
,
ψ
$
ω
,
0
(
0
,
0
)
)
{\displaystyle \psi _{0,0}(0,\psi _{\$\omega ,0}(0,0))}
in the extended
4
{\displaystyle 4}
-ary system.
Extended KumaKuma-Buchholz ordinal:
The EKKBO is the ordinal
ψ
0
(
0
,
ψ
ψ
Ω
Ω
.
.
.
(
0
,
0
)
(
0
,
0
)
)
{\displaystyle \psi _{0}(0,\psi _{\psi _{\Omega _{\Omega _{...}}}(0,0)}(0,0))}
in the extended
4
{\displaystyle 4}
-ary system.
Although there is no formal proof, it is expected that EKBO and EKKBO coincide with
ψ
χ
0
(
0
)
(
ψ
χ
2
(
0
)
(
0
)
)
{\displaystyle \psi _{\chi _{0}(0)}(\psi _{\chi _{2}(0)}(0))}
and
ψ
χ
0
(
0
)
(
ψ
χ
3
(
0
)
(
0
)
)
{\displaystyle \psi _{\chi _{0}(0)}(\psi _{\chi _{3}(0)}(0))}
in Rathjen's psi function , respectively.
References
^ Buchholz, W.; Schütte, K. (1983). "Ein Ordinalzahlensystem ftir die beweistheoretische Abgrenzung der H~-Separation und Bar-Induktion". Sitzungsberichte der Bayerischen Akademie der Wissenschaften, Math.-Naturw. Klasse .
Notes