Jump to content

Sample-continuous process

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by 96.241.126.14 (talk) at 20:19, 15 September 2021 (Examples). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematics, a sample-continuous process is a stochastic process whose sample paths are almost surely continuous functions.

Definition

Let (Ω, Σ, P) be a probability space. Let X : I × Ω → S be a stochastic process, where the index set I and state space S are both topological spaces. Then the process X is called sample-continuous (or almost surely continuous, or simply continuous) if the map X(ω) : I → S is continuous as a function of topological spaces for P-almost all ω in Ω.

In many examples, the index set I is an interval of time, [0, T] or [0, +∞), and the state space S is the real line or n-dimensional Euclidean space Rn.

Properties

See also

References

  • Kloeden, Peter E.; Platen, Eckhard (1992). Numerical solution of stochastic differential equations. Applications of Mathematics (New York) 23. Berlin: Springer-Verlag. pp. 38–39. ISBN 3-540-54062-8.