In mathematics (specifically linear algebra , operator theory , and functional analysis ) as well as physics, a linear operator
A
{\displaystyle A}
acting on an inner product space is called positive-semidefinite (or non-negative ) if, for every
x
∈
Dom
(
A
)
{\displaystyle x\in \mathop {\text{Dom}} (A)}
,
⟨
A
x
,
x
⟩
∈
R
{\displaystyle \langle Ax,x\rangle \in \mathbb {R} }
and
⟨
A
x
,
x
⟩
≥
0
{\displaystyle \langle Ax,x\rangle \geq 0}
, where
Dom
(
A
)
{\displaystyle \mathop {\text{Dom}} (A)}
is the domain of
A
{\displaystyle A}
. Positive-semidefinite operators are denoted as
A
≥
0
{\displaystyle A\geq 0}
. The operator is said to be positive-definite , and written
A
>
0
{\displaystyle A>0}
, if
⟨
A
x
,
x
⟩
>
0
,
{\displaystyle \langle Ax,x\rangle >0,}
for all
x
∈
D
o
m
(
A
)
∖
{
0
}
{\displaystyle x\in \mathop {\mathrm {Dom} } (A)\setminus \{0\}}
.
In physics (specifically quantum mechanics ), such operators represent quantum states , via the density matrix formalism.
Cauchy–Schwarz inequality
If
A
≥
0
,
{\displaystyle A\geq 0,}
then
|
⟨
A
x
,
y
⟩
|
2
≤
⟨
A
x
,
x
⟩
⟨
A
y
,
y
⟩
.
{\displaystyle \left|\langle Ax,y\rangle \right|^{2}\leq \langle Ax,x\rangle \langle Ay,y\rangle .}
Indeed, let
ε
>
0.
{\displaystyle \varepsilon >0.}
Applying Cauchy–Schwarz inequality to the inner product
(
x
,
y
)
ε
=
def
⟨
(
A
+
ε
⋅
1
)
x
,
y
⟩
{\displaystyle (x,y)_{\varepsilon }{\stackrel {\text{def}}{=}}\ \langle (A+\varepsilon \cdot \mathbf {1} )x,y\rangle }
as
ε
↓
0
{\displaystyle \varepsilon \downarrow 0}
proves the claim.
It follows that
Im
A
⊥
Ker
A
.
{\displaystyle \mathop {\text{Im}} A\perp \mathop {\text{Ker}} A.}
If
A
{\displaystyle A}
is defined everywhere, and
⟨
A
x
,
x
⟩
=
0
,
{\displaystyle \langle Ax,x\rangle =0,}
then
A
x
=
0.
{\displaystyle Ax=0.}
A ≥ 0 ⇔ A * ≥ 0
If
A
≥
0
,
{\displaystyle A\geq 0,}
then
⟨
A
∗
x
,
x
⟩
=
⟨
x
,
A
∗
x
⟩
¯
=
⟨
A
x
,
x
⟩
¯
=
⟨
A
x
,
x
⟩
≥
0.
{\displaystyle \langle A^{*}x,x\rangle ={\overline {\langle x,A^{*}x\rangle }}={\overline {\langle Ax,x\rangle }}=\langle Ax,x\rangle \geq 0.}
The inverse is proved likewise.
On H C , if A ≥ 0 then A is symmetric
Without loss of generality, let the inner product
⟨
⋅
,
⋅
⟩
{\displaystyle \langle \cdot ,\cdot \rangle }
be anti-linear on the first argument and linear on the second. (If the reverse is true, then we work with
⟨
x
,
y
⟩
op
=
def
⟨
y
,
x
⟩
{\displaystyle \langle x,y\rangle _{\text{op}}{\stackrel {\text{def}}{=}}\ \langle y,x\rangle }
instead). For
x
,
y
∈
Dom
A
,
{\displaystyle x,y\in \mathop {\text{Dom}} A,}
the polarization identity
⟨
A
x
,
y
⟩
=
⟨
A
(
x
+
y
)
,
x
+
y
⟩
−
⟨
A
(
x
−
y
)
,
x
−
y
⟩
−
i
⟨
A
(
x
+
i
y
)
,
x
+
i
y
⟩
+
i
⟨
A
(
x
−
i
y
)
,
x
−
i
y
⟩
{\displaystyle {\begin{aligned}\langle Ax,y\rangle ={}&\langle A(x+y),x+y\rangle -\langle A(x-y),x-y\rangle \\[1mm]&{}-i\langle A(x+iy),x+iy\rangle +i\langle A(x-iy),x-iy\rangle \end{aligned}}}
and the fact that
⟨
A
x
,
x
⟩
=
⟨
x
,
A
x
⟩
,
{\displaystyle \langle Ax,x\rangle =\langle x,Ax\rangle ,}
for positive operators, show that
⟨
A
x
,
y
⟩
=
⟨
x
,
A
y
⟩
,
{\displaystyle \langle Ax,y\rangle =\langle x,Ay\rangle ,}
so
A
{\displaystyle A}
is symmetric.
If A ≥ 0 and Dom A = H C , then A is self-adjoint and bounded
The symmetry of
A
{\displaystyle A}
implies that
Dom
A
⊆
Dom
A
∗
{\displaystyle \mathop {\text{Dom}} A\subseteq \mathop {\text{Dom}} A^{*}}
and
A
=
A
∗
|
Dom
(
A
)
.
{\displaystyle A=A^{*}|_{\mathop {\text{Dom}} (A)}.}
For
A
{\displaystyle A}
to be self-adjoint, it is necessary that
Dom
A
=
Dom
A
∗
.
{\displaystyle \mathop {\text{Dom}} A=\mathop {\text{Dom}} A^{*}.}
In our case, the equality of domains holds because
H
C
=
Dom
A
⊆
Dom
A
∗
,
{\displaystyle H_{\mathbb {C} }=\mathop {\text{Dom}} A\subseteq \mathop {\text{Dom}} A^{*},}
so
A
{\displaystyle A}
is indeed self-adjoint. The fact that
A
{\displaystyle A}
is bounded now follows from the Hellinger–Toeplitz theorem .
This property does not hold on
H
R
.
{\displaystyle H_{\mathbb {R} }.}
Application to physics: quantum states
The definition of a quantum system includes a complex separable Hilbert space
H
C
{\displaystyle H_{\mathbb {C} }}
and a set
S
{\displaystyle {\cal {S}}}
of positive trace-class operators
ρ
{\displaystyle \rho }
on
H
C
{\displaystyle H_{\mathbb {C} }}
for which
Trace
ρ
=
1.
{\displaystyle \mathop {\text{Trace}} \rho =1.}
The set
S
{\displaystyle {\cal {S}}}
is the set of states . Every
ρ
∈
S
{\displaystyle \rho \in {\cal {S}}}
is called a state or a density operator . For
ψ
∈
H
C
,
{\displaystyle \psi \in H_{\mathbb {C} },}
where
‖
ψ
‖
=
1
,
{\displaystyle \|\psi \|=1,}
the operator
P
ψ
{\displaystyle P_{\psi }}
of projection onto the span of
ψ
{\displaystyle \psi }
is called a pure state . (Since each pure state is identifiable with a unit vector
ψ
∈
H
C
,
{\displaystyle \psi \in H_{\mathbb {C} },}
some sources define pure states to be unit elements from
H
C
)
.
{\displaystyle H_{\mathbb {C} }).}
States that are not pure are called mixed .
References