Template:DomainsImagesAndPrototypesOfTrigAndInverseTrigFunctions
Usage with no options
Calling
will display:
Original function |
Description | Abbreviation | Domain | Image/range | Inverse function |
Domain of inverse |
Range of usual principal values of inverse | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
sine | |||||||||||
cosine | |||||||||||
tangent | |||||||||||
cotangent | |||||||||||
secant | |||||||||||
cosecant |
With includeTableDescription
Calling
{{DomainsImagesAndPrototypesOfTrigAndInverseTrigFunctions|includeTableDescription=true}}
will display:
The table below displays names and domains of the inverse trigonometric functions along with the range of their usual principal values in radians.{|class="wikitable" style="background-color: #FFFFFF; text-align: center; ;"
|-
! style='border-style: solid none solid solid;'|Original
function
! style='border-style: solid none;'|Description
! style='border-style: solid none;'|Abbreviation
! style='border-style: solid none;' |
! style='border-style: solid none;' |Domain
! style='border-style: solid none;' |
! style='border-style: solid none;' |Image/range
! style='border-style: solid none solid solid;'|Inverse
function
! style='border-style: solid none;' |
! style='border-style: solid none;' |Domain of
inverse
! style='border-style: solid none;' |
! style='border-style: solid none;' |Range of usual
principal values of inverse
|-
| style='border-style: solid none solid solid; text-align: left; padding-left: 0.5em;'|sine
| style='border-style: solid none; text-align: left; padding-left: 0.5em;'|
| style='border-style: solid none; text-align: right; padding-left: 2em;'|
| style='border-style: solid none; text-align: right;' |
| style='border-style: solid none; text-align: center;'|
| style='border-style: solid none; text-align: right;' |
| style='border-style: solid none; text-align: left;' |
| style='border-style: solid none solid solid; text-align: right; padding-left: 2em;'|
| style='border-style: solid none; text-align: right;' |
| style='border-style: solid none; text-align: center;'|
| style='border-style: solid none; text-align: right;' |
| style='border-style: solid none; text-align: left;' |
|-
| style='border-style: solid none solid solid; text-align: left; padding-left: 0.5em;'|cosine
| style='border-style: solid none; text-align: left; padding-left: 0.5em;'|
| style='border-style: solid none; text-align: right; padding-left: 2em;'|
| style='border-style: solid none; text-align: right;' |
| style='border-style: solid none; text-align: center;'|
| style='border-style: solid none; text-align: right;' |
| style='border-style: solid none; text-align: left;' |
| style='border-style: solid none solid solid; text-align: right; padding-left: 2em;'|
| style='border-style: solid none; text-align: right;' |
| style='border-style: solid none; text-align: center;'|
| style='border-style: solid none; text-align: right;' |
| style='border-style: solid none; text-align: left;' |
|-
| style='border-style: solid none solid solid; text-align: left; padding-left: 0.5em;'|tangent
| style='border-style: solid none; text-align: left; padding-left: 0.5em;'|
| style='border-style: solid none; text-align: right; padding-left: 2em;'|
| style='border-style: solid none; text-align: right;' |
| style='border-style: solid none; text-align: left;' |
| style='border-style: solid none; text-align: right;' |
| style='border-style: solid none; text-align: left;' |
| style='border-style: solid none solid solid; text-align: right; padding-left: 2em;'|
| style='border-style: solid none; text-align: right;' |
| style='border-style: solid none; text-align: center;'|
| style='border-style: solid none; text-align: right;' |
| style='border-style: solid none; text-align: left;' |
|-
| style='border-style: solid none solid solid; text-align: left; padding-left: 0.5em;'|cotangent
| style='border-style: solid none; text-align: left; padding-left: 0.5em;'|
| style='border-style: solid none; text-align: right; padding-left: 2em;'|
| style='border-style: solid none; text-align: right;' |
| style='border-style: solid none; text-align: left;' |
| style='border-style: solid none; text-align: right;' |
| style='border-style: solid none; text-align: left;' |
| style='border-style: solid none solid solid; text-align: right; padding-left: 2em;'|
| style='border-style: solid none; text-align: right;' |
| style='border-style: solid none; text-align: center;'|
| style='border-style: solid none; text-align: right;' |
| style='border-style: solid none; text-align: left;' |
|-
| style='border-style: solid none solid solid; text-align: left; padding-left: 0.5em;'|secant
| style='border-style: solid none; text-align: left; padding-left: 0.5em;'|
| style='border-style: solid none; text-align: right; padding-left: 2em;'|
| style='border-style: solid none; text-align: right;' |
| style='border-style: solid none; text-align: left;' |
| style='border-style: solid none; text-align: right;' |
| style='border-style: solid none; text-align: left;' |
| style='border-style: solid none solid solid; text-align: right; padding-left: 2em;'|
| style='border-style: solid none; text-align: right;' |
| style='border-style: solid none; text-align: center;'|
| style='border-style: solid none; text-align: right;' |
| style='border-style: solid none; text-align: left;' |
|-
| style='border-style: solid none solid solid; text-align: left; padding-left: 0.5em;'|cosecant
| style='border-style: solid none; text-align: left; padding-left: 0.5em;'|
| style='border-style: solid none; text-align: right; padding-left: 2em;'|
| style='border-style: solid none; text-align: right;' |
| style='border-style: solid none; text-align: left;' |
| style='border-style: solid none; text-align: right;' |
| style='border-style: solid none; text-align: left;' |
| style='border-style: solid none solid solid; text-align: right; padding-left: 2em;'|
| style='border-style: solid none; text-align: right;' |
| style='border-style: solid none; text-align: center;'|
| style='border-style: solid none; text-align: right;' |
| style='border-style: solid none; text-align: left;' |
|}
With includeTableDescription and includeExplanationOfNotation
Calling
{{DomainsImagesAndPrototypesOfTrigAndInverseTrigFunctions|includeTableDescription=true|includeExplanationOfNotation=true}}
will display:
The table below displays names and domains of the inverse trigonometric functions along with the range of their usual principal values in radians.{|class="wikitable" style="background-color: #FFFFFF; text-align: center; ;"
|-
! style='border-style: solid none solid solid;'|Original
function
! style='border-style: solid none;'|Description
! style='border-style: solid none;'|Abbreviation
! style='border-style: solid none;' |
! style='border-style: solid none;' |Domain
! style='border-style: solid none;' |
! style='border-style: solid none;' |Image/range
! style='border-style: solid none solid solid;'|Inverse
function
! style='border-style: solid none;' |
! style='border-style: solid none;' |Domain of
inverse
! style='border-style: solid none;' |
! style='border-style: solid none;' |Range of usual
principal values of inverse
|-
| style='border-style: solid none solid solid; text-align: left; padding-left: 0.5em;'|sine
| style='border-style: solid none; text-align: left; padding-left: 0.5em;'|
| style='border-style: solid none; text-align: right; padding-left: 2em;'|
| style='border-style: solid none; text-align: right;' |
| style='border-style: solid none; text-align: center;'|
| style='border-style: solid none; text-align: right;' |
| style='border-style: solid none; text-align: left;' |
| style='border-style: solid none solid solid; text-align: right; padding-left: 2em;'|
| style='border-style: solid none; text-align: right;' |
| style='border-style: solid none; text-align: center;'|
| style='border-style: solid none; text-align: right;' |
| style='border-style: solid none; text-align: left;' |
|-
| style='border-style: solid none solid solid; text-align: left; padding-left: 0.5em;'|cosine
| style='border-style: solid none; text-align: left; padding-left: 0.5em;'|
| style='border-style: solid none; text-align: right; padding-left: 2em;'|
| style='border-style: solid none; text-align: right;' |
| style='border-style: solid none; text-align: center;'|
| style='border-style: solid none; text-align: right;' |
| style='border-style: solid none; text-align: left;' |
| style='border-style: solid none solid solid; text-align: right; padding-left: 2em;'|
| style='border-style: solid none; text-align: right;' |
| style='border-style: solid none; text-align: center;'|
| style='border-style: solid none; text-align: right;' |
| style='border-style: solid none; text-align: left;' |
|-
| style='border-style: solid none solid solid; text-align: left; padding-left: 0.5em;'|tangent
| style='border-style: solid none; text-align: left; padding-left: 0.5em;'|
| style='border-style: solid none; text-align: right; padding-left: 2em;'|
| style='border-style: solid none; text-align: right;' |
| style='border-style: solid none; text-align: left;' |
| style='border-style: solid none; text-align: right;' |
| style='border-style: solid none; text-align: left;' |
| style='border-style: solid none solid solid; text-align: right; padding-left: 2em;'|
| style='border-style: solid none; text-align: right;' |
| style='border-style: solid none; text-align: center;'|
| style='border-style: solid none; text-align: right;' |
| style='border-style: solid none; text-align: left;' |
|-
| style='border-style: solid none solid solid; text-align: left; padding-left: 0.5em;'|cotangent
| style='border-style: solid none; text-align: left; padding-left: 0.5em;'|
| style='border-style: solid none; text-align: right; padding-left: 2em;'|
| style='border-style: solid none; text-align: right;' |
| style='border-style: solid none; text-align: left;' |
| style='border-style: solid none; text-align: right;' |
| style='border-style: solid none; text-align: left;' |
| style='border-style: solid none solid solid; text-align: right; padding-left: 2em;'|
| style='border-style: solid none; text-align: right;' |
| style='border-style: solid none; text-align: center;'|
| style='border-style: solid none; text-align: right;' |
| style='border-style: solid none; text-align: left;' |
|-
| style='border-style: solid none solid solid; text-align: left; padding-left: 0.5em;'|secant
| style='border-style: solid none; text-align: left; padding-left: 0.5em;'|
| style='border-style: solid none; text-align: right; padding-left: 2em;'|
| style='border-style: solid none; text-align: right;' |
| style='border-style: solid none; text-align: left;' |
| style='border-style: solid none; text-align: right;' |
| style='border-style: solid none; text-align: left;' |
| style='border-style: solid none solid solid; text-align: right; padding-left: 2em;'|
| style='border-style: solid none; text-align: right;' |
| style='border-style: solid none; text-align: center;'|
| style='border-style: solid none; text-align: right;' |
| style='border-style: solid none; text-align: left;' |
|-
| style='border-style: solid none solid solid; text-align: left; padding-left: 0.5em;'|cosecant
| style='border-style: solid none; text-align: left; padding-left: 0.5em;'|
| style='border-style: solid none; text-align: right; padding-left: 2em;'|
| style='border-style: solid none; text-align: right;' |
| style='border-style: solid none; text-align: left;' |
| style='border-style: solid none; text-align: right;' |
| style='border-style: solid none; text-align: left;' |
| style='border-style: solid none solid solid; text-align: right; padding-left: 2em;'|
| style='border-style: solid none; text-align: right;' |
| style='border-style: solid none; text-align: center;'|
| style='border-style: solid none; text-align: right;' |
| style='border-style: solid none; text-align: left;' |
|}
The symbol denotes the set of all real numbers and denotes the set of all integers.
The set of all integer multiples of is denoted by
The Minkowski sum notation means
where denotes set subtraction. In other words, the domain of and is the set of all real numbers that are not of the form for some integer
Similarly, the domain of and is the set where is the set of all real numbers that do not belong to the set said differently, the domain of and is the set of all real numbers that are not of the form for some integer