Common Object Request Broker Architecture
![]() | This article includes a list of general references, but it lacks sufficient corresponding inline citations. (February 2009) |
Abbreviation | CORBA |
---|---|
Status | Published |
Year started | 1991 |
Latest version | 3.3 October 2012 |
Organization | Object Management Group |
Website | corba |
The Common Object Request Broker Architecture (CORBA) is a standard defined by the Object Management Group (OMG) designed to facilitate the communication of systems that are deployed on diverse platforms. CORBA enables collaboration between systems on different operating systems, programming languages, and computing hardware. CORBA uses an object-oriented model although the systems that use the CORBA do not have to be object-oriented. CORBA is an example of the distributed object paradigm.
Features
The following describes some of the most significant ways that CORBA can be used to facilitate communication among distributed objects.
Objects By Reference
This reference is either acquired through a stringified Uniform Resource Locator (URL), NameService lookup (similar to Domain Name System (DNS)), or passed-in as a method parameter during a call.
Object references are lightweight objects matching the interface of the real object (remote or local). Method calls on the reference result in subsequent calls to the ORB and blocking on the thread while waiting for a reply, success or failure. The parameters, return data (if any), and exception data are marshaled internally by the ORB according to the local language and OS mapping.
Data By Value
The CORBA Interface Definition Language provides the language- and OS-neutral inter-object communication definition. CORBA Objects are passed by reference, while data (integers, doubles, structs, enums, etc.) are passed by value. The combination of Objects-by-reference and data-by-value provides the means to enforce great data typing while compiling clients and servers, yet preserve the flexibility inherent in the CORBA problem-space.
Objects By Value (OBV)
Apart from remote objects, the CORBA and RMI-IIOP define the concept of the OBV and Valuetypes. The code inside the methods of Valuetype objects is executed locally by default. If the OBV has been received from the remote side, the needed code must be either a priori known for both sides or dynamically downloaded from the sender. To make this possible, the record, defining OBV, contains the Code Base that is a space-separated list of URLs whence this code should be downloaded. The OBV can also have the remote methods.
CORBA Component Model (CCM)
CORBA Component Model (CCM) is an addition to the family of CORBA definitions.[1] It was introduced with CORBA 3 and it describes a standard application framework for CORBA components. Though not dependent on "language dependent Enterprise Java Beans (EJB)", it is a more general form of EJB, providing four component types instead of the two that EJB defines. It provides an abstraction of entities that can provide and accept services through well-defined named interfaces called ports.
The CCM has a component container, where software components can be deployed. The container offers a set of services that the components can use. These services include (but are not limited to) notification, authentication, persistence and transaction processing. These are the most-used services any distributed system requires, and, by moving the implementation of these services from the software components to the component container, the complexity of the components is dramatically reduced.
Portable interceptors
Portable interceptors are the "hooks", used by CORBA and RMI-IIOP to mediate the most important functions of the CORBA system. The CORBA standard defines the following types of interceptors:
- IOR interceptors mediate the creation of the new references to the remote objects, presented by the current server.
- Client interceptors usually mediate the remote method calls on the client (caller) side. If the object Servant exists on the same server where the method is invoked, they also mediate the local calls.
- Server interceptors mediate the handling of the remote method calls on the server (handler) side.
The interceptors can attach the specific information to the messages being sent and IORs being created. This information can be later read by the corresponding interceptor on the remote side. Interceptors can also throw forwarding exceptions, redirecting request to another target.
General InterORB Protocol (GIOP)
The GIOP is an abstract protocol by which Object request brokers (ORBs) communicate. Standards associated with the protocol are maintained by the Object Management Group (OMG). The GIOP architecture provides several concrete protocols, including:
- Internet InterORB Protocol (IIOP) – The Internet Inter-Orb Protocol is an implementation of the GIOP for use over the Internet, and provides a mapping between GIOP messages and the TCP/IP layer.
- SSL InterORB Protocol (SSLIOP) – SSLIOP is IIOP over SSL, providing encryption and authentication.
- HyperText InterORB Protocol (HTIOP) – HTIOP is IIOP over HTTP, providing transparent proxy bypassing.
- Zipped IOP (ZIOP) – A zipped version of GIOP that reduces the bandwidth usage.
VMCID (Vendor Minor Codeset ID)
Each standard CORBA exception includes a minor code to designate the subcategory of the exception. Minor exception codes are of type unsigned long and consist of a 20-bit "Vendor Minor Codeset ID" (VMCID), which occupies the high order 20 bits, and the minor code proper which occupies the low order 12 bits.
Minor codes for the standard exceptions are prefaced by the VMCID assigned to OMG, defined as the unsigned long constant CORBA::OMGVMCID, which has the VMCID allocated to OMG occupying the high order 20 bits. The minor exception codes associated with the standard exceptions that are found in Table 3–13 on page 3-58 are or-ed with OMGVMCID to get the minor code value that is returned in the ex_body structure (see Section 3.17.1, "Standard Exception Definitions", on page 3-52 and Section 3.17.2, "Standard Minor Exception Codes", on page 3-58).
Within a vendor assigned space, the assignment of values to minor codes is left to the vendor. Vendors may request allocation of VMCIDs by sending email to tagrequest@omg.org. A list of currently assigned VMCIDs can be found on the OMG website at: http://www.omg.org/cgi-bin/doc?vendor-tags
The VMCID 0 and 0xfffff are reserved for experimental use. The VMCID OMGVMCID (Section 3.17.1, "Standard Exception Definitions", on page 3-52) and 1 through 0xf are reserved for OMG use.
The Common Object Request Broker: Architecture and Specification (CORBA 2.3)
Corba Location (CorbaLoc)
Corba Location (CorbaLoc) refers to a stringified object reference for a CORBA object that looks similar to a URL.
All CORBA products must support two OMG-defined URLs: "corbaloc:" and "corbaname:". The purpose of these is to provide a human readable and editable way to specify a location where an IOR can be obtained.
An example of corbaloc is shown below:
- corbaloc::160.45.110.41:38693/StandardNS/NameServer-POA/_root
A CORBA product may optionally support the "http:", "ftp:" and "file:" formats. The semantics of these is that they provide details of how to download a stringified IOR (or, recursively, download another URL that will eventually provide a stringified IOR). Some ORBs do deliver additional formats which are proprietary for that ORB.
See also
Software engineering
- Component-based software engineering
- Distributed computing
- Portable object
- Service-oriented architecture (SOA)
Component-based software technologies
- Freedesktop.org D-Bus – current open cross-language cross-platform object model
- GNOME Bonobo – deprecated GNOME cross-language object model
- KDE DCOP – deprecated KDE interprocess and software componentry communication system
- KDE KParts – KDE component framework
- Component Object Model (COM) – Microsoft Windows-only cross-language object model
- DCOM (Distributed COM) – extension making COM able to work in networks
- Common Language Infrastructure – Current .NET cross-language cross-platform object model
- XPCOM (Cross Platform Component Object Model) – developed by Mozilla for applications based on it (e.g. Mozilla Application Suite, SeaMonkey 1.x)
- IBM System Object Model SOM and DSOM – component systems from IBM used in OS/2 and AIX
- Internet Communications Engine (ICE)
- Java remote method invocation (Java RMI)
- Java Platform, Enterprise Edition (Java EE)
- JavaBean
- OpenAIR
- Remote procedure call (RPC)
- Windows Communication Foundation (WCF)
- Software Communications Architecture (SCA) – components for embedded systems, cross-language, cross-transport, cross-platform
Language bindings
- Language binding
- Foreign function interface
- Calling convention
- Dynamic Invocation Interface
- Name mangling
- Application programming interface - API
- Application binary interface - ABI
- Comparison of application virtual machines
- SWIG opensource automatic interfaces bindings generator from many languages to many languages
References
- ^ "The CORBA Component Model". Dr. Dobb's Journal. 1 September 2004. Retrieved 13 March 2017.
Further reading
- "CORBA". Current. Specification. OMG.
- Orfali, Robert. The Essential Client/Server Survival Guide. John Wiley & Sons. ISBN 0-471-15325-7.
- Orfali, Robert; Harkey, Dan; Edwards, Jeri. The Essential Distributed Objects Survival Guide. John Wiley & Sons. ISBN 0-471-12993-3.
- Orfali, Robert; Harkey, Dan. Client/Server Programming with JAVA and CORBA. John Wiley & Sons. ISBN 0-471-24578-X.
- Slama, Dirk; Garbis, Jason; Russell, Perry. Enterprise CORBA. Prentice Hall. ISBN 0-13-083963-9.
- Henning, Michi; Vinoski, Steve. Advanced CORBA Programming with C++. Addison-Wesley. ISBN 0-201-37927-9.
- Korthaus, Axel; Schader, Martin; Aleksy, Markus. Implementing Distributed Systems with Java and CORBA. Springer. ISBN 3-540-24173-6. Archived from the original on 31 October 2005. Retrieved 23 June 2005.
- Bolton, Fintan. Pure Corba. Sams Publishing. ISBN 0-672-31812-1.
- Siegel, Jon. CORBA 3 - Fundamentals and Programming. John Wiley & Sons. ISBN 0-471-29518-3.
- Zahavi, Ron. Enterprise Application Integration with CORBA: Component and Web-Based Solutions. John Wiley & Sons. ISBN 0-471-32720-4.
- Hartman, Bret; Beznosov, hartman; Vinoski, Steve; Flinn, Donald. Enterprise Security with EJB and CORBA. John Wiley & Sons. ISBN 0-471-40131-5.
- Mowbray, Thomas J.; Zahavi, Ron. The Essential Corba: System Integration Using Distributed Objects. John Wiley & Sons. ISBN 0-471-10611-9.
- Rosen, Michael; Curtis, David. Integrating CORBA and COM Applications. John Wiley & Sons. ISBN 0-471-19827-7.
- Brose, Gerald; Vogel, Andreas; Duddy, Keith. Java Programming with CORBA. John Wiley & Sons. ISBN 0-471-37681-7.
- Schettino, John; Hohman, Robin S.; O'Hara, Liz. CORBA For Dummies. Hungry Minds. ISBN 0-7645-0308-1.
- Rosenberger, Jeremy L. Teach Yourself CORBA in 14 Days. Sams Publishing. ISBN 0-672-31208-5.
- Siegel, Jon. Quick CORBA 3. John Wiley & Sons. ISBN 0-471-38935-8.
- Mowbray, Thomas J.; Malveau, Raphael C. CORBA Design Patterns. John Wiley & Sons. ISBN 0-471-15882-8.
- Orfali, Robert; Harkey, Dan; Edwards, Jeri. Instant CORBA. John Wiley & Sons. ISBN 0-471-18333-4.
- Harmon, Paul; Morrissey, William (1996). The Object Technology Casebook. John Wiley & Sons. ISBN 0-471-14717-6.