Chain sequence
Appearance
In the analytic theory of continued fractions, a chain sequence is an infinite sequence {an} of positive real numbers chained together with another sequence {gn} of non-negative real numbers by the equations
where either (a) 0 ≤ gn < 1, or (b) 0 < gn ≤ 1. Chain sequences arise in the study of the convergence problem – both in connection with the parabola theorem, and also as part of the theory of positive definite continued fractions.
The infinite continued fraction of Worpitzky's theorem contains a chain sequence. A closely related theorem[1] shows that
converges uniformly on the closed unit disk |z| ≤ 1 if the coefficients {an} are a chain sequence.
An example
Notes
- ^ Wall traces this result back to Oskar Perron (Wall, 1948, p. 48).
References
- H. S. Wall, Analytic Theory of Continued Fractions, D. Van Nostrand Company, Inc., 1948; reprinted by Chelsea Publishing Company, (1973), ISBN 0-8284-0207-8