From Wikipedia, the free encyclopedia
In the study of Dirac fields in quantum field theory , Richard Feynman invented the convenient Feynman slash notation (less commonly known as the Dirac slash notation [ 1] ). If A is a covariant vector (i.e., a 1-form ),
A
/
=
d
e
f
γ
μ
A
μ
{\displaystyle {A\!\!\!/}\ {\stackrel {\mathrm {def} }{=}}\ \gamma ^{\mu }A_{\mu }}
using the Einstein summation notation where γ are the gamma matrices .
Identities
Using the anticommutators of the gamma matrices, one can show that for any
a
μ
{\displaystyle a_{\mu }}
and
b
μ
{\displaystyle b_{\mu }}
,
a
/
a
/
≡
a
μ
a
μ
⋅
I
4
=
a
2
⋅
I
4
a
/
b
/
+
b
/
a
/
≡
2
a
⋅
b
⋅
I
4
.
{\displaystyle {\begin{aligned}{a\!\!\!/}{a\!\!\!/}&\equiv a^{\mu }a_{\mu }\cdot I_{4}=a^{2}\cdot I_{4}\\{a\!\!\!/}{b\!\!\!/}+{b\!\!\!/}{a\!\!\!/}&\equiv 2a\cdot b\cdot I_{4}.\end{aligned}}}
where
I
4
{\displaystyle I_{4}}
is the identity matrix in four dimensions.
In particular,
∂
/
2
≡
∂
2
⋅
I
4
.
{\displaystyle {\partial \!\!\!/}^{2}\equiv \partial ^{2}\cdot I_{4}.}
Further identities can be read off directly from the gamma matrix identities by replacing the metric tensor with inner products . For example,
tr
(
a
/
b
/
)
≡
4
a
⋅
b
tr
(
a
/
b
/
c
/
d
/
)
≡
4
[
(
a
⋅
b
)
(
c
⋅
d
)
−
(
a
⋅
c
)
(
b
⋅
d
)
+
(
a
⋅
d
)
(
b
⋅
c
)
]
tr
(
γ
5
a
/
b
/
c
/
d
/
)
≡
4
i
ε
μ
ν
λ
σ
a
μ
b
ν
c
λ
d
σ
γ
μ
a
/
γ
μ
≡
−
2
a
/
γ
μ
a
/
b
/
γ
μ
≡
4
a
⋅
b
⋅
I
4
γ
μ
a
/
b
/
c
/
γ
μ
≡
−
2
c
/
b
/
a
/
{\displaystyle {\begin{aligned}\operatorname {tr} ({a\!\!\!/}{b\!\!\!/})&\equiv 4a\cdot b\\\operatorname {tr} ({a\!\!\!/}{b\!\!\!/}{c\!\!\!/}{d\!\!\!/})&\equiv 4\left[(a\cdot b)(c\cdot d)-(a\cdot c)(b\cdot d)+(a\cdot d)(b\cdot c)\right]\\\operatorname {tr} (\gamma _{5}{a\!\!\!/}{b\!\!\!/}{c\!\!\!/}{d\!\!\!/})&\equiv 4i\varepsilon _{\mu \nu \lambda \sigma }a^{\mu }b^{\nu }c^{\lambda }d^{\sigma }\\\gamma _{\mu }{a\!\!\!/}\gamma ^{\mu }&\equiv -2{a\!\!\!/}\\\gamma _{\mu }{a\!\!\!/}{b\!\!\!/}\gamma ^{\mu }&\equiv 4a\cdot b\cdot I_{4}\\\gamma _{\mu }{a\!\!\!/}{b\!\!\!/}{c\!\!\!/}\gamma ^{\mu }&\equiv -2{c\!\!\!/}{b\!\!\!/}{a\!\!\!/}\\\end{aligned}}}
where
ε
μ
ν
λ
σ
{\displaystyle \varepsilon _{\mu \nu \lambda \sigma }}
is the Levi-Civita symbol .
With four-momentum
Often, when using the Dirac equation and solving for cross sections, one finds the slash notation used on four-momentum : using the Dirac basis for the gamma matrices,
γ
0
=
(
I
0
0
−
I
)
,
γ
i
=
(
0
σ
i
−
σ
i
0
)
{\displaystyle \gamma ^{0}={\begin{pmatrix}I&0\\0&-I\end{pmatrix}},\quad \gamma ^{i}={\begin{pmatrix}0&\sigma ^{i}\\-\sigma ^{i}&0\end{pmatrix}}\,}
as well as the definition of four-momentum,
p
μ
=
(
E
,
−
p
x
,
−
p
y
,
−
p
z
)
{\displaystyle p_{\mu }=\left(E,-p_{x},-p_{y},-p_{z}\right)\,}
we see explicitly that
p
/
=
γ
μ
p
μ
=
γ
0
p
0
−
γ
i
p
i
=
[
p
0
0
0
−
p
0
]
−
[
0
σ
i
p
i
−
σ
i
p
i
0
]
=
[
E
−
σ
→
⋅
p
→
σ
→
⋅
p
→
−
E
]
.
{\displaystyle {\begin{aligned}{p\!\!/}&=\gamma ^{\mu }p_{\mu }=\gamma ^{0}p_{0}-\gamma ^{i}p_{i}\\&={\begin{bmatrix}p_{0}&0\\0&-p_{0}\end{bmatrix}}-{\begin{bmatrix}0&\sigma ^{i}p_{i}\\-\sigma ^{i}p_{i}&0\end{bmatrix}}\\&={\begin{bmatrix}E&-{\vec {\sigma }}\cdot {\vec {p}}\\{\vec {\sigma }}\cdot {\vec {p}}&-E\end{bmatrix}}.\end{aligned}}}
Similar results hold in other bases, such as the Weyl basis .
See also
References