Jump to content

Lommel function

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Mathuvw (talk | contribs) at 19:44, 9 June 2021 (Link to Lommel). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

The Lommel differential equation, named after Eugen von Lommel, is an inhomogeneous form of the Bessel differential equation:

Solutions are given by the Lommel functions sμ,ν(z) and Sμ,ν(z), introduced by Eugen von Lommel (1880),

where Jν(z) is a Bessel function of the first kind and Yν(z) a Bessel function of the second kind.

See also

References

  • Erdélyi, Arthur; Magnus, Wilhelm; Oberhettinger, Fritz; Tricomi, Francesco G. (1953), Higher transcendental functions. Vol II (PDF), McGraw-Hill Book Company, Inc., New York-Toronto-London, MR 0058756
  • Lommel, E. (1875), "Ueber eine mit den Bessel'schen Functionen verwandte Function", Math. Ann., 9 (3): 425–444, doi:10.1007/BF01443342
  • Lommel, E. (1880), "Zur Theorie der Bessel'schen Funktionen IV", Math. Ann., 16 (2): 183–208, doi:10.1007/BF01446386
  • Paris, R. B. (2010), "Lommel function", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.
  • Solomentsev, E.D. (2001) [1994], "Lommel function", Encyclopedia of Mathematics, EMS Press