Jump to content

Anderson impurity model

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by MadeOfAtoms (talk | contribs) at 00:22, 15 May 2021 (use conventional d instead of f in basic Anderson models). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

The Anderson impurity model, named after Philip Warren Anderson, is a Hamiltonian that is used to describe magnetic impurities embedded in metals.[1] It is often applied to the description of Kondo effect-type problems[2], such as heavy fermion systems[3] and Kondo insulators[citation needed]. In its simplest form, the model contains a term describing the kinetic energy of the conduction electrons, a two-level term with an on-site Coulomb repulsion that models the impurity energy levels, and a hybridization term that couples conduction and impurity orbitals. For a single impurity, the Hamiltonian takes the form[1]

,

where the operator is the annihilation operator of a conduction electron, and is the annihilation operator for the impurity, is the conduction electron wavevector, and labels the spin. The on–site Coulomb repulsion is , and gives the hybridization.

For heavy-fermion systems, a lattice of impurities is described by the periodic Anderson model[3]. The one-dimensional model is

,

where is the position of impurity site , and is the impurity creation operator (used instead of by convention for heavy-fermion systems). The hybridization term allows f-orbital electrons in heavy fermion systems to interact, although they are separated by a distance greater than the Hill limit.

There are other variants of the Anderson model, such as the SU(4) Anderson model[citation needed], which is used to describe impurities which have an orbital, as well as a spin, degree of freedom. This is relevant in carbon nanotube quantum dot systems. The SU(4) Anderson model Hamiltonian is

,

where and label the orbital degree of freedom (which can take one of two values), and represents the number operator for the impurity.

See also

References

  1. ^ a b Anderson, P. W. (1961). "Localized Magnetic States in Metals". Phys. Rev. 124 (1): 41–53. Bibcode:1961PhRv..124...41A. doi:10.1103/PhysRev.124.41.
  2. ^ Schrieffer, J.R.; Wolff, P.A. (September 1966). "Relation between the Anderson and Kondo Hamiltonians". Physical Review. 149 (2): 491–492. Bibcode:1966PhRv..149..491S. doi:10.1103/PhysRev.149.491. S2CID 55838235.
  3. ^ a b Hewson, A. C. (1993). The Kondo Problem to Heavy Fermions. New York: Cambridge University Press.