Swap test
Appearance

The Swap test is a procedure in quantum computation that is used to check how much two quantum states differ.[1]
Consider two states: and . The state of the system at the beginning of the protocol is . After the Hadamard gate, the state of the system is . The controlled SWAP gate transforms the state into . The second Hadamard gate results in
The Measurement gate on the first qubit ensures that it's 0 with a probability of
when measured. If and are orthogonal , then the probability that 0 is measured is . If the states are equal , then the probability that 0 is measured is 1.[2]
References
- ^ Kang Min-Sung, Heo Jino, Choi Seong-Gon, Moon Sung, Han Sang-Wook (2019). "Implementation of SWAP test for two unknown states in photons via cross-Kerr nonlinearities under decoherence effect". Scientific Reports. 9 (1). doi:10.1038/s41598-019-42662-4.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^
Harry Buhrman, Richard Cleve, John Watrous, Ronald de Wolf (2001). "Quantum Fingerprinting". Physical Review Letters. 87 (16). arXiv:quant-ph/0102001. doi:10.1103/PhysRevLett.87.167902.
{{cite journal}}
: CS1 maint: multiple names: authors list (link)