Jump to content

Mehler–Fock transform

From Wikipedia, the free encyclopedia
This is the current revision of this page, as edited by JCW-CleanerBot (talk | contribs) at 17:31, 27 March 2021 (task, replaced: (N.S.) → |series=New Series). The present address (URL) is a permanent link to this version.
(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

In mathematics, the Mehler–Fock transform is an integral transform introduced by Mehler (1881) and rediscovered by Fock (1943).

It is given by

where P is a Legendre function of the first kind.

Under appropriate conditions, the following inversion formula holds:

References

[edit]
  • Brychkov, Yu.A.; Prudnikov, A.P. (2001) [1994], "Mehler–Fock transform", Encyclopedia of Mathematics, EMS Press
  • Fock, V. A. (1943), "On the representation of an arbitrary function by an integral involving Legendre's functions with a complex index", C. R. (Doklady) Acad. Sci. URSS, New Series, 39: 253–256, MR 0009665
  • Mehler, F. G. (1881), "Ueber eine mit den Kugel- und Cylinderfunctionen verwandte Function und ihre Anwendung in der Theorie der Elektricitätsvertheilung", Mathematische Annalen (in German), 18 (2), Springer Berlin / Heidelberg: 161–194, doi:10.1007/BF01445847, ISSN 0025-5831
  • Yakubovich, S. B. (2001) [1994], "Mehler–Fock transform", Encyclopedia of Mathematics, EMS Press