Equioscillation theorem
Appearance
![]() | This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
|
The equioscillation theorem concerns the approximation of continuous functions using polynomials when the merit function is the maximum difference (uniform norm). Its discovery is attributed to Chebyshev.
Statement
Let be a continuous function from to . Among all the polynomials of degree , the polynomial minimizes the uniform norm of the difference if and only if there are points such that where .
Algorithms
Several minimax approximation algorithms are available, the most common being the Remez algorithm.
References
- Notes on how to prove Chebyshev’s equioscillation theorem at the Wayback Machine (archived July 2, 2011)
- The Chebyshev Equioscillation Theorem by Robert Mayans
See also
- The de la Vallée-Poussin alternation theorem at the Encyclopedia of Mathematics