Zum Inhalt springen

Komplementgraph

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 29. Juni 2004 um 12:07 Uhr durch 129.69.190.228 (Diskussion) (Definitionen). Sie kann sich erheblich von der aktuellen Version unterscheiden.

Einleitung

Bei der Untersuchung von Grapheneigenschaften kommt es häufiger vor, dass man mit Graphen einfache "Rechnungen" ausführen, also Operationen auf und zwischen Graphen anwenden muss, um möglichst kompakt und damit leichter verständlich schreiben zu können. Zu diesem Zweck werden eine ganze Reihe von einfachen Operationen auf Graphen definiert, die häufig Anwendung finden. Dieser Artikel stellt die gängigsten Operationen vor.

Definitionen

Sei G1=(V,E1) ein ungerichter bzw. gerichteter Graph ohne Mehrfachkanten. Der ungerichtete bzw. gerichtete Graph ohne Mehrfachkanten G2=(V,E2) heißt komplementärer Graph, Komplementgraph oder einfach nur Komplement von G1, falls die Schnittmenge von E1 und E2 leer ist und die Vereinigungsmenge von E1 und E2

  • die Menge aller 2-elementigen Teilmengen von V (im ungerichteten Fall) bzw.
  • das kartesische Produkt V×V (im gerichteten Fall) ergibt.

Eine Kante ist also genau dann im Komplement eines Graphen G enthalten, wenn sie nicht in G enthalten ist. Das Komplement des Komplementes von G ist demnach G selbst.

Sind G1=(V1,E1) und G2=(V2,E2) Graphen des selben Typs, so bezeichnet

  • G1+G2 den Graphen, der entsteht, wenn man die Knoten- und Kantenmenge vereinigt,
  • G1-E2 den Graphen, der entsteht, wenn man E2 von der Kantenmenge von G1 abzieht,
  • G1-V2 den Graphen, der entsteht, wenn man V2 von der Knotenmenge von G1 abzieht und alle Kanten entfernt, die Knoten aus V2 enthalten.

Man beachte dabei die unterschiedliche Definition der Begriffe Vereinigungsmenge und Differenzmenge für Mengen und Multimengen. Man schreibt auch abkürzend

Sei G1=(V1,E1) ein ungerichteter Graph, e={v,w} eine Kante von G1 und a ein Knoten, der nicht zu V1 gehört. Sei ferner

  • E={{a,x}|für alle x aus V1\{v,w} für die {v,x} oder {w,x} Kante von G ist), falls G1 Graph ohne Mehrfachkanten ist bzw.
  • E({a,x}}=E1({v,x}+E1({w,x}) für alle x aus V1\{v,w} und E({x,y}}=0 für alle x und y aus V1\{v,w}, falls G1 Graph mit Mehrfachkanten ist.

Man sagt, der Graph G2=(V2,E2) entsteht aus G1 durch Kontraktion von e zu a, falls G2=G1-{v,w}+a+E. Man nennt diese Operation Kantenkontraktion.

Beispiele

kommen noch.