„Endoplasmatisches Retikulum“ – Versionsunterschied
[ungesichtete Version] | [ungesichtete Version] |
PeeCee (Diskussion | Beiträge) revert |
|||
Zeile 35: | Zeile 35: | ||
Die Ryanodin-Rezeptoren sind Calcium-sensitive Calciumkanäle. Sie sind also einerseits permeabel für Calcium und werden andererseits durch Calcium-Ionen aktiviert. Das geschieht, wenn im Cytosol die Calciumkonzentration ansteigt. Calcium-Ionen binden an die Ryanodin-Rezeptoren, diese öffnen sich, und Calcium-Ionen strömen durch sie aus dem ER in das Cytosol. Diesen Prozess nennt man "''Calcium-induzierte Calciumfreisetzung''" (engl. "''CICR''" - ''<u>c</u>alcium-<u>i</u>nduced <u>c</u>alcium <u>r</u>elease''). Am bekanntesten ist die Rolle von CICR bei der Kontraktion der [[Herzmuskel]]zellen. |
Die Ryanodin-Rezeptoren sind Calcium-sensitive Calciumkanäle. Sie sind also einerseits permeabel für Calcium und werden andererseits durch Calcium-Ionen aktiviert. Das geschieht, wenn im Cytosol die Calciumkonzentration ansteigt. Calcium-Ionen binden an die Ryanodin-Rezeptoren, diese öffnen sich, und Calcium-Ionen strömen durch sie aus dem ER in das Cytosol. Diesen Prozess nennt man "''Calcium-induzierte Calciumfreisetzung''" (engl. "''CICR''" - ''<u>c</u>alcium-<u>i</u>nduced <u>c</u>alcium <u>r</u>elease''). Am bekanntesten ist die Rolle von CICR bei der Kontraktion der [[Herzmuskel]]zellen. |
||
In der Membran des ER befinden sich [[ATPasen|Calcium-ATPasen]] vom [[ATPasen|SERCA]]-Typ. ''SERCA'' steht für ''<u>s</u>arko/<u>e</u>ndoplasmatisches <u>R</u>etikulum-<u>A</u>TPase''. Da bei der Aufnahme von Calcium-Ionen aus dem Cytosol in das ER ein steiler Konzentrationsgradient überwunden werden muss, kann dieser [[Membrantransport|Transportvorgang]] nur unter ATP-Verbrauch stattfinden. Es handelt sich also um einen ''primär aktiven'' Transport. |
In der Membran des ER befinden sich [[ATPasen|Calcium-ATPasen]] vom [[ATPasen|SERCA]]-Typ. ''SERCA'' steht für ''<u>s</u>arko/<u>e</u>ndoplasmatisches <u>R</u>etikulum-<u>A</u>TPase''. Da bei der Aufnahme von Calcium-Ionen aus dem Cytosol in das ER ein steiler Konzentrationsgradient überwunden werden muss, kann dieser [[Membrantransport|Transportvorgang]] nur unter ATP-Verbrauch stattfinden. Es handelt sich also um einen ''primär aktiven'' Transport. |
||
und gekickt so wie heute |
|||
=== Raues ER (granuläres ER)=== |
=== Raues ER (granuläres ER)=== |
Version vom 6. Dezember 2006, 11:20 Uhr

Das Endoplasmatische Reticulum (endoplasmatisch = "im Cytosol"; retikulum bzw. reticulum = "kleines Netz"; abgekürzt ER) ist ein reich verzweigtes System flächiger Hohlräume (Zisternen), die von Membranen umschlossen sind. Man findet das ER in allen eukaryotischen Zellen; je nach Zelltyp ist es unterschiedlich stark entwickelt.
Aufbau
Das ER besteht aus einem weit verzweigten Membran-Netzwerk aus Röhren und Zisternen (sackähnlichen Strukturen), die von der ER-Membran umgeben werden. Die ER-Membran schließt das Innere des ERs, das ER-Lumen, vom Cytosol ab. Das Membranlabyrinth des ER macht über die Hälfte der gesamten Membranmenge in einer Eukaryotenzelle aus.
Die ER-Membran geht direkt in die Kernhülle des Zellkerns über, d. h. Kernhülle und ER stellen ein morphologisches Kontinuum dar. Das ER-Lumen steht mit dem Membranzwischenraum der Kernhülle (perinukleärer Raum) in Verbindung.
Teile des ER, raues ER genannt, sind auf ihren Membranflächen mit Ribosomen besetzt; andere Bereiche sind glatt und ribosomenfrei und heißen daher glattes ER. Raues und glattes ER unterscheiden sich in ihrer Funktion. (→ Aufgaben)
Die Struktur des ER ist dynamisch und einer steten Reorganisation unterworfen. Dazu gehören die Verlängerung oder auch Retraktion von Membrantubuli, ihre Verzweigung, Verschmelzung oder Aufspaltung. Diese Motilität des ER ist abhängig vom Cytoskelett. In Pflanzenzellen und Hefe spielt vor allem F-Actin dabei eine wichtige Rolle. In tierischen Zellen dagegen erfolgt der Auf- und Umbau des ER unter dem dominierenden Einfluss der Mikrotubuli. Vor kurzem wurde gezeigt, dass ein Vertreter der Actin-verwandten Proteinfamilie Myosin V für die "Vererbung" des peripheren ER an die Tochterzellen bei der Zellteilung verantwortlich ist.
Aufgaben
Am und im ER finden Translation, Proteinfaltung, posttranslationale Modifikationen von Proteinen und Proteintransport von Transmembranproteinen und sekretorischen Proteinen (→ Exocytose) statt. Außerdem ist das ER der Ort, an dem (z.B. nach der Mitose) neue Kernmembranen gebildet und abgeschnürt werden. Auch dient das ER als intrazellulärer Calcium-Speicher, womit ihm eine Schlüsselrolle in der Signaltransduktion zukommt. In Muskelzellen ist die Freisetzung von Calcium (dort nennt man das ER Sarkoplasmatisches Retikulum, kurz SR) der Mediator einer Kontraktion. Die Aufgaben von rauem und glattem ER sind unterschiedlich.
Glattes ER (agranuläres ER)
Das glatte ER spielt eine wichtige Rolle in mehreren metabolischen Prozessen. Enzyme des glatten ER sind von Bedeutung für die Synthese von verschiedenen Lipiden (v.a. Phospholipide), Fettsäuren und Steroiden (Hormone). Weiterhin spielt das glatte ER eine wichtige Rolle bei dem Kohlenhydratstoffwechsel, der Entgiftung der Zelle, und bei der Einlagerung von Calcium. Dementsprechend findet man in Nebennierenzellen und Leberzellen vorwiegend glatte ER.
Hormonsynthese
Zu den im glatten ER gebildeten Steroiden gehören z. B. die Geschlechtshormone der Wirbeltiere und die Steroidhormone der Nebennieren. Die Zellen in den Hoden und Eierstöcken, die für die Hormonproduktion zuständig sind, besitzen in hohem Maße glatte ER.
Kohlenhydratspeicherung
In den Leberzellen werden Kohlenhydrate als Glycogen gespeichert. Durch Hydrolyse des Glycogen wird aus den Leberzellen Glucose freigesetzt. Dies ist ein wichtiger Vorgang zur Steuerung des Blutzuckerspiegels. Ein Enzym aus der Membran des glatten ERs spaltet von dem ersten Produkt der Hydrolyse, dem Glucose-6-phosphat, die Phosphatgruppe ab, so dass die Glucose die Zelle verlassen kann und so den Blutzuckerspiegel erhöht.
Entgiftung
Das glatte ER ist in der Leber auch an der Entgiftung beteiligt, indem die Enzyme des glatten ER Hydroxylgruppen an die betreffenden Moleküle anheften, so dass diese besser löslich werden. So können Gifte und Medikamente besser aus dem Körper ausgewaschen werden. Bei einer hohen Zufuhr an Giften, Medikamenten oder Alkohol bildet sich entsprechend mehr glattes ER, so dass bei Medikamenten eine höhere Dosis für eine entsprechende Wirkung nötig wird. Ein Medikament, das von glattem ER der Leberzellen umgesetzt wird ist das Beruhigungsmittel Phenobarbital und andere Barbiturate.
Calcium-Speicher
Im Lumen des ER erreicht die Calcium-Konzentration millimolare Werte (ca. M). Im Cytosol beträgt die Konzentration freier Calcium-Ionen in Ruhe dagegen nur ca. 100-150 nM (also etwa M). Damit besteht über die Membran des ER ein Konzentrationsgradient von vier Größenordnungen. Sowohl die Aufnahme von Calcium in das ER als auch die Freisetzung von Calcium-Ionen aus dem ER unterliegt unter physiologischen Bedingungen einer feinen Regulation.
Da Calcium-Ionen im Cytosol ein wichtiger sogenannter second messenger sind, spielt die regulierte Freisetzung von Calcium aus dem ER eine Schlüsselrolle in der intrazellulären Signalgebung. Die Wirkungen einer durch Freisetzung aus dem ER erfolgten Erhöhung der intrazellulären Calciumkonzentration sind vielfältig: Enzyme werden aktiviert oder gehemmt, die Genexpression wird reguliert, in Neuronen wird die synaptische Plastizität beeinflusst, in der Muskulatur kontrahieren die Muskelfasern (Calcium-Ionen werden aus dem sarkoplasmatischen Retikulum (SR) freigesetzt), Zellen des Immunsystems setzen Antikörper frei usw. Calcium-Ionen verlassen das ER durch zwei Arten von Calciumkanälen: die IP3- und die Ryanodin-Rezeptoren. Die Abkürzung steht für Inositoltrisphosphat, welches ebenfalls ein second messenger ist. Es ist ein Produkt der Phospholipase C, die durch bestimmte G-Proteine aktiviert wird. Das geschieht, wenn ein mit diesem G-Protein gekoppelter metabotroper Rezeptor in der Plasmamembran angeregt wird. bindet an seinen spezifischen Rezeptor in der Membran des ER, woraufhin sich die Calcium-Konzentration im Cytoplasma durch den Ausstrom aus dem ER durch die Kanäle der erhöht. In dieser Signalkette (metabotroper Rezeptor - G-Protein - Phospholipase C - - -Rezeptor - Calcium-Freisetzung) kann Calcium auch als tertiärer Bote angesehen werden. Die Ryanodin-Rezeptoren sind Calcium-sensitive Calciumkanäle. Sie sind also einerseits permeabel für Calcium und werden andererseits durch Calcium-Ionen aktiviert. Das geschieht, wenn im Cytosol die Calciumkonzentration ansteigt. Calcium-Ionen binden an die Ryanodin-Rezeptoren, diese öffnen sich, und Calcium-Ionen strömen durch sie aus dem ER in das Cytosol. Diesen Prozess nennt man "Calcium-induzierte Calciumfreisetzung" (engl. "CICR" - calcium-induced calcium release). Am bekanntesten ist die Rolle von CICR bei der Kontraktion der Herzmuskelzellen. In der Membran des ER befinden sich Calcium-ATPasen vom SERCA-Typ. SERCA steht für sarko/endoplasmatisches Retikulum-ATPase. Da bei der Aufnahme von Calcium-Ionen aus dem Cytosol in das ER ein steiler Konzentrationsgradient überwunden werden muss, kann dieser Transportvorgang nur unter ATP-Verbrauch stattfinden. Es handelt sich also um einen primär aktiven Transport. und gekickt so wie heute
Raues ER (granuläres ER)
Das raue ER hat zwei Funktionen: die Proteinsynthese und die Membranproduktion.
Proteinsynthese
Proteine werden häufig von spezialisierten Zellen ausgeschieden (Sekretion). Diese Proteine werden von den Ribosomen produziert, die dem rauen ER anheften. Eines dieser Proteine ist z. B. das Insulin aus Zellen der Bauchspeicheldrüse.
Alle an membranengebundenen Ribosomen entstehenden Polypeptidketten werden zunächst in das Lumen des ER geschleust. Dies geschieht durch porenbildende Proteine (Kotranslation). Auch im Cytosol synthetisierte Proteine werden in das Lumen des ER befördert (Posttranslation). Im Lumen des ER werden die Polypeptidketten zurechtgeschnitten und gefaltet.
Die linearen Aminosäureketten werden nach der Translokation in das ER gefaltet, erhalten also ihre dreidimensionale Struktur. Dieser Prozess wird von anderen Proteinen im ER unterstützt (Chaperone) und kontrolliert. Fehlgefaltete Proteine werden umgehend retranslokiert, d. h. zurück ins Cytosol transportiert und dort durch das Proteasom degradiert. Das Cholera-Bakterium nutzt diesen Mechanismus, um sein Toxin über diesen Prozess in das Cytosol zu bringen, wo es aber der Degradation durch das Proteasom entkommt und seine toxische Wirkung entfalten kann.
Die meisten Sekretionsproteine sind Glycoproteine, welche kovalent gebundene Kohlenhydrate tragen. Diese Kohlenhydrate, es handelt sich um Oligosaccharide, werden im Lumen des ER durch die Enzyme des ER angeheftet. Die fertigen sekretorischen Proteine verbleiben im Lumen des ER und werden somit von Proteinen im Cytosol, welche von freien Ribosomen erstellt wurden, ferngehalten. Die sekretorischen Proteine werden in Form kleiner Membranbläschen abgeschnürt und verlassen so das Lumen des ER als Transportvesikel in Richtung Golgi-Apparat.
1999 erhielt Günter Blobel den Nobelpreis für Physiologie oder Medizin für seine 1975 gemachte Entdeckung, dass Proteine durch endogene Protein-Signale (Signalsequenzen) vom ER aus in verschiedene Zellkompartimente zielgerichtet weitergeleitet werden.
Als Signalsequenz in diesem Sinne wird eine bestimmte N-terminale Peptidsequenz bezeichnet, die nach dem Transport durch die Membran des ER durch die Signalpeptidase abgespalten wird. Proteine, die für Ziele außerhalb des ERs bestimmt sind, werden anschließend in Transport-Vesikel verpackt und entlang des Cytoskeletts zu ihrem Bestimmungsort weitergeleitet.
Membranproduktion
Das raue ER lässt seine eigene Membran wachsen und dirigiert Membranteile in Transportvesikeln zu anderen Teilen des inneren Membransystems. Während die Membranproteine an den Ribosomen wachsen, werden sie in die Membran des ER eingelagert, welche dadurch wächst. Die neuen Membranproteine werden dort mit hydrophoben Abschnitten ihrer Polypeptidketten verankert. Auch die Phospholipide werden von dem rauen ER hergestellt, indem Enzyme der ER-Membran sie aus Vorläufermolekülen, die sich im Cytosol befinden, zusammensetzen.
Glattes Retikulum (Sarkoplasmatisches Retikulum)
Das glatte ER in Muskelzellen wird als sarkoplasmatisches Retikulum bezeichnet. Seine Rolle als intrazellulärer Calcium-Speicher, der Calcium-Ionen bei Aktivität der Muskelzelle reguliert abgibt, ist entscheidend beim Zustandekommen der Kontraktion der Muskelzellen.
Literatur
- Alberts, B. et. al.: Molecular Biology of the Cell. Garland Science, 4. Auflage, 2002. ISBN 0815340729
- Campbell, N.; u. a.: Biologie. 1. Aufl., 1. korrigierter Nachdr., Spektrum Akademischer Verlag 1997, Heidelberg. ISBN 3-8274-0032-5