„Benutzer:Frpzzd0/Pisano-Periode“ – Versionsunterschied
| Zeile 62: | Zeile 62: | ||
== Tables == |
== Tables == |
||
The first twelve Pisano periods {{OEIS|id=A001175}} and their cycles (with spaces before the zeros for readability) are<ref> |
The first twelve Pisano periods {{OEIS|id=A001175}} and their cycles (with spaces before the zeros for readability) are<ref>[https://oeis.org/A001175/a001175.jpg Graph of the cycles modulo 1 to 24. Each row of the image represents a different modulo base ''n'', from 1 at the bottom to 24 at the top. The columns represent the Fibonacci numbers mod ''n'', from ''F''(0) mod ''n'' at the left to ''F''(59) mod ''n'' on the right. In each cell, the brightness indicates the value of the residual, from dark for 0 to near-white for ''n''−1. Blue squares on the left represent the first period; the number of blue squares is the Pisano number.]</ref> (using X and E for ten and eleven, respectively): |
||
{|class="wikitable" |
{|class="wikitable" |
||
Version vom 28. Dezember 2024, 06:25 Uhr

In number theory, the nth Pisano period, written as Vorlage:Pi(n), is the period with which the sequence of Fibonacci numbers taken modulo n repeats. Pisano periods are named after Leonardo Pisano, better known as Fibonacci. The existence of periodic functions in Fibonacci numbers was noted by Joseph Louis Lagrange in 1774.[1][2]
Definition
The Fibonacci numbers are the numbers in the integer sequence:
- 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, ... Folge [[:OEIS:{{{1}}}|{{{1}}}]] in OEIS
defined by the recurrence relation
For any integer n, the sequence of Fibonacci numbers Fi taken modulo n is periodic. The Pisano period, denoted Vorlage:Pi(n), is the length of the period of this sequence. For example, the sequence of Fibonacci numbers modulo 3 begins:
- 0, 1, 1, 2, 0, 2, 2, 1, 0, 1, 1, 2, 0, 2, 2, 1, 0, 1, 1, 2, 0, 2, 2, 1, 0, ... Folge [[:OEIS:{{{1}}}|{{{1}}}]] in OEIS
This sequence has period 8, so Vorlage:Pi(3) = 8.

Properties
Vorlage:MOS With the exception of Vorlage:Pi(2) = 3, the Pisano period Vorlage:Pi(n) is always even. A proof of this can be given by observing that Vorlage:Pi(n) is equal to the order of the Fibonacci matrix
in the general linear group of invertible 2 by 2 matrices in the finite ring of integers modulo n. Since Q has determinant −1, the determinant of QVorlage:Pi(n) is (−1)Vorlage:Pi(n), and since this must equal 1 in , either n ≤ 2 or Vorlage:Pi(n) is even.[3]
Since and we have that divides and .
If m and n are coprime, then Vorlage:Pi(mn) is the least common multiple of Vorlage:Pi(m) and Vorlage:Pi(n), by the Chinese remainder theorem. For example, Vorlage:Pi(3) = 8 and Vorlage:Pi(4) = 6 imply Vorlage:Pi(12) = 24. Thus the study of Pisano periods may be reduced to that of Pisano periods of prime powers q = pk, for k ≥ 1.
If p is prime, Vorlage:Pi(pk) divides pk–1 Vorlage:Pi(p). It is unknown if for every prime p and integer k > 1. Any prime p providing a counterexample would necessarily be a Wall–Sun–Sun prime, and conversely every Wall–Sun–Sun prime p gives a counterexample (set k = 2).
So the study of Pisano periods may be further reduced to that of Pisano periods of primes. In this regard, two primes are anomalous. The prime 2 has an odd Pisano period, and the prime 5 has period that is relatively much larger than the Pisano period of any other prime. The periods of powers of these primes are as follows:
- If n = 2k, then Vorlage:Pi(n) = 3·2k–1 = Vorlage:Sfrac = Vorlage:Sfrac.
- if n = 5k, then Vorlage:Pi(n) = 20·5k–1 = Vorlage:Sfrac = 4n.
From these it follows that if n = 2Vorlage:Space·Vorlage:Space5k then Vorlage:Pi(n) = 6n.


The remaining primes all lie in the residue classes or . If p is a prime different from 2 and 5, then the modulo p analogue of Binet's formula implies that Vorlage:Pi(p) is the multiplicative order of a root of Vorlage:Math modulo p. If , these roots belong to (by quadratic reciprocity). Thus their order, Vorlage:Pi(p) is a divisor of p − 1. For example, Vorlage:Pi(11) = 11 − 1 = 10 and Vorlage:Pi(29) = (29 − 1)/2 = 14.
If the roots modulo p of Vorlage:Math do not belong to (by quadratic reciprocity again), and belong to the finite field
As the Frobenius automorphism exchanges these roots, it follows that, denoting them by r and s, we have r p = s, and thus r p+1 = –1. That is r 2(p+1) = 1, and the Pisano period, which is the order of r, is the quotient of 2(p+1) by an odd divisor. This quotient is always a multiple of 4. The first examples of such a p, for which Vorlage:Pi(p) is smaller than 2(p+1), are Vorlage:Pi(47) = 2(47 + 1)/3 = 32, Vorlage:Pi(107) = 2(107 + 1)/3 = 72 and Vorlage:Pi(113) = 2(113 + 1)/3 = 76. (See the table below)
It follows from above results, that if n = pk is an odd prime power such that Vorlage:Pi(n) > n, then Vorlage:Pi(n)/4 is an integer that is not greater than n. The multiplicative property of Pisano periods imply thus that
- Vorlage:Pi(n) ≤ 6n, with equality if and only if n = 2 · 5r, for r ≥ 1.[4]
The first examples are Vorlage:Pi(10) = 60 and Vorlage:Pi(50) = 300. If n is not of the form 2 · 5r, then Vorlage:Pi(n) ≤ 4n.
Tables
The first twelve Pisano periods Folge [[:OEIS:{{{1}}}|{{{1}}}]] in OEIS and their cycles (with spaces before the zeros for readability) are[5] (using X and E for ten and eleven, respectively):
| n | π(n) | number of zeros in the cycle (Vorlage:Oeis) | cycle (Vorlage:Oeis) | OEIS sequence for the cycle |
|---|---|---|---|---|
| 1 | 1 | 1 | 0 | Vorlage:OEIS link |
| 2 | 3 | 1 | 011 | Vorlage:OEIS link |
| 3 | 8 | 2 | 0112 0221 | Vorlage:OEIS link |
| 4 | 6 | 1 | 011231 | Vorlage:OEIS link |
| 5 | 20 | 4 | 01123 03314 04432 02241 | Vorlage:OEIS link |
| 6 | 24 | 2 | 011235213415 055431453251 | Vorlage:OEIS link |
| 7 | 16 | 2 | 01123516 06654261 | Vorlage:OEIS link |
| 8 | 12 | 2 | 011235 055271 | Vorlage:OEIS link |
| 9 | 24 | 2 | 011235843718 088764156281 | Vorlage:OEIS link |
| 10 | 60 | 4 | 011235831459437 077415617853819 099875279651673 033695493257291 | Vorlage:OEIS link |
| 11 | 10 | 1 | 01123582X1 | Vorlage:OEIS link |
| 12 | 24 | 2 | 011235819X75 055X314592E1 | Vorlage:OEIS link |
The first 144 Pisano periods are shown in the following table:
| π(n) | +1 | +2 | +3 | +4 | +5 | +6 | +7 | +8 | +9 | +10 | +11 | +12 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0+ | 1 | 3 | 8 | 6 | 20 | 24 | 16 | 12 | 24 | 60 | 10 | 24 |
| 12+ | 28 | 48 | 40 | 24 | 36 | 24 | 18 | 60 | 16 | 30 | 48 | 24 |
| 24+ | 100 | 84 | 72 | 48 | 14 | 120 | 30 | 48 | 40 | 36 | 80 | 24 |
| 36+ | 76 | 18 | 56 | 60 | 40 | 48 | 88 | 30 | 120 | 48 | 32 | 24 |
| 48+ | 112 | 300 | 72 | 84 | 108 | 72 | 20 | 48 | 72 | 42 | 58 | 120 |
| 60+ | 60 | 30 | 48 | 96 | 140 | 120 | 136 | 36 | 48 | 240 | 70 | 24 |
| 72+ | 148 | 228 | 200 | 18 | 80 | 168 | 78 | 120 | 216 | 120 | 168 | 48 |
| 84+ | 180 | 264 | 56 | 60 | 44 | 120 | 112 | 48 | 120 | 96 | 180 | 48 |
| 96+ | 196 | 336 | 120 | 300 | 50 | 72 | 208 | 84 | 80 | 108 | 72 | 72 |
| 108+ | 108 | 60 | 152 | 48 | 76 | 72 | 240 | 42 | 168 | 174 | 144 | 120 |
| 120+ | 110 | 60 | 40 | 30 | 500 | 48 | 256 | 192 | 88 | 420 | 130 | 120 |
| 132+ | 144 | 408 | 360 | 36 | 276 | 48 | 46 | 240 | 32 | 210 | 140 | 24 |
Pisano periods of Fibonacci numbers
If n = F(2k) (k ≥ 2), then π(n) = 4k; if n = F(2k + 1) (k ≥ 2), then π(n) = 8k + 4. That is, if the modulo base is a Fibonacci number (≥ 3) with an even index, the period is twice the index and the cycle has two zeros. If the base is a Fibonacci number (≥ 5) with an odd index, the period is four times the index and the cycle has four zeros.
| k | F(k) | π(F(k)) | first half of cycle (for even k ≥ 4) or first quarter of cycle (for odd k ≥ 4) or all cycle (for k ≤ 3) (with selected second halves or second quarters) |
|---|---|---|---|
| 1 | 1 | 1 | 0 |
| 2 | 1 | 1 | 0 |
| 3 | 2 | 3 | 0, 1, 1 |
| 4 | 3 | 8 | 0, 1, 1, 2, (0, 2, 2, 1) |
| 5 | 5 | 20 | 0, 1, 1, 2, 3, (0, 3, 3, 1, 4) |
| 6 | 8 | 12 | 0, 1, 1, 2, 3, 5, (0, 5, 5, 2, 7, 1) |
| 7 | 13 | 28 | 0, 1, 1, 2, 3, 5, 8, (0, 8, 8, 3, 11, 1, 12) |
| 8 | 21 | 16 | 0, 1, 1, 2, 3, 5, 8, 13, (0, 13, 13, 5, 18, 2, 20, 1) |
| 9 | 34 | 36 | 0, 1, 1, 2, 3, 5, 8, 13, 21, (0, 21, 21, 8, 29, 3, 32, 1, 33) |
| 10 | 55 | 20 | 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, (0, 34, 34, 13, 47, 5, 52, 2, 54, 1) |
| 11 | 89 | 44 | 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, (0, 55, 55, 21, 76, 8, 84, 3, 87, 1, 88) |
| 12 | 144 | 24 | 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, (0, 89, 89, 34, 123, 13, 136, 5, 141, 2, 143, 1) |
| 13 | 233 | 52 | 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 |
| 14 | 377 | 28 | 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233 |
| 15 | 610 | 60 | 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377 |
| 16 | 987 | 32 | 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610 |
| 17 | 1597 | 68 | 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 |
| 18 | 2584 | 36 | 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597 |
| 19 | 4181 | 76 | 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584 |
| 20 | 6765 | 40 | 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181 |
| 21 | 10946 | 84 | 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765 |
| 22 | 17711 | 44 | 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946 |
| 23 | 28657 | 92 | 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711 |
| 24 | 46368 | 48 | 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657 |
Pisano periods of Lucas numbers
If n = L(2k) (k ≥ 1), then π(n) = 8k; if n = L(2k + 1) (k ≥ 1), then π(n) = 4k + 2. That is, if the modulo base is a Lucas number (≥ 3) with an even index, the period is four times the index. If the base is a Lucas number (≥ 4) with an odd index, the period is twice the index.
| k | L(k) | π(L(k)) | first half of cycle (for odd k ≥ 2) or first quarter of cycle (for even k ≥ 2) or all cycle (for k = 1) (with selected second halves or second quarters) |
|---|---|---|---|
| 1 | 1 | 1 | 0 |
| 2 | 3 | 8 | 0, 1, (1, 2) |
| 3 | 4 | 6 | 0, 1, 1, (2, 3, 1) |
| 4 | 7 | 16 | 0, 1, 1, 2, (3, 5, 1, 6) |
| 5 | 11 | 10 | 0, 1, 1, 2, 3, (5, 8, 2, 10, 1) |
| 6 | 18 | 24 | 0, 1, 1, 2, 3, 5, (8, 13, 3, 16, 1, 17) |
| 7 | 29 | 14 | 0, 1, 1, 2, 3, 5, 8, (13, 21, 5, 26, 2, 28, 1) |
| 8 | 47 | 32 | 0, 1, 1, 2, 3, 5, 8, 13, (21, 34, 8, 42, 3, 45, 1, 46) |
| 9 | 76 | 18 | 0, 1, 1, 2, 3, 5, 8, 13, 21, (34, 55, 13, 68, 5, 73, 2, 75, 1) |
| 10 | 123 | 40 | 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, (55, 89, 21, 110, 8, 118, 3, 121, 1, 122) |
| 11 | 199 | 22 | 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, (89, 144, 34, 178, 13, 191, 5, 196, 2, 198, 1) |
| 12 | 322 | 48 | 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, (144, 233, 55, 288, 21, 309, 8, 317, 3, 320, 1, 321) |
| 13 | 521 | 26 | 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 |
| 14 | 843 | 56 | 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233 |
| 15 | 1364 | 30 | 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377 |
| 16 | 2207 | 64 | 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610 |
| 17 | 3571 | 34 | 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 |
| 18 | 5778 | 72 | 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597 |
| 19 | 9349 | 38 | 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584 |
| 20 | 15127 | 80 | 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181 |
| 21 | 24476 | 42 | 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765 |
| 22 | 39603 | 88 | 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946 |
| 23 | 64079 | 46 | 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711 |
| 24 | 103682 | 96 | 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657 |
For even k, the cycle has two zeros. For odd k, the cycle has only one zero, and the second half of the cycle, which is of course equal to the part on the left of 0, consists of alternatingly numbers F(2m + 1) and n − F(2m), with m decreasing.
Number of zeros in the cycle
The number of occurrences of 0 per cycle is 1, 2, or 4. Let p be the number after the first 0 after the combination 0, 1. Let the distance between the 0s be q.
- There is one 0 in a cycle, obviously, if p = 1. This is only possible if q is even or n is 1 or 2.
- Otherwise there are two 0s in a cycle if p2 ≡ 1. This is only possible if q is even.
- Otherwise there are four 0s in a cycle. This is the case if q is odd and n is not 1 or 2.
For generalized Fibonacci sequences (satisfying the same recurrence relation, but with other initial values, e.g. the Lucas numbers) the number of occurrences of 0 per cycle is 0, 1, 2, or 4.
The ratio of the Pisano period of n and the number of zeros modulo n in the cycle gives the rank of apparition or Fibonacci entry point of n. That is, smallest index k such that n divides F(k). They are:
- 1, 3, 4, 6, 5, 12, 8, 6, 12, 15, 10, 12, 7, 24, 20, 12, 9, 12, 18, 30, 8, 30, 24, 12, 25, 21, 36, 24, 14, 60, 30, 24, 20, 9, 40, 12, 19, 18, 28, 30, 20, 24, 44, 30, 60, 24, 16, 12, ... Folge [[:OEIS:{{{1}}}|{{{1}}}]] in OEIS
In Renault's paper the number of zeros is called the "order" of F mod m, denoted , and the "rank of apparition" is called the "rank" and denoted .[6]
According to Wall's conjecture, . If has prime factorization then .[6]
Generalizations
The Pisano periods of Lucas numbers are
- 1, 3, 8, 6, 4, 24, 16, 12, 24, 12, 10, 24, 28, 48, 8, 24, 36, 24, 18, 12, 16, 30, 48, 24, 20, 84, 72, 48, 14, 24, 30, 48, 40, 36, 16, 24, 76, 18, 56, 12, 40, 48, 88, 30, 24, 48, 32, ... Folge [[:OEIS:{{{1}}}|{{{1}}}]] in OEIS
The Pisano periods of Pell numbers (or 2-Fibonacci numbers) are
- 1, 2, 8, 4, 12, 8, 6, 8, 24, 12, 24, 8, 28, 6, 24, 16, 16, 24, 40, 12, 24, 24, 22, 8, 60, 28, 72, 12, 20, 24, 30, 32, 24, 16, 12, 24, 76, 40, 56, 24, 10, 24, 88, 24, 24, 22, 46, 16, ... Folge [[:OEIS:{{{1}}}|{{{1}}}]] in OEIS
The Pisano periods of 3-Fibonacci numbers are
- 1, 3, 2, 6, 12, 6, 16, 12, 6, 12, 8, 6, 52, 48, 12, 24, 16, 6, 40, 12, 16, 24, 22, 12, 60, 156, 18, 48, 28, 12, 64, 48, 8, 48, 48, 6, 76, 120, 52, 12, 28, 48, 42, 24, 12, 66, 96, 24, ... Folge [[:OEIS:{{{1}}}|{{{1}}}]] in OEIS
The Pisano periods of Jacobsthal numbers (or (1,2)-Fibonacci numbers) are
- 1, 1, 6, 2, 4, 6, 6, 2, 18, 4, 10, 6, 12, 6, 12, 2, 8, 18, 18, 4, 6, 10, 22, 6, 20, 12, 54, 6, 28, 12, 10, 2, 30, 8, 12, 18, 36, 18, 12, 4, 20, 6, 14, 10, 36, 22, 46, 6, ... Folge [[:OEIS:{{{1}}}|{{{1}}}]] in OEIS
The Pisano periods of (1,3)-Fibonacci numbers are
- 1, 3, 1, 6, 24, 3, 24, 6, 3, 24, 120, 6, 156, 24, 24, 12, 16, 3, 90, 24, 24, 120, 22, 6, 120, 156, 9, 24, 28, 24, 240, 24, 120, 48, 24, 6, 171, 90, 156, 24, 336, 24, 42, 120, 24, 66, 736, 12, ... Folge [[:OEIS:{{{1}}}|{{{1}}}]] in OEIS
The Pisano periods of Tribonacci numbers (or 3-step Fibonacci numbers) are
- 1, 4, 13, 8, 31, 52, 48, 16, 39, 124, 110, 104, 168, 48, 403, 32, 96, 156, 360, 248, 624, 220, 553, 208, 155, 168, 117, 48, 140, 1612, 331, 64, 1430, 96, 1488, 312, 469, 360, 2184, 496, 560, 624, 308, 440, 1209, 2212, 46, 416, ... Folge [[:OEIS:{{{1}}}|{{{1}}}]] in OEIS
The Pisano periods of Tetranacci numbers (or 4-step Fibonacci numbers) are
- 1, 5, 26, 10, 312, 130, 342, 20, 78, 1560, 120, 130, 84, 1710, 312, 40, 4912, 390, 6858, 1560, 4446, 120, 12166, 260, 1560, 420, 234, 1710, 280, 1560, 61568, 80, 1560, 24560, 17784, 390, 1368, 34290, 1092, 1560, 240, 22230, 162800, 120, 312, 60830, 103822, 520, ... Folge [[:OEIS:{{{1}}}|{{{1}}}]] in OEIS
See also generalizations of Fibonacci numbers.
Number theory
Pisano periods can be analyzed using algebraic number theory.
Let be the n-th Pisano period of the k-Fibonacci sequence Fk(n) (k can be any natural number, these sequences are defined as Fk(0) = 0, Fk(1) = 1, and for any natural number n > 1, Fk(n) = kFk(n−1) + Fk(n−2)). If m and n are coprime, then , by the Chinese remainder theorem: two numbers are congruent modulo mn if and only if they are congruent modulo m and modulo n, assuming these latter are coprime. For example, and so Thus it suffices to compute Pisano periods for prime powers (Usually, , unless p is k-Wall–Sun–Sun prime, or k-Fibonacci–Wieferich prime, that is, p2 divides Fk(p − 1) or Fk(p + 1), where Fk is the k-Fibonacci sequence, for example, 241 is a 3-Wall–Sun–Sun prime, since 2412 divides F3(242).)
For prime numbers p, these can be analyzed by using Binet's formula:
- where is the kth metallic mean
If k2 + 4 is a quadratic residue modulo p (where p > 2 and p does not divide k2 + 4), then and can be expressed as integers modulo p, and thus Binet's formula can be expressed over integers modulo p, and thus the Pisano period divides the totient , since any power (such as ) has period dividing as this is the order of the group of units modulo p.
For k = 1, this first occurs for p = 11, where 42 = 16 ≡ 5 (mod 11) and 2 · 6 = 12 ≡ 1 (mod 11) and 4 · 3 = 12 ≡ 1 (mod 11) so 4 = Vorlage:Radic, 6 = 1/2 and 1/Vorlage:Radic = 3, yielding φ = (1 + 4) · 6 = 30 ≡ 8 (mod 11) and the congruence
Another example, which shows that the period can properly divide p − 1, is π1(29) = 14.
If k2 + 4 is not a quadratic residue modulo p, then Binet's formula is instead defined over the quadratic extension field , which has p2 elements and whose group of units thus has order p2 − 1, and thus the Pisano period divides p2 − 1. For example, for p = 3 one has π1(3) = 8 which equals 32 − 1 = 8; for p = 7, one has π1(7) = 16, which properly divides 72 − 1 = 48.
This analysis fails for p = 2 and p is a divisor of the squarefree part of k2 + 4, since in these cases are zero divisors, so one must be careful in interpreting 1/2 or . For p = 2, k2 + 4 is congruent to 1 mod 2 (for k odd), but the Pisano period is not p − 1 = 1, but rather 3 (in fact, this is also 3 for even k). For p divides the squarefree part of k2 + 4, the Pisano period is πk(k2 + 4) = p2 − p = p(p − 1), which does not divide p − 1 or p2 − 1.
Fibonacci integer sequences modulo n
One can consider Fibonacci integer sequences and take them modulo n, or put differently, consider Fibonacci sequences in the ring Z/nZ. The period is a divisor of π(n). The number of occurrences of 0 per cycle is 0, 1, 2, or 4. If n is not a prime the cycles include those that are multiples of the cycles for the divisors. For example, for n = 10 the extra cycles include those for n = 2 multiplied by 5, and for n = 5 multiplied by 2.
Table of the extra cycles: (the original Fibonacci cycles are excluded) (using X and E for ten and eleven, respectively)
| n | multiples | other cycles | number of cycles (including the original Fibonacci cycles) |
|---|---|---|---|
| 1 | 1 | ||
| 2 | 0 | 2 | |
| 3 | 0 | 2 | |
| 4 | 0, 022 | 033213 | 4 |
| 5 | 0 | 1342 | 3 |
| 6 | 0, 0224 0442, 033 | 4 | |
| 7 | 0 | 02246325 05531452, 03362134 04415643 | 4 |
| 8 | 0, 022462, 044, 066426 | 033617 077653, 134732574372, 145167541563 | 8 |
| 9 | 0, 0336 0663 | 022461786527 077538213472, 044832573145 055167426854 | 5 |
| 10 | 0, 02246 06628 08864 04482, 055, 2684 | 134718976392 | 6 |
| 11 | 0 | 02246X5492, 0336942683, 044819X874, 055X437X65, 0661784156, 0773X21347, 0885279538, 0997516729, 0XX986391X, 14593, 18964X3257, 28X76 | 14 |
| 12 | 0, 02246X42682X 0XX8628X64X2, 033693, 0448 0884, 066, 099639 | 07729E873X1E 0EEX974E3257, 1347E65E437X538E761783E2, 156E5491XE98516718952794 | 10 |
Number of Fibonacci integer cycles mod n are:
- 1, 2, 2, 4, 3, 4, 4, 8, 5, 6, 14, 10, 7, 8, 12, 16, 9, 16, 22, 16, 29, 28, 12, 30, 13, 14, 14, 22, 63, 24, 34, 32, 39, 34, 30, 58, 19, 86, 32, 52, 43, 58, 22, 78, 39, 46, 70, 102, ... Folge [[:OEIS:{{{1}}}|{{{1}}}]] in OEIS
Notes
References
- Vorlage:Citation
- Vorlage:Citation
- Vorlage:Citation
- Vorlage:Citation
- Vorlage:Citation
- Vorlage:Citation
- Vorlage:Citation
- Vorlage:Citation
- Vorlage:Citation
- Vorlage:Citation
External links
- The Fibonacci sequence modulo m
- A research for Fibonacci numbers
- Fibonacci sequence starts with q, r modulo m
- Vorlage:Citation
- Fibonacci Mystery - Numberphile auf YouTube, a video with Dr. James Grime and the University of Nottingham
- ↑ Eric W. Weisstein: Pisano Period. In: MathWorld (englisch).
- ↑ On Arithmetical functions related to the Fibonacci numbers. Acta Arithmetica XVI (1969). Retrieved 22 September 2011.
- ↑ A Theorem on Modular Fibonacci Periodicity. Theorem of the Day (2015). Retrieved 7 January 2016.
- ↑ Vorlage:Harvtxt
- ↑ Graph of the cycles modulo 1 to 24. Each row of the image represents a different modulo base n, from 1 at the bottom to 24 at the top. The columns represent the Fibonacci numbers mod n, from F(0) mod n at the left to F(59) mod n on the right. In each cell, the brightness indicates the value of the residual, from dark for 0 to near-white for n−1. Blue squares on the left represent the first period; the number of blue squares is the Pisano number.
- ↑ a b The Fibonacci Sequence Modulo M, by Marc Renault. In: webspace.ship.edu. Abgerufen am 22. August 2018.