„Anaconda (Python-Distribution)“ – Versionsunterschied
Erscheinungsbild
| [ungesichtete Version] | [ungesichtete Version] |
Inhalt gelöscht Inhalt hinzugefügt
anaconda is also an R distribution |
Filled in one citation |
||
| Zeile 68: | Zeile 68: | ||
| date = March 24, 2013 |
| date = March 24, 2013 |
||
| url = http://radar.oreilly.com/2013/03/python-data-tools-just-keep-getting-better.html |
| url = http://radar.oreilly.com/2013/03/python-data-tools-just-keep-getting-better.html |
||
| accessdate = October 30, 2014}}</ref><ref>https://www.continuum.io/blog/developer-blog/anaconda-r-users-sparkr-and-rbokeh</ref> Its [[Package manager|package management system]] is ''conda''.<ref>{{cite web|url=http://conda.pydata.org/docs/|title=Conda – Conda documentation|accessdate=February 25, 2016}}</ref> |
| accessdate = October 30, 2014}}</ref><ref>{{cite web|last1=Doig|first1=Christine|title=Anaconda for R users: SparkR and rBokeh|url=https://www.continuum.io/blog/developer-blog/anaconda-r-users-sparkr-and-rbokeh|website=Developer Blog|publisher=Continuum Analytics|date=February 1, 2016}}</ref> Its [[Package manager|package management system]] is ''conda''.<ref>{{cite web|url=http://conda.pydata.org/docs/|title=Conda – Conda documentation|accessdate=February 25, 2016}}</ref> |
||
==References== |
==References== |
||
Version vom 29. Februar 2016, 18:53 Uhr
Anaconda is a freemium[1] distribution of the Python and R programming languages for large-scale data processing, predictive analytics, and scientific computing, that aims to simplify package management and deployment.[2][3][4][5][6] Its package management system is conda.[7]
References
External links
- ↑ Anaconda Subscriptions. In: continuum.io. Continuum Analytics, abgerufen am 30. September 2015.
- ↑ Luiz Felipe Martins: IPython Notebook Essentials. 1st Auflage. Packt, 2014, ISBN 978-1-78398-834-1, S. 190.
- ↑ Micha Gorelick, Ian Ozsvald: High Performance Python: Practical Performant Programming for Humans. 1st Auflage. O'Reilly Media, 2014, ISBN 978-1-4493-6159-4, S. 370.
- ↑ Joab Jackson: Python gets a big data boost from DARPA. In: Network World. IDG, 5. Februar 2013, abgerufen am 30. Oktober 2014.
- ↑ Ben Lorica: Python data tools just keep getting better. In: O'Reilly Radar. O'Reilly Media, 24. März 2013, abgerufen am 30. Oktober 2014.
- ↑ Christine Doig: Anaconda for R users: SparkR and rBokeh. In: Developer Blog. Continuum Analytics, 1. Februar 2016.
- ↑ Conda – Conda documentation. Abgerufen am 25. Februar 2016.