Zum Inhalt springen

„Anaconda (Python-Distribution)“ – Versionsunterschied

aus Wikipedia, der freien Enzyklopädie
[ungesichtete Version][ungesichtete Version]
Inhalt gelöscht Inhalt hinzugefügt
Frostus (Diskussion | Beiträge)
anaconda is also an R distribution
Filled in one citation
Zeile 68: Zeile 68:
| date = March 24, 2013
| date = March 24, 2013
| url = http://radar.oreilly.com/2013/03/python-data-tools-just-keep-getting-better.html
| url = http://radar.oreilly.com/2013/03/python-data-tools-just-keep-getting-better.html
| accessdate = October 30, 2014}}</ref><ref>https://www.continuum.io/blog/developer-blog/anaconda-r-users-sparkr-and-rbokeh</ref> Its [[Package manager|package management system]] is ''conda''.<ref>{{cite web|url=http://conda.pydata.org/docs/|title=Conda – Conda documentation|accessdate=February 25, 2016}}</ref>
| accessdate = October 30, 2014}}</ref><ref>{{cite web|last1=Doig|first1=Christine|title=Anaconda for R users: SparkR and rBokeh|url=https://www.continuum.io/blog/developer-blog/anaconda-r-users-sparkr-and-rbokeh|website=Developer Blog|publisher=Continuum Analytics|date=February 1, 2016}}</ref> Its [[Package manager|package management system]] is ''conda''.<ref>{{cite web|url=http://conda.pydata.org/docs/|title=Conda – Conda documentation|accessdate=February 25, 2016}}</ref>


==References==
==References==

Version vom 29. Februar 2016, 18:53 Uhr

Vorlage:Infobox software

Anaconda is a freemium[1] distribution of the Python and R programming languages for large-scale data processing, predictive analytics, and scientific computing, that aims to simplify package management and deployment.[2][3][4][5][6] Its package management system is conda.[7]

References

Vorlage:Reflist

Vorlage:Comp-sci-stub

  1. Anaconda Subscriptions. In: continuum.io. Continuum Analytics, abgerufen am 30. September 2015.
  2. Luiz Felipe Martins: IPython Notebook Essentials. 1st Auflage. Packt, 2014, ISBN 978-1-78398-834-1, S. 190.
  3. Micha Gorelick, Ian Ozsvald: High Performance Python: Practical Performant Programming for Humans. 1st Auflage. O'Reilly Media, 2014, ISBN 978-1-4493-6159-4, S. 370.
  4. Joab Jackson: Python gets a big data boost from DARPA. In: Network World. IDG, 5. Februar 2013, abgerufen am 30. Oktober 2014.
  5. Ben Lorica: Python data tools just keep getting better. In: O'Reilly Radar. O'Reilly Media, 24. März 2013, abgerufen am 30. Oktober 2014.
  6. Christine Doig: Anaconda for R users: SparkR and rBokeh. In: Developer Blog. Continuum Analytics, 1. Februar 2016;.
  7. Conda – Conda documentation. Abgerufen am 25. Februar 2016.