Hyperbel (Mathematik) und Islamische Republik Ostturkestan: Unterschied zwischen den Seiten
[gesichtete Version] | [ungesichtete Version] |
→Parameterdarstellungen: rationale Parameterdarstellung eingefügt |
Keine Bearbeitungszusammenfassung |
||
Zeile 1: | Zeile 1: | ||
{{Infobox Former Country |
|||
[[Datei:Kegelschnitt.png|350px|thumb|upright=1.0|Die Hyperbel ist einer der [[Kegelschnitt]]e.]] |
|||
|native_name= |
|||
[[Datei:Brazil.Brasilia.01.jpg|miniatur|Hyperbel in der Architektur: [[Kathedrale von Brasilia]]]] |
|||
|conventional_long_name= Turkish Islamic Republic of East Turkestan or Republic of Uyghurstan |
|||
In der [[Planimetrie|ebenen]] [[Geometrie]] versteht man unter einer '''Hyperbel''' eine spezielle [[Kurve (Mathematik)|Kurve]], die aus zwei zueinander [[Symmetrie (Geometrie)|symmetrischen]], sich ins Unendliche erstreckenden Ästen besteht. Sie zählt neben dem [[Kreis]], der [[Parabel (Mathematik)|Parabel]] und der [[Ellipse]] zu den [[Kegelschnitt]]en, die beim Schnitt einer Ebene mit einem geraden Kreiskegel entstehen (s. Bild). |
|||
|common_name= East Turkestan |
|||
|continent= Asia |
|||
|era= [[Interwar period]] |
|||
|status_text= [[Satellite state]] of [[Republic of China|China]] |
|||
|status= [[Islamic republic|Islamic]] [[constitutional republic]] |
|||
|year_start= 1933 |
|||
|year_end= 1934 |
|||
|life_span= [[1933]] - [[1934]] |
|||
|p1= Republic of China |
|||
|flag_p1= Flag_of_the_Republic_of_China.svg |
|||
|s1= Republic of China |
|||
|flag_s1= Flag_of_the_Republic_of_China.svg |
|||
|image_flag= Flag of Eastern Turkistan.svg |
|||
|capital= [[Kashgar]] |
|||
|common_languages= Uyghur |
|||
|religion= [[Islam]] |
|||
|currency= Copper ( pul ), silver ( tanga ), gold ( tilla ) coins minted in Kashgar in 1933 under name ''Uyghurstan Jumhuriyetti'' |
|||
}} |
|||
[[Image:Flag of Eastern Turkistan.svg|thumb||right|199px|The "'''Kokbayraq'''" flag. This flag is used by [[Uyghur people]] as a symbol of the [[East Turkestan independence movement]]. The [[People's Republic of China|Chinese Government]] prohibits using the flag in the country. (See also [[Flag of Turkey]])]] |
|||
Wie Ellipse und Parabel lassen sich Hyperbeln als [[Ortskurve |Ortskurven]] in der Ebene definieren (s. Abschnitt Definition). |
|||
The '''First Eastern Turkestan Republic''' (ETR), or '''Turkish Islamic Republic of East Turkestan''' (TIRET), or, '''Republic of Uyghurstan''', was a short-lived break-away would-be [[constitution]]al [[republic]] founded in [[1933]]. It was centered around the city of [[Kashgar]] in what is today the [[People's Republic of China]]-administered region of [[Xinjiang]]. Although primarily the product of the separatist, Islamic and [[nationalist]] aspirations of the [[Uyghur people|Uyghur]] population living there, the ETR was multi-ethnic in character, including [[Kazakh]], [[Kyrgyz]], and other [[Turkic peoples|Turkic]] minorities in its government and its population. With the sacking of Kashgar in [[1934]] by [[Hui people|Hui]] warlords theoretically allied with the [[Kuomintang]] government in [[Nanjing]], the first ETR was effectively eliminated. Its example, however, served to some extent as inspiration for the founding of a [[Second East Turkestan Republic]] a decade later, and continues to influence modern Uyghur [[nationalist]] support for the creation of an independent [[East Turkestan]]. [[Isa Alptekin]] was the General Secretary of the First East Turkestan Republic. |
|||
Die Hyperbel wurde von [[Menaichmos (Mathematiker)|Menaichmos]] entdeckt. Die von [[Apollonios von Perge]] eingeführte Bezeichnung kommt aus dem [[Griechische Sprache|Griechischen]] und bezieht sich auf die Übertreibung (ὑπερβολή, ''hyperbolé'', von altgriechisch βάλλειν ''bállein'' „werfen“, ὑπερβάλλειν ''hyperballein'' „über das Ziel hinaus werfen“) des Schnittwinkels (oder der ''numerischen Exzentrizität'' <math>\varepsilon</math>, s. unten) beim Kegelschnitt: Mit steigendem Schnittwinkel verwandelt sich der Kreis (<math>\varepsilon</math> = 0) erst zu immer länglicheren Ellipsen und dann über die Parabel (<math>\varepsilon</math> ist 1 und die schneidende Ebene ''parallel'' zu einer [[Tangentialebene]] des Kegels) zu Hyperbeln mit <math>\varepsilon</math> > 1.<ref>I. N. Bronstein, K. A. Semendjajew (Begründer), Günter Grosche (Bearb.), [[Eberhard Zeidler (Mathematiker)|Eberhard Zeidler]] (Hrsg.): ''[[Taschenbuch der Mathematik|Teubner-Taschenbuch der Mathematik]]''. Teubner, Stuttgart 1996, ISBN 3-8154-2001-6, S. 24.</ref> |
|||
==Origins of the ETR Movement== |
|||
== Definition einer Hyperbel als Ortskurve == |
|||
''See also: [[History of Xinjiang]], [[East Turkestan independence movement]]'' |
|||
[[File:Hyperbel-def.png|300px|thumb|Hyperbel: Definition und Asymptoten]] |
|||
Eine ''Hyperbel'' ist definiert als die Menge aller Punkte <math>P</math> der [[Ebene (Mathematik)|Zeichenebene]] <math>E^2</math> , für die die [[Absoluter Betrag|absolute]] [[Subtraktion|Differenz]] der [[Abstand|Abstände]] zu zwei gegebenen Punkten, den so genannten ''Brennpunkten'' <math>F_1</math> und <math>F_2</math>, konstant gleich <math>2a</math> ist: |
|||
The stirrings of Uyghur separatism during the early 20th century were greatly influenced by the Turkish [[jadidist]] movement, which spread as wealthier Uyghurs, inspired by notions of [[Pan-Turkism]], traveled abroad to Turkey, Europe, and Russia, and returned home determined to modernize and develop the educational system in [[Xinjiang]]. The first major school founded on the European model was located outside of [[Kashgar]] and, unlike the traditional curricula of the [[madrassah]], focused on more technical areas of study such as [[science]], [[mathematics]], [[history]], and language studies. [[Jadidism]] emphasized the power of education as a tool for personal and national self-advancement, a development sure to disturb the traditional status quo in Xinjiang. The ruler of Xinjiang, Governor [[Yang Zengxin]] (楊增新), responded by closing down or interfering with the operations of several of the new schools. |
|||
:<math> H = \{P \in E^2 \mid ||PF_2| - |PF_1 || = 2a \}</math>. |
|||
The birth of the [[Soviet Union]] and the [[socialist]] [[Central Asian Republics]] also influenced the Uyghurs, increasing the popularity of nationalist separatist movements and the spread of the [[Communist]] message. Although a local Communist revolutionary organization was established in Xinjiang in [[1921]], the area also served as a refuge for many intellectuals fleeing the advent of Soviet Communism in Central Asia, which formed a division within the Xinjiang Turkic nationalist movement. |
|||
Der Mittelpunkt <math>M</math> der Brennpunkte heißt ''Mittelpunkt'' der Hyperbel. Die Verbindungsgerade der Brennpunkte ist die ''Hauptachse'' der Hyperbel. Die beiden Hyperbelpunkte <math>S_1,S_2</math> auf der Hauptachse sind die ''Scheitel'' und haben den Abstand <math>a</math> vom Mittelpunkt. Der Abstand der Brennpunkte vom Mittelpunkt heißt ''Brennweite'' oder ''lineare Exzentrizität'' und wird üblicherweise mit <math>e</math> bezeichnet. Die in der Einleitung erwähnte, dimensionslose numerische Exzentrizität <math>\varepsilon</math> ist <math>\tfrac e a</math>. |
|||
The situation in [[Xinjiang]] deteriorated with the [[assassination]] of [[Yang Zengxin|Yang]] in [[1928]] and the rise to power of his deputy, [[Jin Shuren]] (金樹仁), who declared himself governor after arresting and executing Yang's assassin, a rival official named [[Fan Yaonan]] (樊耀南) who had planned to assume the position for himself. Autocratic, corrupt, and ineffective at managing the province's development, Jin further antagonized the populace by reinstituting [[Sinicization]] policies, increasing taxes, prohibiting participation in the [[hajj]] and bringing in [[Han Chinese]] officials to replace local leaders. |
|||
Dass der Schnitt eines geraden Kreiskegels mit einer Ebene, die a) steiler ist als die Mantellinien des Kegels und b) die Kegelspitze nicht enthält, zeigt man, indem man die obige definierende Eigenschaft einer Hyperbel mit Hilfe der [[Dandelinsche Kugel|Dandelinschen Kugeln]] nachweist (s. Abschnitt ''Hyperbel als Kegelschnitt''). |
|||
==Rebellion== |
|||
== Hyperbel in 1. Hauptlage == |
|||
''See also: [[History of Xinjiang]]'' |
|||
=== Gleichung === |
|||
Die Gleichung der Hyperbel erhält eine besonders einfache Form, wenn sie in "1. Hauptlage" liegt, das heißt, dass die beiden Brennpunkte auf der <math>x</math>-Achse symmetrisch zum Ursprung liegen; bei einer Hyperbel in 1. Hauptlage haben also die Brennpunkte die Koordinaten <math>(e, 0)</math> und <math>(-e, 0)</math>, und die Scheitel haben die Koordinaten |
|||
<math>(a, 0)</math> und <math>(-a, 0)</math>. |
|||
The situation came to a head in [[1930]], when the [[Khan (title)|khan]] of Hami [[prefecture]] ([[Kumul]]) in eastern [[Xinjiang]], [[Shah Mexsut]], died. In policies carried over from the [[Qing]] era, the khan had been allowed to continue his [[hereditary]] rule over the area consistent with the principles of [[feudalism]] or [[satrapy]]. The importance of Hami territory, strategically located straddling the main road linking the province to eastern China and rich in undeveloped farmland, together with a desire by the government to consolidate power and eliminate the old practice of indirect rule, led Jin to abolish the khanate and assert direct rule upon Shah Mexsut's death. |
|||
Für einen beliebigen Punkt <math>(x,y)</math> in der Ebene ist der Abstand zum Brennpunkt <math>(e,0)</math> gleich |
|||
<math>\sqrt{ (x-e)^2 + y^2 }</math> und zum anderen Brennpunkt |
|||
<math>\sqrt{ (x+e)^2 + y^2 }</math>. Der Punkt <math>(x,y)</math> liegt also genau dann auf der Hyperbel, wenn |
|||
die Differenz dieser beiden Ausdrücke gleich <math>2a</math> oder gleich <math>-2a</math> ist. |
|||
Jin then proceeded to double agricultural taxes upon the local Uyghur population, [[expropriated]] choice farmland, and distributed it among [[Han Chinese]] refugees from neighboring [[Gansu]] province, subsidizing their efforts and resettling displaced Uyghurs on poor-quality land near the desert. The new [[garrison]] stationed in [[Hami]] proved even more antagonizing, and by [[1931]], scattered revolts, mobs, and resistance movements were emerging throughout the area. The final straw was in February 1931 when an ethnic Chinese officer Chieng wished to marry a Uyghur girl from a village outside [[Hami]]. Uyghur accounts usually claim that the girl was raped or the family coerced, but as Islamic law forbids Muslim girls to marry non-Muslim men it was clearly offensive to the Uyghur community. |
|||
Durch algebraische Umformungen und mit der Abkürzung <math>b^2 = e^2-a^2</math> kann man zeigen, dass die Gleichung |
|||
:<math>\sqrt{(x-e)^2 + y^2} - \sqrt{(x+e)^2 + y^2} = \pm 2a</math> |
|||
zur Gleichung |
|||
:<math>\frac{x^2}{a^2}-\frac{y^2}{b^2}= 1</math> |
|||
äquivalent ist. Letztere Gleichung nennt man die ''Gleichung der Hyperbel in 1. Hauptlage''. |
|||
=== Scheitel === |
|||
Eine Hyperbel besitzt nur zwei Scheitel: <math>(a,0),(-a,0)</math>. Im Gegensatz zur Ellipse sind hier <math>(0,b),(0,-b)</math> ''keine'' Kurvenpunkte. Letztere werden deswegen auch ''imaginäre Nebenscheitel'' genannt. Die Gerade durch die Nebenscheitel heißt ''Nebenachse''. Die Hyperbel liegt symmetrisch zur Haupt- und Nebenachse. |
|||
=== Asymptoten === |
|||
[[File:Hyperbel-param.png|250px|thumb|Hyperbel: Halbachsen a,b , lin. Exzentrizität e, Halbparameter p]] |
|||
Löst man die Hyperbelgleichung nach y auf, so erhält man |
|||
:<math>y=\pm b\sqrt{\frac{x^2}{a^2}-1}</math> . |
|||
Hier erkennt man, dass sich die Hyperbel für betragsmäßig große x an die Geraden |
|||
:<math>y=\pm \frac{b}{a}x </math> |
|||
beliebig dicht annähert. Diese Geraden gehen durch den Mittelpunkt und heißen die '''Asymptoten''' der Hyperbel <math>\tfrac{x^2}{a^2}-\tfrac{y^2}{b^2}= 1</math> . |
|||
=== Parameter p === |
|||
Die halbe Länge einer [[Sehne (Mathematik)|Hyperbelsehne]], die durch einen Brennpunkt geht und zur Hauptachse senkrecht verläuft, nennt man den ''Halbparameter'' (manchmal auch ''Quermaß'' oder nur ''Parameter'') <math>p</math> der Hyperbel. Er lässt sich berechnen durch |
|||
:<math>p = \frac{b^2}a.</math> |
|||
Weitere Bedeutung von p: |
|||
:<math>p</math> ist der ''Scheitelkrümmungskreisradius'', |
|||
d.h. p ist der Radius desjenigen Kreises durch einen Scheitel, der sich an die Hyperbel im Scheitel am besten anschmiegt. (Siehe unten: Formelsammlung/Scheitelgleichung) |
|||
Rebellion broke out on [[February 20]],[[1931]] with a massacre of Chieng and his 33 soldiers on wedding ceremony, 120 Han Chinese refugees from Gansu also were killed. It was not confined to the ethnic Uyghur population alone; [[Kazaks]], [[Kyrgyz]], [[Han Chinese]] and [[Hui people|Hui]] commanders all joined in revolt against Jin's rule, though they would occasionally break to fight one another. The Kuomintang and [[Soviet Union]] governments further complicated the situation by dispatching troops to come to the aid of Jin and his military commander [[Sheng Shicai]] (盛世才), as did [[White Russian]] refugees from the Soviet Union living in the [[Ili River]] valley region. |
|||
=== Tangente === |
|||
Die Gleichung der ''[[Tangente]]'' in einem Hyperbelpunkt <math>(x_B,y_B)</math> findet man am einfachsten durch [[Differentialrechnung|implizites Differenzieren]] der Hyperbelgleichung <math>\tfrac{x^2}{a^2}-\tfrac{y^2}{b^2}= 1</math>: |
|||
:<math>\frac{2x}{a^2}-\frac{2yy'}{b^2}= 0 \ \rightarrow \ y'=\frac{x}{y}\frac{b^2}{a^2}\ \rightarrow \ y=\frac{x_B}{y_B}\frac{b^2}{a^2}(x-x_B) +y_B\ . </math> |
|||
Unter Berücksichtigung von <math>\tfrac{x_B^2}{a^2}-\tfrac{y_B^2}{b^2}= 1</math> ergibt sich |
|||
<math>: \quad \frac{x_Bx}{a^2}-\frac{y_By}{b^2}= 1 \ .</math> |
|||
=== gleichseitige Hyperbel === |
|||
Eine Hyperbel, für die <math>a = b</math> gilt, heißt ''gleichseitige Hyperbel''. Ihre Asymptoten stehen senkrecht aufeinander. Die lineare Exzentrizität ist <math>e=\sqrt{2}a</math>, die numerische Exzentrizität <math>\varepsilon=\sqrt{2}</math> und der Halbparameter ist <math>p=a</math>. |
|||
=== Parameterdarstellung mit Hyperbelfunktionen === |
|||
Mit den [[Hyperbelfunktionen]] <math>\cosh,\sinh </math> ergibt sich eine (zur Ellipse analoge) ''Parameterdarstellung'' der Hyperbel |
|||
<math>\tfrac{x^2}{a^2}-\tfrac{y^2}{b^2}= 1</math> : |
|||
:<math>(\pm a \cosh t, b \sinh t), t \in \R</math>. |
|||
=== Hyperbel in 2. Hauptlage === |
|||
Vertauscht man x und y, so erhält man Hyperbeln in '''2. Hauptlage''': |
|||
:<math>\frac{y^2}{a^2}-\frac{x^2}{b^2}= 1</math>. |
|||
Principle fighting initially centered around [[Urumchi]], which Uyghur and Hui forces laid under siege until [[Sheng Shicai]]'s troops were reinforced by [[White Russian]] and [[Manchurian]] soldiers who had previously fled the Japanese invasion into northeast China. In April of [[1933]], Jin was deposed by a combination of these forces and succeeded by Sheng, who enjoyed Soviet support. Newly bolstered, Sheng split the opposing forces around Urumchi by offering several Uyghur commanders (led by [[Xoja Niyaz]] [[Hajji]], an advisor to the recently deceased [[Hami]] [[Khan (title)|khan]]) positions of power in southern Xinjiang if they would agree to turn against the Hui armies in the north, led by [[Ma Zhongying]] (馬仲英). |
|||
== Hyperbel als Kegelschnitt == |
|||
[[File:Hyperbel-dandel.png|450px|thumb|Hyperbel (rot): Auf- und Seitenriss eines Kegels mit Dandelinschen Kugeln d1,d2]] |
|||
Schneidet man einen senkrechten Kreiskegel mit einer Ebene <math>\pi</math>, deren Neigung größer als die Neigung der Mantellinien des Kegels ist und die nicht durch die Kegelspitze geht, so ergibt sich eine Hyperbel als Schnittkurve (s. Bild, rote Kurve). Den Nachweis der definierenden Eigenschaft bzgl. der Brennpunkte (s. oben) führt man mit Hilfe zweier [[Dandelinsche Kugel|Dandelin'schen Kugeln]] <math>d_1, d_2</math>, das sind Kugeln, die den Kegel in Kreise <math>c_1</math> bzw. <math>c_2 </math> und die Hyperbel-Ebene in Punkten <math>F_1</math> bzw. <math>F_2</math> berühren. Es stellt sich heraus, dass <math>F_1,F_2</math> die ''Brennpunkte'' der Schnitthyperbel sind. |
|||
# <math>P</math> sei ein beliebiger Punkt der Schnittkurve. |
|||
# Die Mantellinie durch <math>P</math> schneidet den Kreis <math>c_1</math> in einem Punkt <math>A</math> und den Kreis <math>c_2</math> in einem Punkt <math>B</math>. |
|||
# Die Strecken <math>\overline{PF_1}</math> und <math>\overline{PA}</math> sind tangential zur Kugel <math>d_1</math> und damit gleich lang. |
|||
# Die Strecken <math>\overline{PF_2}</math> und <math>\overline{PB}</math> sind tangential zur Kugel <math>d_2</math> und damit auch gleich lang. |
|||
# Also ist <math>: \ |PF_1|-|PF_2|=|PA|-|PB|=|AB|</math> und damit unabhängig vom Hyperbelpunkt <math>P</math>. |
|||
Another Hui faction in southern Xinjiang, meanwhile, had struck an alliance with Uyghur forces located around [[Kucha]] under the leadership of [[Timur Beg]] and proceeded to march towards [[Kashgar]]. The joint Uyghur and Hui force surrounding the city split again, as Hui commander [[Ma Zhancang]] (馬占倉) allied with the local provincial authority representative, a fellow Hui named [[Ma Shaowu]] (馬紹武), and attacked the Uyghur forces, killing Timur Beg. |
|||
== Leitlinien-Eigenschaft == |
|||
[[File:Hyperbel-ll.png|300px|thumb|Hyperbel: Leitlinien-Eigenschaft]] |
|||
Mit dem Begriff ''Direktrix'' oder ''Leitlinie'' bezeichnet man die beiden Parallelen zur Nebenachse im Abstand <math>d = \tfrac{a^2}e</math>. Für einen beliebigen Punkt <math>P</math> der Hyperbel ist das Verhältnis zwischen den Abständen zu einem Brennpunkt und zur zugehörigen Leitlinie gleich der numerischen Exzentrizität: |
|||
*<math>\frac{|PF_1|}{|Pl_1|} = \frac{|PF_2|}{|Pl_2|} = \varepsilon= \frac{e}{a}.</math> |
|||
Zum ''Beweis'' zeigt man, dass für <math>|PF_1|^2=(x-e)^2+y^2,\ |Pl_1|^2=(x-\tfrac{a^2}{e})^2 </math> und <math> y^2=\tfrac{b^2}{a^2}x^2-b^2</math> die Gleichung |
|||
:<math>|PF_1|^2-\tfrac{e^2}{a^2}|Pl_1|^2=0</math> erfüllt ist. |
|||
==Establishment of the ETR== |
|||
'''Umgekehrt''' kann man einen Punkt (als Brennpunkt) und eine Gerade (als Leitlinie) sowie eine reelle Zahl <math>\varepsilon</math> mit <math>\varepsilon > 1</math> vorgeben und eine Hyperbel definieren als |
|||
*Menge aller Punkte der Ebene, für die das Verhältnis der Abstände zu dem Punkt und zu der Geraden gleich <math>\varepsilon</math> ist. |
|||
(Wählt man <math>\varepsilon = 1</math>, so erhält man eine [[Parabel (Mathematik)|Parabel]]. Für <math>\varepsilon < 1</math> ergibt sich eine [[Ellipse]].) |
|||
While this was transpiring, in the nearby southern [[Tarim Basin]] city of [[Khotan]], three brothers of rich Bughra family educated in the [[jadidist]] tradition had led a rebellion of gold miners who worked in mines near [[Keriya]] city, also in [[Yurungkash|Yurunkash]] and [[Karakash River|Karakash]] mountain rivers, and established themselves as [[emirs]] of the city, having declared the Khotan [[Emirate]] and [[Independence]] from China on [[March 16]],[[1933]]. Local provincial authorities and troops were annihilated by the miners throughout Khotan [[vilayet]], rare [[Chinese people|Chinese]] population in most cases saved their lives and property, but was forced to accept [[Islam]] under the threat of execution. The Khotan Emirate dispatched one of the three brothers, Shahmansur Amin Bughra (known also as [[Amir]] Abdulla ), and a former publisher named [[Sabit Damulla Abdulbaki|Sabit Damolla]] to Kashgar, where they established the [[Kashgar Affairs Office of the Khotan Government]], led by [[Muhammad Amin Bughra]], in July of [[1933]]. By the fall of that year, the office had shed many of its links to the Khotan government and reformed itself into the multi-ethnic, quasi-nationalist [[East Turkestan Independence Association]], which drew heavily on ideas of Islamic reformism, [[nationalism]] and [[jadidism]]. In September of 1933, Sabit Damolla declared the establishment of the East Turkistan Republic, with [[Xoja Niyaz]] as its president — despite the fact that the respected commander was engaged in fighting in northern Xinjiang and had actually allied his forces with those of [[Sheng Shicai]]. |
|||
Zum ''Beweis'' geht man von <math>F_1=(f,0) , \varepsilon >0 </math> und der Vorgabe, dass <math>(0,0)</math> ein Kurvenpunkt ist, aus. Die Leitlinie <math>l_1</math> wird dann durch die Gleichung <math>x=-\tfrac{f}{\varepsilon}</math> beschrieben. Für <math>P=(x,y)</math> folgt aus <math>|PF_1|^2=\varepsilon^2|Pl_1|^2 \ :</math> |
|||
:<math>(x-f)^2+y^2=\varepsilon^2(x+\tfrac{f}{e})^2=(\varepsilon x+f)^2</math> und hieraus <math>x^2(\varepsilon^2-1)+2xf(1+\varepsilon)-y^2=0 \ .</math> |
|||
Mit der Abkürzung <math>p=f(1+\varepsilon)</math> erhält man |
|||
:<math>x^2(\varepsilon^2-1)+2px-y^2=0 \ .</math> |
|||
Dies ist die ''Scheitelgleichung'' einer Ellipse (<math>\varepsilon<1</math>), einer Parabel (<math>\varepsilon=1</math>) oder einer Hyperbel (<math>\varepsilon>1</math>). Siehe Abschnitt ''Formelsammlung''.<br /> |
|||
Führt man im Fall <math>\varepsilon>1</math> neue Konstanten <math>a,b</math> so ein, dass |
|||
<math>\varepsilon^2-1 =\tfrac{b^2}{a^2},\ p=\tfrac{b^2}{a}</math> ist, so geht die Scheitelgleichung in |
|||
:<math>\tfrac{(x+a)^2}{a^2}-\tfrac{y^2}{b^2}=1</math> über. |
|||
Dies ist die Gleichung einer Hyperbel mit Mittelpunkt <math>(-a,0)</math>, x-Achse als Hauptachse und Halbachsen <math>a,b</math>. |
|||
Established distinct from the [[Khotan Emirate]], the ETR claimed authority over territory stretching from [[Aksu, Xinjiang|Aksu]] along the northern rim of the [[Tarim Basin]] to [[Khotan]] in the south. In fact, the government in [[Kashgar]] was strapped for resources, plagued by rapid [[inflation]], and surrounded by hostile powers — including the [[Hui people|Hui]] forces under [[Ma Zhancang]]. Although established as a multiethnic republic, as reflected in the choice of the "East Turkestan" name used in its founding [[constitution]], the first coins of the new government were initially [[mint (coin)|minted]] under the name "Republic of Uyghurstan" (''Uyghurstan Jumhuriyiti''). In some sources, it is known as the "East Turkestan Islamic Republic", suggesting a greater role for [[Islam]] in its founding character. The extent of Islam's influence in the foundation of the ETR is disputed; while the constitution endorses [[sharia]] as the guiding law, the [[jadidist]] modernizing tradition places much greater emphases on reform and development, which is reflected in subsequent passages of the constitution that focus on health, education, and economic reforms.<br /> |
|||
== Hyperbel als affines Bild der Einheitshyperbel == |
|||
[[File:Hyperbel-aff.png|300px|thumb|Hyperbel als affines Bild der Einheitshyperbel]] |
|||
The efforts of ''Turkish Islamic Republic of Eastern Turkestan'' (TIRET) to receive international recognition had been failed despite of despatching the numerous envoys having been sent by Prime-Minister [[Sabit Damulla Abdulbaki|Sabit Damolla]] to [[USSR]] ([[Tashkent]], [[Moscow]]), [[Afghanistan]], [[Iran]], [[Turkey]] and [[British India]]. [[Soviet Union]] rejected all offers of dealing with [[islamist]]s. In [[Kabul]] Kashgar representatives met with new-proclaimed King of Afghanistan [[Mohammad Zahir Shah]] and Prime-Minister [[Sardar Mohammad Hashim Khan]], asking for aid and supply of arms. But both preferred to keep neutrality and not to interfere into China affairs. The same way reacted other countries, refusing to deal with envoys as representatives of independent country. No one wanted to make a challenge to the powerful Soviet Union and China in their politics and become to be engaged in bloody fighting in [[Sinkiang]], which already claimed lives of around 100,000 of its populace. Thus leaving to the fledgling Republic (TIRET or Republic of [[Uyghurstan]]), which was surrounded from almost all sides by hostile powers ([[Tungan]]s, [[Soviet]]s, [[Chinese people|Chinese]]), a very little chance to survive. |
|||
Eine andere Definition der Hyperbel benutzt eine spezielle geometrische Abbildung, nämlich die [[Affinität (Mathematik)|Affinität]]. Hier ist die Hyperbel als ''affines Bild der Einheitshyperbel <math>x^2-y^2=1</math>'' definiert. Eine affine Abbildung in der reellen Ebene hat die Form <math>\vec x \to \vec f_0+A\vec x</math>, wobei <math>A</math> eine reguläre Matrix (Determinante nicht 0) und <math>\vec f_0</math> ein beliebiger Vektor ist. Sind <math>\vec f_1, \vec f_2</math> die Spaltenvektoren der Matrix <math>A</math>, so wird die Einheitshyperbel <math>(\pm\cosh t,\sinh t), t \in\R,</math> auf die Hyperbel |
|||
===Republic of Eastern Turkestan and Axis Powers links=== |
|||
:: <math>\vec x = \vec p(t)=\vec f_0 \pm\vec f_1 \cosh t +\vec f_2 \sinh t</math> |
|||
{{Unreferenced|date=April 2007}} |
|||
abgebildet. <math>\vec f_0</math> ist der Mittelpunkt, <math>\vec f_0+ \vec f_1</math> ein Punkt der Hyperbel und <math>\vec f_2</math> Tangentenvektor in diesem Punkt. <math>\vec f_1, \vec f_2</math> stehen i.a. nicht senkrecht aufeinander. D.h. <math>\vec f_0\pm \vec f_1</math> sind i.a. ''nicht'' die Scheitel der Hyperbel. Aber <math>\vec f_1\pm \vec f_2</math> sind die Richtungsvektoren der Asymptoten. Diese Definition einer Hyperbel liefert eine einfache Parameterdarstellung einer beliebigen Hyperbel. |
|||
''See also: [[Republic of Eastern Turkestan and Axis Powers Links]]'' |
|||
Da in einem '''Scheitel''' die Tangente zum zugehörigen Hyperbeldurchmesser senkrecht steht und die Tangentenrichtung in einem Hyperbelpunkt |
|||
<math>\vec p'(t) = \vec f_1\sinh t + \vec f_2\cosh t </math> ist, ergibt sich der Parameter <math>t_0</math> eines Scheitels aus der Gleichung |
|||
:<math>\vec p'(t)\cdot (\vec p(t) -\vec f_0) = |
|||
(\vec f_1\sinh t + \vec f_2\cosh t)\cdot(\vec f_1 \cosh t +\vec f_2 \sinh t) =0 </math> |
|||
und damit aus <math> \coth (2t_0)= -\tfrac{\vec f_1^{\, 2}+\vec f_2^{\, 2}}{2\vec f_1 \cdot \vec f_2}</math> |
|||
zu |
|||
:<math>t_0=\tfrac{1}{4}\ln\tfrac{(\vec f_1-\vec f_2)^2}{(\vec f_1+\vec f_2)^2} \ .</math><br /> |
|||
(Es wurden die Formeln <math>\cosh^2 x +\sinh^2 x=\cosh 2x,\ 2\sinh x \cosh x = \sinh 2x,\ \mathrm{arcoth}\,x = \tfrac{1}{2}\ln\tfrac{x+1}{x-1}</math> benutzt.) |
|||
The "''Turkish-Islamic Republic of Eastern Turkestan''"(TIRET) had some links with [[Axis Powers]], because of the Axis interest during 1930-37 to exploit Pan-[[Islamic]] sentiments. TIRET as a result tried (through [[Germany|German]] representatives in [[Kabul]]), but failed to receive recognition from Germany, instead [[Nazy Germany]] supported the KMT. |
|||
Falls <math>\vec f_1 \cdot \vec f_2=0\ </math> ist, ist <math>t_0=0</math> und die Parameterdarstellung schon in Scheitelform ! |
|||
==End of the First East Turkestan Republic== |
|||
Die '''2 Scheitel''' der Hyperbel sind <math>\vec f_0\pm(\vec f_1\cosh t_0 +\vec f_2 \sinh t_0)\ .</math> |
|||
''See also: [[History of Xinjiang]]'' |
|||
<!-- Deleted image removed: [[Image: Hojaniyaz.jpg|right|thumb| Uyghur leader of [[Kumul]] Uprising (1931) '''Hojaniyaz Haji''' (1889-1938). Vice-Chairman of Sinkiang Government (1934-1937). Commander-in-chief of Sinkiang People's Army (1934-1937). ]] --> |
|||
<!-- Deleted image removed: [[Image: Mahmut Muhiti.jpg|right|thumb| Uyghur leader of [[Turpan]] Uprising (1932) General '''Mahmut Muhiti''' (1887-1944). Commander of 6th Uyghur Division (1934-1937) of Sinkiang People's Army.]] --> |
|||
In the north, aid came to [[Sheng Shicai]]'s forces on [[January 24]][[1934]] in the form of two [[Soviet Union|Soviet]] [[brigades]], the [[Altaiskaya]] and [[Tarbaghataiskaya]], disguised as ''[[White Russian]] [[Cossack]] [[Altai]] [[Volunteer Army]]'' and led by [[Red Army]] General Volgin. The [[Japan]]ese annexation of [[Manchuria]] and rumored support for [[Ma Zhongying]]'s [[Hui people|Hui]] forces were one cause for concern; equally troubling for [[Stalin]] was the prospect that rebellion in [[Xinjiang]] might spread to the Soviet [[Central Asian Republics]] and offer a haven to Muslim [[basmachi]]s. Trade ties between Xinjiang and the Soviet Union also gave the Soviets motivation to support Sheng further. The Soviet brigades, backed by [[air support]], scattered Ma Zhongying's troops surrounding [[Urumqi|Urumchi]] and forced them to retreat southward. On [[February 16]][[1934]] the siege of Urumchi was lifted, terminating the period of uncertainty and despair for Sheng and [[White Guard]]s Cossack troops, which were trapped in the city by Ma forces since [[January 07]][[1934]]. |
|||
[[Hoja Niyaz]] [[Hajji]] had by this time arrived in [[Kashgar]] to assume presidency of the ETR, going against his previous deal with Sheng. Arrived with him another prominent uyghur leader from Eastern Sinkiang ( [[Turpan]], [[Kumul]] ) Mahmut Muhiti ( known as Mahmut ''Sijan'', i.e. division general ) had agreed to become a minister of Defence in ETR Government, accepting the offer of Prime-Minister [[Sabit Damulla Abdulbaki|Sabit Damolla]]. Nevertheless, the new-proclaimed on [[November 12]] [[1933]] Independent [[Republic]] ('''Turkish Islamic Republic of Eastern Turkestan'''- '''TIRET''' or '''Republic of [[Uyghurstan]]''', both names were used at the same time ) proved to be short-lived. The [[Hui people|Hui]] forces retreating from the north linked up with [[Ma Zhancang]]'s forces in [[Kashgar]] allied themselves with the Kuomintang in [[Nanjing]], and attacked the TIRET, forcing Niyaz, Sabit Damolla, and the rest of the government to flee on [[February 6]] [[1934]] to [[Yengisar County|Yengi Hissar]] south of the city. The conquering Hui army killed many of those who remained, and a rapid procession of betrayals among the survivors, following their expulsion from Kashgar, spelled the effective end of the TIRET. Mahmut Muhiti retreated with remainder of Army to [[Yarkand]] and [[Hotan]], while Hoja Niyaz Hajji fled through [[Artux|Artush]] to Irkeshtam on Soviet/Chinese border, with tungan troops on his heels, which were chasing after him till the border. Hoja Niyaz took refuge in the USSR, where he was blamed by Soviets for accepting from Sabit Damolla the position of first leader of TIRET ([[President]]), but was promised a military aid and ''great prospects for the future'' if he would help Sheng Shicai and Soviets ''to dissolve TIRET''. After signing the Document of TIRET dismissal and disbanding of its troops Hoja Niyaz Hajji returned to Eastern Turkestan where he turned Sabit and several other TIRET ministers to Sheng, who rewarded him with control over southern [[Xinjiang]] as previously promised; those who escaped fled to [[India]] and [[Afghanistan]]. The [[Kuomintang|KMT]]-aligned Hui forces under [[Ma Zhongying]] were suppressed, and Sheng consolidated his rule over the province thanks to extensive Soviet support. The seat of Hoja Niyaz Hajji Southern Xinjiang Autonomous Government had initially been established in the city of [[Aksu, Xinjiang|Aksu]], but later he was urged by Sheng Shicai to move to Urumchi to assume position of the vice-chairman of Xinjiang Government. His forces received 15,000 rifles and ammunition from USSR, but each rifle, each bullet and each bomb, that was dropped on Tungan troops from Soviet airplanes, had been paid by Hoja Niyaz Hajji to [[USSR]] by gold. |
|||
Aus |
|||
:<math>\vec x = \vec p(t)= \vec p(t-t_0+t_0)=\vec f_0\pm\vec f_1\cosh((t-t_0)+t_0) + \vec f_2\sinh ((t-t_0)-t_0)</math> |
|||
und den [[ Hyperbelfunktion#Additionstheoreme|Additionstheoremen für die Hyperbelfunktionen]] ergibt sich die '''Scheitelform''' der Parameterdarstellung der Hyperbel: |
|||
: <math> \vec x = \vec p(t) =\vec f_0\pm(\vec f_1\cosh t_0 +\vec f_2 \sinh t_0)\cosh (t-t_0)+ (\vec f_1\sinh t_0 +\vec f_2 \cosh t_0)\sinh (t-t_0) \ .</math> |
|||
== Sources == |
|||
* '''James A. Millward and Nabijan Tursun''', "Political History and Strategies of Control, 1884-1978" in ''Xinjiang: China's Muslim Borderland'' (ISBN 0-7656-1318-2). |
|||
* '''Michael Zrazhevsky''', " Russian [[Cossack]]s in [[Sinkiang]] ". Almanach " The [[Third Rome]] ", [[Russia]], [[Moscow]], 2001 |
|||
*'''Sven Gedin''', " The flight of Big Horse ". [[New-York]], [[USA]], 1936 |
|||
{{DEFAULTSORT:East Turkestan Republic, First}} |
|||
[[Category:Xinjiang]] |
|||
'''Beispiele:''' |
|||
[[Category:Former countries in Chinese history]] |
|||
[[Datei:Rectangular hyperbola.svg|thumb|Hyperbel als Graph der Funktion y=1/x (Beispiel 3)]] |
|||
[[Category:Short-lived states|Turkestan]] |
|||
[[File:Hyperbel-sf.png|250px|thumb|Hyperbel: Transformation auf Scheitelform (Beispiel 5)]] |
|||
[[Category:East Turkestan independence movement]] |
|||
# <math> \vec f_0=\begin{pmatrix} 0 \\ 0 \end{pmatrix},\ \vec f_1=\begin{pmatrix} a \\ 0 \end{pmatrix},\ \vec f_2=\begin{pmatrix} 0 \\ b \end{pmatrix}</math> liefert die übliche Parameterdarstellung der Hyperbel mit der Gleichung <math>\tfrac{x^2}{a^2} - \tfrac{y^2}{b^2} = 1 :\quad |
|||
\vec x=\vec p(t)=\begin{pmatrix} a\cosh t \\ b\sinh t \end{pmatrix}\ .</math> |
|||
#<math>\vec f_0=\begin{pmatrix} x_0 \\ y_0 \end{pmatrix},\ \vec f_1=\begin{pmatrix} a\cos \varphi \\ a\sin \varphi\end{pmatrix},\ \vec f_2=\begin{pmatrix} -b\sin \varphi \\ b \cos \varphi\end{pmatrix}</math> liefert die Parameterdarstellung der Hyperbel, die aus der Hyperbel <math>\tfrac{x^2}{a^2} - \tfrac{y^2}{b^2} = 1 </math> durch Drehung um den Winkel <math>\varphi</math> und anschließende Verschiebung um <math>\vec f_0</math> hervorgeht. Die Parameterdarstellung ist schon in Scheitelform. D.h. <math>\vec f_0\pm \vec f_1</math> sind die Scheitel der Hyperbel. |
|||
# <math> \vec f_0=\begin{pmatrix} 0 \\ 0 \end{pmatrix},\ \vec f_1=\begin{pmatrix} 1 \\ 1 \end{pmatrix},\ \vec f_2=\begin{pmatrix} -1 \\ 1 \end{pmatrix}</math> liefert die Hyperbel mit der Gleichung <math> y= \tfrac{1}{x} \ .</math> (Beim Nachweis von <math>xy=1</math> verwende man <math>\cosh^2 t-\sinh^2 t=1 \ .</math> ) |
|||
#Bildet man die Hyperbel <math> y= \tfrac{1}{x} </math> mit affinen Abbildungen der Form <math>(x,y) \to (x+x_0,ay+y_0), a\ne 0,</math> ab, so erhält man die Schar <math>y=\tfrac{a}{x-x_0}+y_0</math> aller Hyperbeln mit achsenparallelen Asymptoten. Der Mittelpunkt solch einer Hyperbel ist <math>(x_0,y_0) \ .</math> Die Besonderheit dieser Hyperbelschar ist, dass sie sich als Funktionsgraphen darstellen lassen. |
|||
#Die Parameterdarstellung |
|||
::<math>\vec x=\vec p(t)=\pm \begin{pmatrix} 30 \\ 0 \end{pmatrix}\cosh t+\begin{pmatrix} -30 \\ 3\sqrt 5\end{pmatrix}\sinh t</math> einer Hyperbel ist ''nicht'' in Scheitelform. |
|||
:: Der Scheitelparameter ergibt sich aus <math>t_0=\tfrac{1}{4}\ln\tfrac{(\vec f_1-\vec f_2)^2}{(\vec f_1+\vec f_2)^2}</math> zu <math>t_0=\ln 3 \ .</math> |
|||
::Die Scheitelform der Parameterdarstellung ist: |
|||
::<math>\vec x=\vec p(t)=\pm \begin{pmatrix} \ 10 \\ 4\sqrt 5 \end{pmatrix}\cosh (t-\ln 3)+ |
|||
\begin{pmatrix} -10 \\ 5\sqrt 5 \end{pmatrix}\sinh (t-\ln 3) \ .</math> |
|||
::Die Scheitel sind: <math>(10,4\sqrt 5),(-10,-4\sqrt 5) </math> und |
|||
::die Halbachsen: <math>a=6\sqrt{5},\ b=15\ . </math> |
|||
[[ja:東トルキスタン共和国]] |
|||
'''Bemerkung:''' Sind die Vektoren <math>\vec f_0, \vec f_1, \vec f_2</math> aus dem <math>\R^3</math>, so erhält man eine Parameterdarstellung einer Hyperbel im Raum. |
|||
[[tr:Doğu Türkistan İslâm Cumhuriyeti]] |
|||
== Hyperbel als affines Bild der Hyperbel y=1/x == |
|||
Da die Einheitshyperbel <math>x^2-y^2=1</math> zur Hyperbel <math>y=1/x</math> äquivalent ist (s.o.), kann man eine beliebige Hyperbel auch als affines Bild der Hyperbel <math>y=1/x</math> auffassen: |
|||
:<math>\vec x= \vec p(t)=\vec f_0 + \vec f_1 t+ \vec f_2 \tfrac{1}{t}, \ t\ne 0 .</math> |
|||
<math>M: \vec f_0 </math> ist der Mittelpunkt der Hyperbel, <math>\vec f_1 , \vec f_2 </math> zeigen in Richtung der Asymptoten und <math>\vec f_1 + \vec f_2 </math> ist ein Punkt der Hyperbel. |
|||
Für den Tangentenvektor ergibt sich |
|||
:<math>\vec p'(t)=\vec f_1 - \vec f_2 \tfrac{1}{t^2}, \ .</math> |
|||
In einem '''Scheitel''' steht die Tangente zum zugehörigen Hyperbeldurchmesser senkrecht, d.h. es ist |
|||
:<math>\vec p'(t)\cdot (\vec p(t) -\vec f_0) = |
|||
(\vec f_1 - \vec f_2 \tfrac{1}{t^2})\cdot(\vec f_1 t+ \vec f_2 \tfrac{1}{t}) = \vec f_1^2t-\vec f_2^2 \tfrac{1}{t^3} = 0 .</math> |
|||
Also ist der Scheitelparameter |
|||
:<math>t_0= \pm \sqrt[4]{\frac{\vec f_2^2}{\vec f_1^2}}\quad .</math> Für <math>|\vec f_1|=|\vec f_2|</math> ist <math>t_0=\pm 1</math> und <math>\vec f_0\pm(\vec f_1+\vec f_2)</math> sind die Scheitel der Hyperbel. |
|||
=== Tangentenkonstruktion === |
|||
[[File:Hyperbel-tang.png|250px|thumb|Tangenten-Konstruktion: Asymptoten und P gegeben -> Tangente]] |
|||
Der Tangentenvektor kann durch Ausklammern von <math>\tfrac{1}{t}</math> so geschrieben werden: |
|||
:<math>\vec p'(t)=\tfrac{1}{t}(\vec f_1t - \vec f_2 \tfrac{1}{t}), \ .</math> |
|||
D.h. in dem Parallelogramm <math>M: \vec f_0, A:\vec f_0+\vec f_1t, B:\vec f_0+ \vec f_2 \tfrac{1}{t}, P:\vec f_0+\vec f_1t+\vec f_2 \tfrac{1}{t} </math> ist die Diagonale <math>AB</math> parallel zur Tangente im Hyperbelpunkt <math>P</math> (s. Bild). Diese Eigenschaft bietet eine einfache Möglichkeit die Tangente in einem Hyperbelpunkt zu konstruieren. |
|||
''Bemerkung:'' Diese Eigenschaft einer Hyperbel ist eine affine Version der 3-Punkte Ausartung des [[Satz von Pascal|Satzes von Pascal]].<ref>[http://www.mathematik.tu-darmstadt.de/~ehartmann/circlegeom.pdf Lecture Note '''''Planar Circle Geometries''''', an Introduction to Moebius-, Laguerre- and Minkowski Planes], S. 33, (PDF; 757 kB)</ref> |
|||
=== Punktkonstruktion === |
|||
[[File:Hyperbel-pasc4.png|250px|thumb|Punkt-Konstruktion: Asymptoten und P1 gegeben -> P2]] |
|||
Eine weitere Eigenschaft einer Hyperbel erlaubt die Konstruktion von Hyperbelpunkten, falls die Asymptoten und ein Punkt der Hyperbel bekannt sind: |
|||
Für eine Hyperbel mit der Parameterdarstellung <math>\vec x= \vec p(t)=\vec f_1 t+ \vec f_2 \tfrac{1}{t}</math> (Der Mittelpunkt wurde der Einfachheit halber als Nullpunkt angenommen) gilt: |
|||
Sind <math> P_1: \vec f_1 t_1+ \vec f_2 \tfrac{1}{t_1},\ P_2:\vec f_1 t_2+ \vec f_2 \tfrac{1}{t_2}</math> zwei Hyperbelpunkte, so liegen die Punkte |
|||
:<math>A: \vec a =\vec f_1 t_2+ \vec f_2 \tfrac{1}{t_1}, \ B:\vec b=\vec f_1 t_1+ \vec f_2 \tfrac{1}{t_2}</math> auf einer Gerade durch den Mittelpunkt (s. Bild). |
|||
Der einfache Beweis ergibt sich aus: <math>\tfrac{1}{t_2}\vec a=\tfrac{1}{t_1}\vec b</math>. |
|||
''Bemerkung:'' Diese Eigenschaft einer Hyperbel ist eine affine Version der 4-Punkte Ausartung des [[Satz von Pascal|Satzes von Pascal]].<ref>[http://www.mathematik.tu-darmstadt.de/~ehartmann/circlegeom.pdf Lecture Note '''''Planar Circle Geometries''''', an Introduction to Moebius-, Laguerre- and Minkowski Planes], S. 32, (PDF; 757 kB)</ref> |
|||
=== Tangenten-Asymptoten-Dreieck === |
|||
[[File:Hyperbel-tad.png|250px|thumb|Hyperbel: Tangenten-Asymptoten-Dreieck]] |
|||
Für die folgenden Überlegungen, nehmen wir der Einfachheit halber an, dass der Mittelpunkt sich im Nullpunkt (0,0) befindet und dass die Vektoren <math>\vec f_1,\vec f_2</math> die gleiche Länge haben. Falls letzteres nicht der Fall sein sollte, wird die Parameterdarstellung zuerst in Scheitelform gebracht (s.o.). Dies hat zur Folge, dass <math>\pm(\vec f_1+\vec f_2)</math> die Scheitel und <math>\pm(\vec f_1-\vec f_2)</math> die Nebenscheitel sind. Also ist <math>|\vec f_1+\vec f_2|=a</math> und <math>|\vec f_1-\vec f_2|=b</math>. |
|||
Berechnet man die Schnittpunkte der Tangente in dem Hyperbelpunkt <math>\vec p(t_0)=\vec f_1 t_0+ \vec f_2 \tfrac{1}{t_0} </math> mit den Asymptoten, so erhält man die beiden Punkte |
|||
:<math>C: 2t_0\vec f_1,\ D:\tfrac{2}{t_0}\vec f_2 \ .</math> |
|||
Der Flächeninhalt des [[Dreiecksfläche|Dreiecks]] <math>M,C,D</math> lässt sich mit Hilfe einer 2x2-Determinante ausdrücken: |
|||
:<math>F=\tfrac{1}{2}|\det( 2t_0\vec f_1, \tfrac{2}{t_0}\vec f_2)|=2|\det(\vec f_1,\vec f_2)|</math> |
|||
(s. Rechenregeln für [[Determinanten]].) |
|||
<math>|\det(\vec f_1,\vec f_2)|</math> ist der Flächeninhalt der von <math>\vec f_1,\vec f_2 </math> aufgespannten Raute. Der Flächeninhalt einer [[Raute]] ist gleich der Hälfte des Diagonalenproduktes. Die Diagonalen dieser Raute sind die Halbachsen <math>a,b</math>. Also gilt: |
|||
:Der '''Flächeninhalt''' des Dreiecks <math>M,C,D</math> ist unabhängig vom Hyperbelpunkt |
|||
: <math>F=ab\ .</math> |
|||
== Mittelpunkte paralleler Sehnen == |
|||
[[File:Hyperbel-psehnen.png|thumb|Hyperbel: Die Mittelpunkte paralleler Sehnen liegen auf einer Gerade]] |
|||
[[File:Hyperbel-sa.png|thumb|Hyperbel: Der Mittelpunkt einer Sehne halbiert auch die Sehne der Asymptoten]] |
|||
Für jede Hyperbel gilt: |
|||
* Die Mittelpunkte paralleler Sehnen (s. Bild) liegen auf einer Gerade durch den Mittelpunkt der Hyperbel. |
|||
D.h. zu jedem Punktepaar <math>P,Q</math> einer Sehne <math>s</math> gibt es eine ''Schrägspiegelung'' an einer Gerade durch den Mittelpunkt der Hyperbel, die die Punkte <math>P,Q</math> vertauscht und die Hyperbel auf sich abbildet. Dabei versteht man unter einer Schrägspiegelung eine Verallgemeinerung einer gewöhnlichen Spiegelung an einer Gerade <math>m</math>, bei der alle Strecken Punkt-Bildpunkt zwar parallel aber nicht unbedingt senkrecht zur Spiegelachse <math>m</math> sind. |
|||
Den Nachweis dieser Eigenschaft führt man am einfachsten an der Hyperbel <math>y=1/x</math> durch. Da alle Hyperbeln affine Bilder der Einheitshyperbel und damit auch von der Hyperbel <math>y=1/x</math> sind und bei einer affinen Abbildung Mittelpunkte von Strecken in die Mittelpunkte der Bildstrecken übergehen, gilt die obige Eigenschaft für alle Hyperbeln. |
|||
'''Bemerkung:''' |
|||
Die Punkte der Sehne <math>s</math> dürfen auch auf verschiedenen Ästen der Hyperbel liegen. |
|||
Eine Folgerung dieser Symmetrie ist: Die Asymptoten der Hyperbel werden bei der Schrägspiegelung vertauscht und der Mittelpunkt <math>M</math> einer Hyperbelsehne <math> P Q </math> halbiert auch die zugehörige Strecke <math>\overline P \, \overline Q</math> zwischen den Asymptoten, d.h. es ist <math>|P\overline P|=|Q\overline Q|</math> . Diese Eigenschaft kann man benutzen, um bei bekannten Asymptoten und einem Punkt <math>P</math> beliebig viele weitere Hyperbelpunkte <math>Q</math> zu konstruieren, indem man die jeweilige Strecke <math>P\overline P</math> zur Konstruktion von <math>Q</math> verwendet. |
|||
Entartet die Sehne <math>PQ</math> zu einer Tangente, so halbiert der Berührpunkt den Abschnitt zwischen den Asymptoten. |
|||
== Pol-Polare-Beziehung == |
|||
[[File:Hyperbel-pol.png|250px|thumb|Hyperbel: Pol-Polare-Beziehung]] |
|||
Eine Hyperbel lässt sich in einem geeigneten Koordinatensystem immer durch eine Gleichung der Form <math>\tfrac{x^2}{a^2}-\tfrac{y^2}{b^2}= 1</math> beschreiben. Die Gleichung der Tangente in einem Hyperbelpunkt <math>P_0=(x_0,y_0)</math> ist |
|||
<math>\tfrac{x_0x}{a^2}-\tfrac{y_0y}{b^2}= 1 \ .</math> |
|||
Lässt man in dieser Gleichung zu, dass <math>P_0=(x_0,y_0)</math> ein beliebiger vom Nullpunkt verschiedener Punkt der Ebene ist, so wird |
|||
:dem Punkt <math>P_0=(x_0,y_0)\ne(0,0) </math> die Gerade <math>: \quad \frac{x_0x}{a^2}-\frac{y_0y}{b^2}= 1 </math> zugeordnet. |
|||
Diese Gerade geht nicht durch den Mittelpunkt der Hyperbel. |
|||
Umgekehrt kann man |
|||
: der Gerade <math>y=mx+d,\ d\ne 0, </math> den Punkt <math>(-\frac{ma^2}{d},-\frac{b^2}{d})</math> bzw. |
|||
: der Gerade <math>x=c,\ c\ne 0, </math> den Punkt <math>(\frac{a^2}{c},0)</math> zuordnen. |
|||
Solch eine Zuordnung Punkt <-> Gerade nennt man eine ''Polarität'' oder [[Pol und Polare|'''Pol-Polar-Beziehung''']]. Der ''Pol'' ist der Punkt, die ''Polare'' ist die zugehörige Gerade. |
|||
Die Bedeutung dieser Pol-Polare-Beziehung besteht darin, dass die möglichen Schnittpunkte der Polare eines Punktes mit der Hyperbel die Berührpunkte der Tangenten durch den Pol an die Hyperbel sind. |
|||
* Liegt der Punkt (Pol) auf der Hyperbel, so ist seine Polare die Tangente in diesem Punkt (s. Bild: <math>P_1,\ p_1</math>). |
|||
* Liegt der Pol außerhalb der Hyperbel, so sind die Schnittpunkte der Polare mit der Hyperbel die Berührpunkte der Tangenten durch den Pol an die Hyperbel (s. Bild: <math>P_2,\ p_2,\ P_3,p_3</math>). |
|||
* Liegt der Punkt innerhalb der Hyperbel, so hat seine Polare keinen Schnittpunkt mit der Hyperbel (s. Bild: <math>P_4,\ p_4</math>). |
|||
Zum ''Beweis'': Die Bestimmung der Schnittpunkte der Polaren eines Punktes <math>(x_0,y_0)</math> mit der Hyperbel <math>\tfrac{x^2}{a^2}-\tfrac{y^2}{b^2}= 1 </math> und die Suche nach Hyperbelpunkten, deren Tangenten den Punkt <math>(x_0,y_0)</math> enthalten, führen auf dasselbe Gleichungssystem. |
|||
''Bemerkung:'' |
|||
#Der Schnittpunkt zweier Polaren (z.B. im Bild: <math>p_2,p_3</math>) ist der Pol der Verbindungsgerade der zugehörigen Pole (hier: <math>P_2,P_3</math>). |
|||
#Geraden durch den Mittelpunkt der Hyperbel haben keine Pole. Man sagt: "Ihre Pole liegen auf der [[Ferngerade]]" |
|||
# Der Mittelpunkt der Hyperbel hat keine Polare, "sie ist die Ferngerade". |
|||
''Bemerkung:'' Pol-Polare-Beziehungen gibt es auch für Ellipsen und [[Parabel (Mathematik)|Parabeln]]. |
|||
== Hyperbeln der Form y=a/(x-b)+c == |
|||
=== Peripheriewinkelsatz für Hyperbeln === |
|||
Hyperbeln der Form <math>y=\frac{a}{x-b}+c</math> sind Funktionsgraphen, die durch die 3 Parameter <math>a,b,c</math> eindeutig bestimmt sind. Man benötigt also 3 Punkte, um diese Parameter zu ermitteln. Eine schnelle Methode beruht auf dem Peripheriewinkelsatz für Hyperbeln. |
|||
[[File:Hyperbel-pws.png|250px|thumb|Hyperbel: Peripheriewinkelsatz]] |
|||
Um einen ''Winkel'' zwischen zwei Sehnen zu messen führen wir für zwei Geraden, die weder zur x- noch zur y-Achse parallel sind, ein '''Winkelmaß''' ein: |
|||
:Für zwei Geraden <math>y=m_1x+d_1, \ y=m_2x + d_2\ ,m_1,m_2 \ne 0 \ </math> messen wir den zu gehörigen Winkel mit der Zahl <math>\frac{m_1}{m_2}</math>. |
|||
Zwei Geraden sind parallel, wenn <math>m_1=m_2</math> und damit das Winkelmass =1 ist. |
|||
Analog zum Peripheriewinkelsatz für Kreise gilt hier der |
|||
'''Peripheriewinkelsatz: (f. Hyperbeln)''' |
|||
:Für vier Punkte <math>P_i=(x_i,y_i),\ i=1,2,3,4,\ x_i\ne x_k, y_i\ne y_k, i\ne k</math> (s. Bild) gilt: |
|||
: Die vier Punkte liegen nur dann auf einer Hyperbel der Form <math>y=\tfrac{a}{x-b}+c</math>, wenn die Winkel bei <math>P_3</math> und <math>P_4</math> im obigen Winkelmaß gleich sind, d.h. wenn: |
|||
:<math>\frac{(y_4-y_1)}{(x_4-x_1)}\frac{(x_4-x_2)}{(y_4-y_2)}=\frac{(y_3-y_1)}{(x_3-x_1)}\frac{(x_3-x_2)}{(y_3-y_2)} \ .</math> |
|||
(Beweis durch Nachrechnen. Dabei kann man für die eine Richtung voraussetzen, dass die Punkte auf einer Hyperbel y=a/x liegen.) |
|||
=== 3-Punkte-Form einer Hyperbel === |
|||
Analog zur 2-Punkteform einer Gerade (Steigungswinkel werden mit der Steigung gemessen) folgt aus dem Peripheriewinkelsatz für Hyperbeln die |
|||
'''3-Punkte-Form: (f. Hyperbeln)''' |
|||
:Die Gleichung der Hyperbel durch 3 Punkte <math>P_i=(x_i,y_i),\ i=1,2,3,\ x_i\ne x_k, y_i\ne y_k, i\ne k</math> ergibt sich durch Auflösen der Gleichung |
|||
:<math>\frac{({\color{red}y}-y_1)}{({\color{green}x}-x_1)}\frac{({\color{green}x}-x_2)}{({\color{red}y}-y_2)}=\frac{(y_3-y_1)}{(x_3-x_1)}\frac{(x_3-x_2)}{(y_3-y_2)} \ </math> |
|||
:nach y. |
|||
== Formelsammlung == |
|||
=== Hyperbelgleichung === |
|||
Eine Hyperbel mit Mittelpunkt (0|0) und x-Achse als Hauptachse erfüllt die Gleichung |
|||
:<math>\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1.</math> |
|||
Die Asymptoten der zugehörigen Hyperbel sind die Geraden: |
|||
:<math>y = \pm \frac ba x.</math> |
|||
Brennpunkte sind: |
|||
:<math>(\pm~\sqrt{a^2 + b^2}, 0).</math> |
|||
Eine Hyperbel mit Mittelpunkt <math>(x_0|y_0)</math> und der Gerade <math>y=y_0</math> als Hauptachse erfüllt die Gleichung |
|||
:<math>\frac{(x-x_0)^2}{a^2} - \frac{(y-y_0)^2}{b^2} = 1.</math> |
|||
=== Scheitelgleichung === |
|||
[[File:Kegelschnitt-schaar.png|250px|thumb|Kegelschnitt-Schaar]] |
|||
Die Schar der Hyperbeln, deren Achse die x-Achse, ein Scheitel der Punkt (0,0) und der Mittelpunkt (-a,0) ist, lässt sich durch die Gleichung |
|||
:<math> y^2= 2px +(\varepsilon^2 -1) x^2 \qquad, p=\tfrac{b^2}{a}, \ \varepsilon= \tfrac{e}{a},\ e^2=a^2+b^2,</math> |
|||
beschreiben. |
|||
Für Hyperbeln gilt <math> 1<\varepsilon </math>. Setzt man in dieser Gleichung |
|||
:<math>\varepsilon=0</math>, so erhält man einen Kreis, |
|||
:für <math> 0<\varepsilon <1</math> eine Ellipse, |
|||
:für <math>\varepsilon=1</math> eine Parabel . |
|||
Die Kegelschnitte haben bei gleichem Halbparameter <math>p</math> alle denselben Krümmungskreisradius im Scheitel <math>S:\ \rho=p \ .</math> |
|||
=== Parameterdarstellungen === |
|||
Mittelpunkt (0|0), x-Achse als Hauptachse: |
|||
:'''1:''' <math>\left\{\begin{matrix} x \, = \, \frac{a}{\cos t} \\ y \, = \, \pm b \tan t \end{matrix}\right. \ , \ 0 \le t < 2\pi; \; t \ne \frac{\pi}{2}; \; t \ne \frac{3}{2}\pi</math> |
|||
:'''2:''' <math>\left\{\begin{matrix} x \, = \, \pm a \cosh t \\ y \, = \, b \sinh t \end{matrix}\right. \quad ,\ t \in \R. </math> |
|||
:'''3:''' <math>\left\{\begin{matrix} x \, = \, \pm a\, \tfrac{t^2+1}{2t} \\ y \, = \, b\, \tfrac{t^2-1}{2t} \end{matrix}\right. \quad ,\ t >0 \ . </math> (Darstellung mit ''rationalen'' Funktionen !) |
|||
=== In Polarkoordinaten === |
|||
[[File:Hyperbel-pold-m.png|200px|thumb|Hyperbel: Polardarstellung, Pol=Mittelpunkt]] |
|||
[[File:Hyperbel-pold-f.png|200px|thumb|Hyperbel: Polardarstellung, Pol=Brennpunkt]] |
|||
Man beachte |
|||
#im ersten Fall (Pol ist der Mittelpunkt der Hyperbel), dass der Term unter der Wurzel negativ werden kann. Für solche Winkel ergeben sich keine Hyperbelpunkte. |
|||
#Im zweiten Fall (Pol ist ein Brennpunkt der Hyperbel) liegen auf jedem Strahl, für den der Nenner nicht 0 ist, 2 Hyperbelpunkte (wegen <math>\mp</math>). Für <math>\varphi=0</math> ergeben sich die beiden Scheitel. |
|||
Winkel zur Hauptachse, Pol im Mittelpunkt (0,0): |
|||
:<math>r = \frac{b}{\sqrt{\varepsilon^2 \cos^2 \varphi - 1}}, \quad \varepsilon=\tfrac{e}{a},\ e^2=a^2+b^2</math> |
|||
Winkel zur Hauptachse, Pol in einem Brennpunkt: |
|||
:<math>r = \frac{p}{1 \mp \varepsilon \cos \varphi}, \quad p=\tfrac{b^2}{a} .</math> |
|||
=== Tangentengleichung === |
|||
Mittelpunkt (0|0), Hauptachse als x-Achse, Berührpunkt <math>(x_B|y_B)</math> |
|||
:<math>\frac{x_B x}{a^2} - \frac{y_B y}{b^2} = 1</math> |
|||
Mittelpunkt <math>(x_0|y_0)</math>, Hauptachse parallel zur x-Achse, Berührpunkt <math>(x_B|y_B)</math> |
|||
:<math>\frac{(x_B - x_0) (x - x_0)}{a^2} - \frac{(y_B - y_0) (y - y_0)}{b^2} = 1</math> |
|||
=== Krümmungskreisradius === |
|||
Der Krümmungskreisradius der Hyperbel <math>\tfrac{x^2}{a^2} - \tfrac{y^2}{b^2} = 1</math> in den beiden Scheiteln <math>(\pm a,0)</math> ist: |
|||
:<math>\rho= \frac{b^2}{a} \quad,</math> (wie bei einer Ellipse in den Hauptscheiteln). |
|||
== Weblinks == |
|||
* {{MathWorld|urlname=Hyperbola|title=Hyperbola}} |
|||
* {{MacTutor Biography|id=Hyperbola|title=Hyperbola|page=cur}} |
|||
* [http://krottbrand.bplaced.net/filemanager/javas/hyperbel7.html Berechnungen zu Hyperbeln (Javascript)] |
|||
* http://www.mathematische-basteleien.de/hyperbel.htm |
|||
== Einzelnachweise == |
|||
<references /> |
|||
{{Normdaten|TYP=s|GND=4161034-9|LCCN=|NDL=|VIAF=}} |
|||
[[Kategorie:Geometrische Kurve]] |
Version vom 9. Juli 2008, 14:02 Uhr
Vorlage:Infobox Former Country

The First Eastern Turkestan Republic (ETR), or Turkish Islamic Republic of East Turkestan (TIRET), or, Republic of Uyghurstan, was a short-lived break-away would-be constitutional republic founded in 1933. It was centered around the city of Kashgar in what is today the People's Republic of China-administered region of Xinjiang. Although primarily the product of the separatist, Islamic and nationalist aspirations of the Uyghur population living there, the ETR was multi-ethnic in character, including Kazakh, Kyrgyz, and other Turkic minorities in its government and its population. With the sacking of Kashgar in 1934 by Hui warlords theoretically allied with the Kuomintang government in Nanjing, the first ETR was effectively eliminated. Its example, however, served to some extent as inspiration for the founding of a Second East Turkestan Republic a decade later, and continues to influence modern Uyghur nationalist support for the creation of an independent East Turkestan. Isa Alptekin was the General Secretary of the First East Turkestan Republic.
Origins of the ETR Movement
See also: History of Xinjiang, East Turkestan independence movement
The stirrings of Uyghur separatism during the early 20th century were greatly influenced by the Turkish jadidist movement, which spread as wealthier Uyghurs, inspired by notions of Pan-Turkism, traveled abroad to Turkey, Europe, and Russia, and returned home determined to modernize and develop the educational system in Xinjiang. The first major school founded on the European model was located outside of Kashgar and, unlike the traditional curricula of the madrassah, focused on more technical areas of study such as science, mathematics, history, and language studies. Jadidism emphasized the power of education as a tool for personal and national self-advancement, a development sure to disturb the traditional status quo in Xinjiang. The ruler of Xinjiang, Governor Yang Zengxin (楊增新), responded by closing down or interfering with the operations of several of the new schools.
The birth of the Soviet Union and the socialist Central Asian Republics also influenced the Uyghurs, increasing the popularity of nationalist separatist movements and the spread of the Communist message. Although a local Communist revolutionary organization was established in Xinjiang in 1921, the area also served as a refuge for many intellectuals fleeing the advent of Soviet Communism in Central Asia, which formed a division within the Xinjiang Turkic nationalist movement.
The situation in Xinjiang deteriorated with the assassination of Yang in 1928 and the rise to power of his deputy, Jin Shuren (金樹仁), who declared himself governor after arresting and executing Yang's assassin, a rival official named Fan Yaonan (樊耀南) who had planned to assume the position for himself. Autocratic, corrupt, and ineffective at managing the province's development, Jin further antagonized the populace by reinstituting Sinicization policies, increasing taxes, prohibiting participation in the hajj and bringing in Han Chinese officials to replace local leaders.
Rebellion
See also: History of Xinjiang
The situation came to a head in 1930, when the khan of Hami prefecture (Kumul) in eastern Xinjiang, Shah Mexsut, died. In policies carried over from the Qing era, the khan had been allowed to continue his hereditary rule over the area consistent with the principles of feudalism or satrapy. The importance of Hami territory, strategically located straddling the main road linking the province to eastern China and rich in undeveloped farmland, together with a desire by the government to consolidate power and eliminate the old practice of indirect rule, led Jin to abolish the khanate and assert direct rule upon Shah Mexsut's death.
Jin then proceeded to double agricultural taxes upon the local Uyghur population, expropriated choice farmland, and distributed it among Han Chinese refugees from neighboring Gansu province, subsidizing their efforts and resettling displaced Uyghurs on poor-quality land near the desert. The new garrison stationed in Hami proved even more antagonizing, and by 1931, scattered revolts, mobs, and resistance movements were emerging throughout the area. The final straw was in February 1931 when an ethnic Chinese officer Chieng wished to marry a Uyghur girl from a village outside Hami. Uyghur accounts usually claim that the girl was raped or the family coerced, but as Islamic law forbids Muslim girls to marry non-Muslim men it was clearly offensive to the Uyghur community.
Rebellion broke out on February 20,1931 with a massacre of Chieng and his 33 soldiers on wedding ceremony, 120 Han Chinese refugees from Gansu also were killed. It was not confined to the ethnic Uyghur population alone; Kazaks, Kyrgyz, Han Chinese and Hui commanders all joined in revolt against Jin's rule, though they would occasionally break to fight one another. The Kuomintang and Soviet Union governments further complicated the situation by dispatching troops to come to the aid of Jin and his military commander Sheng Shicai (盛世才), as did White Russian refugees from the Soviet Union living in the Ili River valley region.
Principle fighting initially centered around Urumchi, which Uyghur and Hui forces laid under siege until Sheng Shicai's troops were reinforced by White Russian and Manchurian soldiers who had previously fled the Japanese invasion into northeast China. In April of 1933, Jin was deposed by a combination of these forces and succeeded by Sheng, who enjoyed Soviet support. Newly bolstered, Sheng split the opposing forces around Urumchi by offering several Uyghur commanders (led by Xoja Niyaz Hajji, an advisor to the recently deceased Hami khan) positions of power in southern Xinjiang if they would agree to turn against the Hui armies in the north, led by Ma Zhongying (馬仲英).
Another Hui faction in southern Xinjiang, meanwhile, had struck an alliance with Uyghur forces located around Kucha under the leadership of Timur Beg and proceeded to march towards Kashgar. The joint Uyghur and Hui force surrounding the city split again, as Hui commander Ma Zhancang (馬占倉) allied with the local provincial authority representative, a fellow Hui named Ma Shaowu (馬紹武), and attacked the Uyghur forces, killing Timur Beg.
Establishment of the ETR
While this was transpiring, in the nearby southern Tarim Basin city of Khotan, three brothers of rich Bughra family educated in the jadidist tradition had led a rebellion of gold miners who worked in mines near Keriya city, also in Yurunkash and Karakash mountain rivers, and established themselves as emirs of the city, having declared the Khotan Emirate and Independence from China on March 16,1933. Local provincial authorities and troops were annihilated by the miners throughout Khotan vilayet, rare Chinese population in most cases saved their lives and property, but was forced to accept Islam under the threat of execution. The Khotan Emirate dispatched one of the three brothers, Shahmansur Amin Bughra (known also as Amir Abdulla ), and a former publisher named Sabit Damolla to Kashgar, where they established the Kashgar Affairs Office of the Khotan Government, led by Muhammad Amin Bughra, in July of 1933. By the fall of that year, the office had shed many of its links to the Khotan government and reformed itself into the multi-ethnic, quasi-nationalist East Turkestan Independence Association, which drew heavily on ideas of Islamic reformism, nationalism and jadidism. In September of 1933, Sabit Damolla declared the establishment of the East Turkistan Republic, with Xoja Niyaz as its president — despite the fact that the respected commander was engaged in fighting in northern Xinjiang and had actually allied his forces with those of Sheng Shicai.
Established distinct from the Khotan Emirate, the ETR claimed authority over territory stretching from Aksu along the northern rim of the Tarim Basin to Khotan in the south. In fact, the government in Kashgar was strapped for resources, plagued by rapid inflation, and surrounded by hostile powers — including the Hui forces under Ma Zhancang. Although established as a multiethnic republic, as reflected in the choice of the "East Turkestan" name used in its founding constitution, the first coins of the new government were initially minted under the name "Republic of Uyghurstan" (Uyghurstan Jumhuriyiti). In some sources, it is known as the "East Turkestan Islamic Republic", suggesting a greater role for Islam in its founding character. The extent of Islam's influence in the foundation of the ETR is disputed; while the constitution endorses sharia as the guiding law, the jadidist modernizing tradition places much greater emphases on reform and development, which is reflected in subsequent passages of the constitution that focus on health, education, and economic reforms.
The efforts of Turkish Islamic Republic of Eastern Turkestan (TIRET) to receive international recognition had been failed despite of despatching the numerous envoys having been sent by Prime-Minister Sabit Damolla to USSR (Tashkent, Moscow), Afghanistan, Iran, Turkey and British India. Soviet Union rejected all offers of dealing with islamists. In Kabul Kashgar representatives met with new-proclaimed King of Afghanistan Mohammad Zahir Shah and Prime-Minister Sardar Mohammad Hashim Khan, asking for aid and supply of arms. But both preferred to keep neutrality and not to interfere into China affairs. The same way reacted other countries, refusing to deal with envoys as representatives of independent country. No one wanted to make a challenge to the powerful Soviet Union and China in their politics and become to be engaged in bloody fighting in Sinkiang, which already claimed lives of around 100,000 of its populace. Thus leaving to the fledgling Republic (TIRET or Republic of Uyghurstan), which was surrounded from almost all sides by hostile powers (Tungans, Soviets, Chinese), a very little chance to survive.
Republic of Eastern Turkestan and Axis Powers links
See also: Republic of Eastern Turkestan and Axis Powers Links
The "Turkish-Islamic Republic of Eastern Turkestan"(TIRET) had some links with Axis Powers, because of the Axis interest during 1930-37 to exploit Pan-Islamic sentiments. TIRET as a result tried (through German representatives in Kabul), but failed to receive recognition from Germany, instead Nazy Germany supported the KMT.
End of the First East Turkestan Republic
See also: History of Xinjiang In the north, aid came to Sheng Shicai's forces on January 241934 in the form of two Soviet brigades, the Altaiskaya and Tarbaghataiskaya, disguised as White Russian Cossack Altai Volunteer Army and led by Red Army General Volgin. The Japanese annexation of Manchuria and rumored support for Ma Zhongying's Hui forces were one cause for concern; equally troubling for Stalin was the prospect that rebellion in Xinjiang might spread to the Soviet Central Asian Republics and offer a haven to Muslim basmachis. Trade ties between Xinjiang and the Soviet Union also gave the Soviets motivation to support Sheng further. The Soviet brigades, backed by air support, scattered Ma Zhongying's troops surrounding Urumchi and forced them to retreat southward. On February 161934 the siege of Urumchi was lifted, terminating the period of uncertainty and despair for Sheng and White Guards Cossack troops, which were trapped in the city by Ma forces since January 071934.
Hoja Niyaz Hajji had by this time arrived in Kashgar to assume presidency of the ETR, going against his previous deal with Sheng. Arrived with him another prominent uyghur leader from Eastern Sinkiang ( Turpan, Kumul ) Mahmut Muhiti ( known as Mahmut Sijan, i.e. division general ) had agreed to become a minister of Defence in ETR Government, accepting the offer of Prime-Minister Sabit Damolla. Nevertheless, the new-proclaimed on November 12 1933 Independent Republic (Turkish Islamic Republic of Eastern Turkestan- TIRET or Republic of Uyghurstan, both names were used at the same time ) proved to be short-lived. The Hui forces retreating from the north linked up with Ma Zhancang's forces in Kashgar allied themselves with the Kuomintang in Nanjing, and attacked the TIRET, forcing Niyaz, Sabit Damolla, and the rest of the government to flee on February 6 1934 to Yengi Hissar south of the city. The conquering Hui army killed many of those who remained, and a rapid procession of betrayals among the survivors, following their expulsion from Kashgar, spelled the effective end of the TIRET. Mahmut Muhiti retreated with remainder of Army to Yarkand and Hotan, while Hoja Niyaz Hajji fled through Artush to Irkeshtam on Soviet/Chinese border, with tungan troops on his heels, which were chasing after him till the border. Hoja Niyaz took refuge in the USSR, where he was blamed by Soviets for accepting from Sabit Damolla the position of first leader of TIRET (President), but was promised a military aid and great prospects for the future if he would help Sheng Shicai and Soviets to dissolve TIRET. After signing the Document of TIRET dismissal and disbanding of its troops Hoja Niyaz Hajji returned to Eastern Turkestan where he turned Sabit and several other TIRET ministers to Sheng, who rewarded him with control over southern Xinjiang as previously promised; those who escaped fled to India and Afghanistan. The KMT-aligned Hui forces under Ma Zhongying were suppressed, and Sheng consolidated his rule over the province thanks to extensive Soviet support. The seat of Hoja Niyaz Hajji Southern Xinjiang Autonomous Government had initially been established in the city of Aksu, but later he was urged by Sheng Shicai to move to Urumchi to assume position of the vice-chairman of Xinjiang Government. His forces received 15,000 rifles and ammunition from USSR, but each rifle, each bullet and each bomb, that was dropped on Tungan troops from Soviet airplanes, had been paid by Hoja Niyaz Hajji to USSR by gold.
Sources
- James A. Millward and Nabijan Tursun, "Political History and Strategies of Control, 1884-1978" in Xinjiang: China's Muslim Borderland (ISBN 0-7656-1318-2).
- Michael Zrazhevsky, " Russian Cossacks in Sinkiang ". Almanach " The Third Rome ", Russia, Moscow, 2001
- Sven Gedin, " The flight of Big Horse ". New-York, USA, 1936