Zum Inhalt springen

„Epoxidharz“ – Versionsunterschied

aus Wikipedia, der freien Enzyklopädie
[ungesichtete Version][gesichtete Version]
Inhalt gelöscht Inhalt hinzugefügt
KKeine Bearbeitungszusammenfassung
+Absatz
 
(613 dazwischenliegende Versionen von mehr als 100 Benutzern, die nicht angezeigt werden)
Zeile 1: Zeile 1:
[[Datei:Hybridcircuit.jpg|mini|Anwendung eines Epoxidharzes als Isoliermittel auf einer [[Dickschicht-Hybridtechnik|Hybridschaltung]]. Die Leiterplatte enthält ebenfalls Epoxidharz (zusätzlich durch [[Glasfaserverstärkter Kunststoff|Glasfasermatten verstärkt]]).]]
'''Epoxidharz''' ([[Kurzzeichen (Kunststoff)|Kurzzeichen]] '''EP''') ist im ausgehärteten Zustand ein [[duroplast]]ischer [[Kunststoff]] von guter [[Festigkeit]] und [[chemische Beständigkeit|chemischer Beständigkeit]]. Zur Herstellung werden [[Epoxid]]harz und -härter gründlich vermischt. Je nach Zusammensetzung und [[Temperatur]] erfolgt innerhalb von wenigen Minuten bis mehreren Wochen die Aushärtung des ursprünglich flüssigen Gemischs mittels [[Polymerisation]] durch [[Polyaddition]].
[[Datei:Steinteppich auf einer Treppe.jpg|mini|Anwendung eines Epoxidharzes als Bindemittel in einem [[Steinteppich]]]]


Als '''Epoxidharz''' oder abgekürzt '''EP-Harz''' bezeichnet man [[Kunstharz]]e, die [[Epoxide|Epoxidgruppen]] tragen.<ref name="LdC">Hans-Dieter Jakubke, Ruth Karcher (Hrsg.): ''Lexikon der Chemie.'' 3. Bände, Spektrum Akademischer Verlag, Heidelberg, 2003, ISBN 978-3-8274-1151-8.</ref><ref>Deutsches Institut für Normung: ''DIN-Term Beschichtungsstoffe.'' Vincentz Network, 2001, ISBN 978-3-87870-721-9, S.&nbsp;65, {{Google Buch |BuchID=ed-rKqRMyL0C |Seite=65 |Hervorhebung=EP epoxidharze}}.</ref> Es handelt sich um [[Reaktionsharz]]e, die nach Vermischung mit einem Härter zu einem [[duroplast]]ischen [[Kunststoff]] reagieren. Der Härter ist dabei Reaktionspartner und bildet zusammen mit dem Harz einen makromolekularen [[Ether#Polyether|Polyether]] mit in der Regel zwei endständigen Epoxidgruppen. Je nach Anwendung können [[Farbstoff|Farb-]] und weitere [[Additiv|Zusatzstoffe]] eingebunden werden.
==Verwendung==
* [[Klebstoff#Epoxidharz-Klebstoffe|Klebstoff]]
* Anstrich
* Herstellung von Bauteilen im Gussverfahren
* Vergießen von elektrischen Bauteilen oder anderen Objekten
* Matrixmaterial für die Herstellung von [[Faserverbundwerkstoff|Faserverbundbauteilen]], unter anderem für [[Luftfahrt|Luft-]] und [[Raumfahrt]], für den [[Motorsport]] und für den [[Yacht]]bau.


Nach der Aushärtung besitzen Epoxidharze gute mechanische Eigenschaften sowie eine gute Temperatur- und Chemikalienbeständigkeit und gelten als hochwertige, aber teure [[Kunststoffe]]. Sie werden u.&nbsp;a. als Reaktions- und Einbrenn[[lack]]e, [[Klebstoff]]e, für [[Laminat]]e, als Einbettmittel in der [[Metallographie]] und als Formmassen für Komponenten in der [[Elektrotechnik]] und [[Elektronik]] verwendet.<ref name="Ullmann">{{cite journal |author = Ha Q. Pham, Maurice J. Marks |title=Epoxy Resins|journal=Ullmann’s Encyclopedia of Industrial Chemistry |doi=10.1002/14356007.a09_547.pub2}}</ref>
Wegen des geringen für die Herstellung im Handlaminierverfahren notwendigen Ausstattungsbedarfs und der hohen Festigkeit bei geringem Gewicht und den fast beliebigen Formgebungsmöglichkeiten ist dies auch im privaten Modellbaubereich beliebt.


== Geschichte ==
Im Yachtbau unterscheidet es sich von [[Polyesterharz]] dadurch, dass es zu keinen [[Osmose]]schäden kommt, auch dann nicht, wenn Seewasser durch eine beschädigte [[Gelcoat]]-Schicht dringt und mit dem Werkstoff in Berührung kommt. Deshalb wird Epoxidharz auch zur Reparatur von Osmoseschäden an Polyesterharz-Bootsrümpfen verwendet.
Epoxide wurden zuerst von [[Paul Schlack]] in [[Wolfen]] (Patentanmeldung 1934, erteilt 1939) und [[Pierre Castan]] in der Schweiz (Patent-Anmeldung 1938 in der Schweiz, erteilt 1940, von der [[Ciba AG]] produziert) entwickelt.


== Epoxidharze (Präpolymere und Monomere) ==
==Eigenschaften und Verarbeitung==
Die meisten kommerziell verwendeten Epoxidharze werden durch die Umsetzung von einer Verbindung mit [[Hydroxygruppe]]n und [[Epichlorhydrin]] hergestellt:
Epoxidharz ist beim jetzigen Stand der Technik nicht recyclingfähig und die Stoffe zu dessen Herstellung werden überwiegend aus Erdöl gewonnen.
:[[Datei:Synthesis epoxide Epichlorohydrin.svg|400px|Zuerst reagiert die Hydroxygruppe in einer Kupplungsreaktion mit Epichlorhydrin, gefolgt von einer Dehydrohalogenierung.]]
:<small>Zuerst reagiert eine Hydroxygruppe in einer Kupplungsreaktion mit Epichlorhydrin, gefolgt von einer Dehydrohalogenierung.</small>


Derartige Epoxidharze werden [[Glycidol|Glycidyl]]-basierte Epoxidharze genannt. Die Hydroxygruppe kann dabei von aliphatischen [[Diole]]n, [[Polyole]]n, [[phenol]]ischen Verbindungen oder [[Dicarbonsäuren]] stammen. Als [[Phenole]] werden Verbindungen wie [[Bisphenol A]] und [[Novolak]]e verwendet. Als mehrwertige [[Alkohole]] werden Verbindungen wie [[1,4-Butandiol]] eingesetzt. Di- und Polyole führen zu Diglycid-Polyethern. Für Diglycid-Esterharze werden Dicarbonsäuren, wie [[Hexahydrophthalsäure]] verwendet. Statt einer Hydroxygruppe kann aber auch das Stickstoffatom eines [[Amine|Amins]] oder [[Säureamide|Amids]] reagieren.
Anders als bei [[Polyesterharz]] muss beim Anmischen von Epoxidharz ein genau bestimmtes Harz/Härter Verhältnis eingehalten werden. Andernfalls verbleiben Teile von Harz oder Härter ohne Reaktionspartner, was klebrige Oberflächen und verminderte Festigkeit des Endprodukts zur Folge hat. Eine nicht ausreichend gründliche Durchmischung der Komponenten hat ähnlich negative Effekte.


Die zweite Möglichkeit zur Herstellung von Epoxidharzen ist die Umsetzung [[aliphatisch]]er oder cycloaliphatischer [[Alkene]] mit [[Persäure]]n:<ref name="Ullmann" /><ref name="KunstChem">[[Wolfgang Kaiser (Chemiker)|Wolfgang Kaiser]]: ''Kunststoffchemie für Ingenieure.'' 3. Aufl. Hanser, München 2011, ISBN 978-3-446-43047-1, S.&nbsp;437 ff.</ref>
==Weblinks==
* [http://r-g.de/sindex.asp?sub=m02-2 Anleitungen zur praktischen Verwendung von Epoxidharz]


:[[Datei:Synthesis epoxide peracid.svg|500px]]
[[Kategorie:Kunststoff]]
[[Kategorie:Schiffbau]]


Für diese Herstellung ist im Gegensatz zu Glycidyl-basierten Epoxidharzen kein azides Wasserstoffatom, sondern eine Doppelbindung notwendig.
[[en:epoxy]]

[[fr:époxy]]
=== Bisphenol-basierte Epoxid-Harze ===
[[es:Resina epoxi]]
Etwa 75 % aller weltweit verwendeten Epoxidharze basieren auf Bisphenol A. Aus diesem wird in einer Reaktion mit Epichlorhydrin [[Bisphenol-A-diglycidylether]] hergestellt:
[[sv:epoxi]]

[[fi:epoksi]]
:[[Datei:Diglycidether.svg|400px|Synthese von Bisphenol-A-diglycidylether.]]
[[nl:Epoxylijm]]
:<small>In einer zweistufigen Reaktion wird zuerst Epichlorhydrin an Bisphenol A addiert (es entsteht Bis(3-chlor-2-hydroxy-propoxy)bisphenol A), anschließend in einer [[Kondensationsreaktion]] mit einer stöchiometrischen Menge an [[Natriumhydroxid]] das Bis-Epoxid gebildet. Das [[Chlor]]atom wird in Form von [[Natriumchlorid]] abgespalten, das Wasserstoffatom in Form von Wasser.</small>

Höhermolekulare Diglycidylether (n ≥ 1) bilden sich bei der Reaktion des gebildeten Epoxids mit weiterem Bisphenol A:
:[[Datei:Synthesis Bisphenol A diglycidyl ether higher Mw.svg|600px|Synthese von Bisphenol-A-diglycidylether mit hoher [[Molare Masse|molarer Masse]].]]

Bei wenigen Moleküleinheiten (n = 1 bis 2) erhält man eine viskose, klare Flüssigkeit und man spricht von flüssigen Epoxidharzen. Bei mehr Moleküleinheiten (n = 2 bis 30) erhält man einen farblosen Feststoff, entsprechend spricht man von festen Epoxidharzen.

Anstelle von Bisphenol A können auch andere [[Bisphenole]] verwendet werden (speziell [[Bisphenol F]]) oder [[bromierte Bisphenole]].

=== Novolak-Epoxidharze ===
[[Datei:Epoxyphenol-Novolak.svg|mini|250px|Allgemeine Struktur von Epoxyphenol-Novolak mit ''n'' üblicherweise im Bereich von 0 bis 4. Es liegen verschiedene [[Konstitutionsisomere]] vor.]]
Die Umsetzung von [[Phenole]]n mit [[Formaldehyd]] führt zu [[Novolak]]en. Das anschließende Anfügen von Epoxidgruppen mit Epichlorhydrin erzeugt Novolake mit [[Glycidol|Glycidyl-Resten]], wie Epoxyphenol-Novolak (EPN) oder Epoxycresol-Novolak (ECN). Diese hochviskosen bis festen Harze tragen typischerweise 2 bis 6 Epoxidgruppen pro Molekül. Durch die hohe Funktionalität dieser Harze bilden sich bei Härtung hochvernetzte Polymere mit hoher Temperatur- und Chemikalienbeständigkeit, aber geringer mechanischer Flexibilität.<ref name="Ullmann" />

=== Aliphatische Epoxidharze ===
Es gibt zwei Sorten aliphatischer Epoxidharze: Solche, die durch Epoxidierung von Doppelbindungen erhalten werden (cycloaliphatische Epoxide und epoxidierte Pflanzenöle) und solche, die durch Reaktion mit Epichlorhydrin gebildet werden (Glycidyl-Ether und -Ester).

[[Datei:Diepoxyester.svg|mini|190px|[[3,4-Epoxycyclohexylmethyl-3′,4′-epoxycyclohexancarboxylat]]]]
Cycloaliphatische Epoxide enthalten einen oder mehrere aliphatische Ringe im Molekül, an welchen der Oxiranring enthalten ist (z.&nbsp;B. 3,4-Epoxycyclohexylmethyl-3′,4′-epoxycyclohexancarboxylat). Sie werden durch die Reaktion eines cyclischen Alkens mit einer Persäure hergestellt ([[#Epoxidharze (Präpolymere und Monomere)|siehe oben]]).<ref>L. Hammerton, ed. by Rebecca Dolbey: ''Recent Developments in Epoxy Resins.'' RAPRA Review Reports, 1996, ISBN 978-1-85957-083-8, S.&nbsp;8.</ref> Cycloaliphatische Epoxide zeichnen sich durch ihr aliphatisches Gerüst, einen hohen Oxiran-Gehalt und die Abwesenheit von [[Chlor]] aus, was zu niedriger Viskosität sowie (wenn ausgehärtet) zu guter Wetterbeständigkeit, niedrigen [[Dielektrische Konstante|dielektrischen Konstanten]] und hohem [[Glasübergangstemperatur|T<sub>g</sub>]] führt. Jedoch polymerisieren aliphatische Epoxidharze bei Raumtemperatur nur sehr langsam, sodass meist höhere Temperaturen und geeignete Beschleuniger notwendig sind. Da Aliphaten im Gegensatz zu Aromaten eine niedrigere [[Elektronendichte]] aufweisen, reagieren cycloaliphatische Epoxide im Vergleich zu Bisphenol-A-basierten Epoxidharze (besitzen aromatische Ethergruppen) weniger leicht mit [[Nukleophilie|Nukleophilen]]. Somit können nur schlecht gewöhnliche, nukleophile Härter wie z.&nbsp;B. [[Amine]] zur Vernetzung verwendet werden. Cycloaliphatische Epoxide werden daher meist thermisch oder [[Thermolatente Photoinitiatoren|UV-initiiert]] in einer elektrophilen bzw. kationischen Reaktion homopolymerisiert. Durch die niedrige dielektrischen Konstanten sowie die Abwesenheit von Chlor werden cycloaliphatischen Epoxide häufig zur Verkapselung elektronischer Systeme verwendet, wie etwa von [[Mikrochip]]s oder [[LED]]. Zudem werden sie für [[Strahlenhärtung|strahlengehärtete]] Farben und Lacke verwendet. Durch ihren hohen Preis sind sie jedoch bisher auf derartige Anwendungen beschränkt geblieben.<ref name="Ullmann" />

Epoxidierte Pflanzenöle bilden sich durch Epoxidierung von ungesättigten [[Fettsäuren]], ebenfalls durch Umsetzung mit Persäuren. In diesem Fall können die Persäuren auch [[in-situ]] durch Umsetzung von Carbonsäuren mit Wasserstoffperoxid gebildet werden. Verglichen mit LERs (liquid epoxy resins) weisen sie sehr niedrige Viskositäten auf. Wenn sie jedoch in größeren Mengen als [[Reaktivverdünner]] genutzt werden, führt dies häufig zu verringerter chemischer und thermischer Widerstandsfähigkeit und zu schlechteren mechanischen Eigenschaften der gehärteten Epoxide. In großem Umfang hergestellte epoxidierte Pflanzenöle wie [[epoxidiertes Sojabohnenöl|epoxidierte Soja-]] und Leinöle werden zum großen Teil als [[Sekundärweichmacher]] und Costabilisatoren für [[Polyvinylchlorid|PVC]] genutzt.<ref name="Ullmann" />

Aliphatische Glycidyl-Epoxidharze niedriger [[Molare Masse|molarer Masse]] (mono-, bi- oder auch [[Funktionalität (Chemie)|höherfunktional]]) werden durch die Reaktion von Epichlorhydrin mit aliphatischen Alkoholen oder [[Polyole]]n gebildet (es entstehen [[Glycidyl-Ether]]) oder mit aliphatischen [[Carbonsäuren]] (es entstehen [[Glycidyl-Ester]]). Die Reaktion wird in Anwesenheit einer Base wie Natriumhydroxid durchgeführt, analog der Bildung von Bisphenol A-diglycidether. Auch aliphatische Glycidyl-Epoxidharze weisen meist eine niedrige Viskosität auf. Sie werden daher anderen Epoxidharzen zur Herabsetzung der [[Viskosität]] als Reaktivverdünner oder auch als [[Haftvermittler]] zugegeben. Epoxidharze aus (langkettigen) Polyolen werden darüber hinaus zur Verbesserung der Zug- und Schlagfestigkeit zugesetzt.

=== Halogenierte Epoxidharze ===
[[Halogenierung|Halogenierte]] Epoxidharze werden für spezielle Eigenschaften zugesetzt, es kommen [[Bromierung|bromierte]] und [[Fluorierung|fluorierte]] Epoxidharze zum Einsatz.<ref name="Ullmann" />

Bromiertes Bisphenol A wird verwendet, wenn [[Flammhemmung|flammhemmende Eigenschaften]] benötigt werden, wie etwa in manchen elektrischen Anwendungen (z.&nbsp;B. [[Leiterplatte]]n). Das [[Tetrabrombisphenol A|tetrabromierte Bisphenol A]] (TBBPA, 2,2-Bis(3,5-dibromphenyl)propan) oder dessen Diglycidether, 2,2-Bis[3,5-dibrom-4-(2,3-epoxypropoxy)phenyl]propan, können dazu der Epoxid-[[Formulierung]] beigemischt werden. Die Formulierung kann dann in derselben Weise wie reines Bisphenol A umgesetzt werden. Einige (unvernetzte) Epoxidharze mit sehr hoher molarer Masse werden technischen Thermoplasten beigefügt, ebenfalls um flammhemmende Eigenschaften zu erzielen.

Fluorierte Epoxidharze wurden für einige Hochleistungsanwendungen erforscht, wie beispielsweise der fluorierte Diglycidether 5-Heptafluorpropyl-1,3-bis[2-(2,3-epoxypropoxy)hexafluor-2-propyl]benzol. Da es eine niedrige Oberflächenspannung besitzt, wird es als Netzmittel ([[Tensid]]) für den Kontakt mit [[Glasfaser]]n zugesetzt. Die Reaktivität gegenüber Härtern ist vergleichbar mit Bisphenol A. Ausgehärtet führt das Epoxidharz zu einem Duroplasten mit hoher chemischer Widerstandsfähigkeit und niedriger Wasseraufnahme. Die kommerzielle Verwendung von fluorierten Epoxidharzen wird jedoch durch ihre hohen Kosten und ihren niedrigen T<sub>g</sub> eingeschränkt.

=== Charakterisierung ===
Epoxidharz-Produkte werden über unterschiedliche [[Kennzahl]]en charakterisiert. Hierzu zählen die [[Molare Masse|Molmasse]] bzw. die [[Molmassenverteilung]], die [[Hydroxylzahl]] sowie das [[Epoxid-Äquivalentgewicht]]. Des Weiteren bestimmt die bereits erwähnte [[Glasübergangstemperatur]] eine entscheidende Rolle für die Eigenschaften der später erhaltenen Produkte.

== Härter und Härtung ==
{| class="wikitable float-right" style="text-align:center; font-size:90%;"
|-
| class="hintergrundfarbe6" | Härter
|-
| [[Datei:M-Phenylendiamin.svg|100px|1,3-Diaminobenzol]]<br />[[Phenylendiamine|1,3-Diaminobenzol]]
|-
| [[Datei:N1-(2-aminoethyl)ethane-1,2-diamine 200.svg|160px|Diethylentriamin]]<br />[[Diethylentriamin]]
|-
| [[Datei:Hexahydrophthalsäureanhydrid.svg|110px|Hexahydrophthalsäureanhydrid]]<br />[[Cyclohexan-1,2-dicarbonsäureanhydrid|Hexahydrophthalsäure]] -<br />[[Cyclohexan-1,2-dicarbonsäureanhydrid|anhydrid]]
|-
|}

Als Härter werden mehrwertige [[Amine]] („aminische Härter“), wie zum Beispiel [[Phenylendiamine|1,3-Diaminobenzol]], und aliphatische Amine, wie zum Beispiel [[Diethylentriamin]] oder [[4,4′-Methylenbis(cyclohexylamin)]], verwendet. Die Aushärtung mit aliphatischen Aminen erfolgt bereits bei Zimmertemperatur (Kalthärtung); aromatische Amine erfordern eine Heißhärtung. Bei „sauren Härtern“, die oft Dicarbonsäureanhydride wie [[Hexahydrophthalsäureanhydrid]] sind, erfolgt die Aushärtung bei höheren Temperaturen, oft im Bereich zwischen 120&nbsp;°C bis 160&nbsp;°C. Die reaktiven Ethylenoxidringe der Epoxidharze reagieren in [[Additionsreaktion]]en mit den funktionellen Gruppen der Härter. Weiterhin findet durch den katalytischen Einfluss der Aminogruppen in wechselndem Umfang eine [[Kettenpolymerisation#Anionische Polymerisation|anionische Polymerisation]] der Epoxidgruppen statt. Starke Säuren bewirken eine [[Kettenpolymerisation#Kationische Kettenpolymerisation|kationische Polymerisation]].

:{| style="width:30%"
| [[Datei:VernetzteEpoxidharze.svg|450px|Schematische Darstellung.]]
|-
| <small>Schematische Darstellung eines Ausschnitts eines Makromoleküls: Additionsprodukt aus Epoxid-Harz und dem Härter Diethylentriamin. Diethylentriamin ist rot markiert, [-R–O-]<sub>''n''</sub> symbolisiert Polyethereinheiten des Harzes.</small>
|}

== Verarbeitung ==
[[Datei:FiveMinEpoxy.jpg|mini|hochkant=1.5|Das Gebinde enthält Harz und Härter exakt im Verhältnis 1:1; vor der Verarbeitung muss es sorgfältig vermischt werden]]

Wie bei allen Reaktionsharzen muss beim Anmischen von Reaktionsharzmassen das [[stöchiometrisch]]e Harz-Härter-Verhältnis genau eingehalten werden – andernfalls verbleiben Teile von Harz oder Härter ohne Reaktionspartner. Diese unreagierten funktionellen Gruppen bleiben zurück und die Vernetzung bleibt unvollständig, was zu einem weichen Produkt und zu klebrigen Oberflächen führt. Einige Epoxidsysteme sind jedoch weniger empfindlich und innerhalb enger Grenzen ausdrücklich für eine Variation des Mischungsverhältnisses geeignet. Dadurch lassen sich Härte, Elastizität und andere Eigenschaften beeinflussen; so wird die Säurebeständigkeit durch einen höheren Anteil Epoxidharz erhöht. Da eine inhomogene Mischung der beiden Komponenten den gleichen negativen Effekt wie ein falsches Mengenverhältnis hat, sind umfangreiche Mischprozeduren beim Anmischen notwendig. Wenn die Farbgebung des resultierenden Kunststoffes ohne Belang ist, können als Durchmischungsindikator die beiden Ausgangsstoffe kontrastreich gefärbt sein.
Die Polyaddition ist stark [[Exotherme Reaktion|exotherm]]. Die entstehende Reaktionswärme kann so groß werden, dass es zum Brand kommt; zumindest können jedoch die Eigenschaften des Harzes durch die Überhitzung negativ beeinflusst werden. Für Bauteile mit großen Wanddicken werden daher niedrigreaktive Harze verwendet.

Die Verarbeitungsdauer von Reaktionsharzmassen wird [[Topfzeit]] genannt. Sie hängt von der Verarbeitungstemperatur, der Einstellung der Reaktionsharzmassen und der Ansatzgröße ab. Übliche Topfzeiten liegen bei einigen Minuten bis hin zu mehreren Stunden. Während der Topfzeit steigt die Viskosität des Harzes in einer nichtlinearen Kurve immer weiter an, bis schließlich keine Verarbeitung mehr möglich ist. Die Angabe der Topfzeit bezieht sich in der Regel auf einen Harz/Härter-Ansatz von 100&nbsp;g bei 20&nbsp;°C – größere Verarbeitungsmengen entwickeln eine höhere Temperatur und haben eine wesentlich kürzere Verarbeitungszeit.

Eine Erwärmung des angemischten Harzes verringert die [[Viskosität]] und verbessert dadurch im Allgemeinen die Verarbeitbarkeit, verkürzt aber auch die Topfzeit. Eine Erhöhung der Verarbeitungstemperatur um 10&nbsp;°C bewirkt eine Halbierung der Topf- bzw. Aushärtezeit ([[RGT-Regel]]). Niedrigreaktive Epoxidharze benötigen lange Härtezeiten und möglichst eine erhöhte Härtungstemperatur (30&nbsp;°C bis 40&nbsp;°C). Bei Bedarf können noch Beschleuniger (hochreaktive Härter) zugegeben werden, die die Reaktionszeit verkürzen. Einige Epoxidharze können zur vollständigen Vernetzung und zum Erreichen einer höheren Wärmeformbeständigkeit nach der Aushärtung einer Warmhärtung unterzogen werden.

Beim Warmhärten ([[Temperung]]) steigt die [[Glasübergangstemperatur]] (T<sub>g</sub>) der Matrix um ca. 20&nbsp;°C bis 25&nbsp;°C über die maximale Warmhärtungstemperatur an – dies ist der sogenannte Temperaturvorlauf. Raumtemperaturanhärtende Systeme härten bei Raumtemperatur teilweise mit einer sehr spröden Matrix – eine Härtung über 40&nbsp;°C/5&nbsp;h bis 6&nbsp;h beseitigt diese und verbessert zusätzlich die mechanischen Eigenschaften.

Die Reaktionsharzmassen werden häufig mit niedrigviskosen Zusätzen modifiziert. Durch die niedrigere [[Viskosität]] der Reaktionsharzmasse wird eine bessere Penetration in poröse Werkstoffe (Tränkung von Geweben, Beschichtung von Beton) erreicht oder die Verarbeitbarkeit durch [[Spritzpressen]] (RTM-Verfahren) verbessert. Andererseits erlauben derartige Reaktionsharzmassen eine höhere Beladung mit Füllstoffen, woraus bei der Härtung ein geringerer Volumenschrumpf resultiert. Ebenfalls können die mechanischen Eigenschaften des gehärteten Harzes verbessert werden, ebenso die Ökonomie.
Für diese Zwecke werden bevorzugt Glycidylether verwendet, da diese – im Gegensatz zu nicht reaktiven Verdünnern – kovalent an das Polymer gebunden werden und daher auch nicht migrieren können.

Gebräuchlich als [[Reaktivverdünner]] sind:
* Monoglycidylether – Glycidylether von einwertigen [[Phenole]]n oder [[Alkohole]]n
Monoglycidylether neigen dazu, die [[Polyaddition]] abzubrechen, da sie nur monofunktionell sind. Daher beeinträchtigen sie die Festigkeit und die Temperaturbeständigkeit, erhöhen aber die Flexibilität. Glycidylether von Phenolen wirken hier weniger nachteilig als Alkylglycidylether, werden aber toxikologisch ungünstiger beurteilt. Bei den Alkylglycidylethern werden langkettige (C<sub>12</sub>–C<sub>14</sub>) wegen ihres niedrigen Dampfdrucks bevorzugt eingesetzt; sie lassen sich günstig aus [[Fettalkohol]]en herstellen.
* Polyglycidylether
Diese mehrfunktionellen Reaktivverdünner werden eingesetzt, wenn höhere Ansprüche an die mechanischen Eigenschaften gestellt werden. Da sie über mindestens zwei (wie der häufig eingesetzte [[1,6-Bis(2,3-epoxypropoxy)hexan|1,6-Hexandioldiglycidylether]]) Epoxidgruppen verfügen, bewirken sie keinen Abbruch der Polyaddition.

Reaktionsharzmassen können mit [[Zuschlagstoff]]en (z.&nbsp;B. [[Pyrogenes Siliciumdioxid|pyrogenem Siliciumdioxid]]) versehen werden, um sie [[Thixotropie|thixotrop]] einzustellen. Dieses verdickte Harz kann als Füllmasse oder Klebstoff verwendet werden. Andere Zuschlagstoffe dienen als Füllmittel (Hohlkugeln aus [[Glas]], [[Keramik]] oder [[Kunststoff]]en), um die Dichte des Harzes zu verringern, um die Griffigkeit bzw. Abrasionsbeständigkeit der Oberfläche zu verbessern ([[Quarzsand]], [[Technische Keramik|keramische Pulver]]) oder um die maximale Dauer-Betriebstemperatur zu steigern ([[Füllstoff|Metallische Füllstoffe]]: [[Aluminium]]-, [[Eisen]]/[[Stahl]]pulver). Zuschlagstoffe (wie [[Aluminiumhydroxid]]) können das brandhemmende Verhalten von Epoxidharz verbessern. Dies ist besonders beim Einsatz in Verkehrsmitteln wichtig.

Das Aushärten kann mittels Zugabe von Photoinitiatoren mit Ultraviolett gestartet werden, wodurch Aushärtezeiten im Sekundenbereich erreicht werden.<ref>{{Webarchiv |url=http://www.panacol.de/fileadmin/pdf_new/UV-LED-haertende-Epoxid-Kleber.pdf |text=''Epoxid-Klebstoffe'' |wayback=20160705162804 |archiv-bot=}} (PDF; 757&nbsp;kB), auf panacol.de.</ref>

== Eigenschaften ==
Das ungefüllte ausgehärtete Harz hat eine Dichte von 1020 bis etwa 1200&nbsp;kg/m<sup>3</sup>. Der [[Elastizitätsmodul]] beträgt 3000 bis 4500&nbsp;MPa und die [[Zugfestigkeit]] etwa 80&nbsp;MPa. Diese Werte variieren je nach Formulierung und Herstellung.

Die [[Dielektrizitätszahl]] beträgt im Temperaturbereich −40 bis etwa +60&nbsp;°C etwa 4 und steigt ebenso wie der dielektrische [[Verlustfaktor]] bei beginnender Erweichung (80 bis 100&nbsp;°C) stark an. Der Verlustfaktor hat bei 40&nbsp;°C ein Minimum, beträgt dort 50 bis 100&#8239;·&#8239;10<sup>−4</sup> und steigt bei 100 bis 120&nbsp;°C durch [[Orientierungspolarisation]] großer Kettensegmente auf etwa das 10- bis 20-fache an. Bei −40&nbsp;°C ist ebenfalls ein Maximum (3 bis 10-facher Wert desjenigen bei 40&nbsp;°C), hier hervorgerufen durch Orientierungspolarisation kurzer Kettensegmente.<ref>M. Beyer, W. Boeck, K. Möller, W. Zaengl: ''Hochspannungstechnik: Theoretische und praktische Grundlagen.'' Springer Verlag, 1992, 362 Seiten, ISBN 978-3-540-16014-4 (Reprint), S.&nbsp;206 f.</ref> Es werden Werkstoffe mit CTI-Werten ([[Kriechstromfestigkeit]]) von über 600&nbsp;V angeboten. Durch Bromierung wird das Material schwer entflammbar ([[UL94]] V-1 oder besser).

Die [[Wärmeleitfähigkeit]] beträgt 0,21&nbsp;W/(m·K)<ref>H. Schürmann: ''Konstruieren mit Faser-Kunststoff-Verbunden.'' 2. Auflage, Springer-Verlag 2007; 672 Seiten, ISBN 978-3-540-72189-5, S.&nbsp;269.</ref> und kann durch Füllstoffe wesentlich gesteigert werden (isolierende elektrische Vergussmassen etwa 1,26&nbsp;W/(m·K)<ref>{{Webarchiv |url=http://files.voelkner.de/525000-549999/527260-da-01-de-Epoxid_Vergussmasse.pdf |text=''Technisches Datenblatt zu ER2074 von Electrolube S.&nbsp;2.'' |wayback=20170128162935 |archiv-bot=}} (PDF; 93&nbsp;kB), auf files.voelkner.de, abgerufen am 28. Januar 2017.</ref> bis 6&nbsp;W/(m·K)<ref>[https://www.prozesswaerme.net/aktuell/technik-aktuell/14-04-2016-temperaturbestaendiges-epoxid-giessharz-mit-hoher-waermeleitfaehigkeit/ ''Temperaturbeständiges Epoxid-Gießharz mit hoher Wärmeleitfähigkeit''] Pressemitteilung der Fa. Kyocera.</ref>).

Die chemische [[Schwindung]] bei der Polyaddition ist mit 0,5 bis 5 % deutlich geringer als bei den ungesättigten Polyesterharzen. Sie kann mit Füllstoffen noch weiter verringert werden.

Das ungefüllte Harz ist transparent gelblich bis wasserklar, und es ist auch ultraviolettbeständig bzw. vergilbungsfrei erhältlich. Bei Wellenlängen unterhalb 400&nbsp;nm wird Epoxidharz nahezu intransparent, im [[Infrarot]]bereich ist es bis 2000&nbsp;nm transparent. Der [[Brechungsindex]] liegt bei 1,5 bis 1,59 (bei 589,3&nbsp;nm [[Natrium-D-Linie]]).<ref>[http://www.jpkummer.com/sites/default/files/Tech%20Tip%2018%20-%20Verstehen%20der%20optischen%20Eigenschaften%20bei%20Epoxyanwendungen.pdf ''Tech Tip 18: Verstehen der optischen Eigenschaften bei Epoxyanwendungen''] (PDF; 353&nbsp;kB), Fa. Kummer Semiconductor Technology.</ref>

== Verwendung ==
* Vielseitiger Konstruktions-[[Klebstoff#Epoxidharz-Klebstoffe|Klebstoff]], etwa im [[Bootsbau]], Haushalt und [[Modellbau]]
** Speziell eingestellte Epoxidharze finden als Metallkleber Anwendung
** Mörtel auf Kunststoffbasis (Reaktionsharzmörtel)
** zur Produktion von [[Steinteppich]]en
* [[Gießharz]] zur Herstellung von Bauteilen im [[Gießen (Metall)|Gussverfahren]]
* Wird in Verbindung mit [[Glasfaser]], [[Kohlenstofffaser]] und [[Aramide|Aramidfaser]] beim Bau von modernen Hochleistungs-[[Segelflugzeug]]en, aber auch zunehmend bei großen Passagierflugzeugen (Kohlenstoff- bzw. Carbonfaser) als [[Faserverbundkunststoff]] eingesetzt
* [[Glasfaserverstärkter Kunststoff]] kommt für die Herstellung der [[Windkraftanlage#Rotorblätter|Rotorblätter von Windkraftanlagen]] zum Einsatz
* Herstellung von [[Mineralguss]]gestellen für den Maschinenbau
* Industriefußboden; Betonbeschichtung; Betonreparatur
* [[Ionenaustauscher]]säulen (Chemie)
* Anstrich; schwerer [[Korrosionsschutz]] (Schiffbau, Stahlkonstruktionen)
** Abdichtung von [[Terrarium|Holzterrarien]] (Terrarientechnik), da ausgehärtet ungiftig
** Bindemittel für verschiedene Anstrichstoffe (Lacke), durch Kombination von Phenolharzen entstehen Innenschutzlackierungen für Verpackungsmittel aller Art, von Haarspraydosen bis zu Lebensmittelverpackungen (sogenannte Goldlacke)
** Lacke zum Schutz vor [[Graffiti]]
** Herstellung von wasserlöslichen Kunstharzen zur [[Kathodische Tauchlackierung|kathodischen Tauchlackierung]] (KTL, Automobilbau)
** Sanierung von Rohren, insbes. [[Rohrinnensanierung]] (etwa von Trinkwasserleitungen, Fußbodenheizungen)
** Bemalung von Radwegen<ref>{{Internetquelle |url=https://www.infravelo.de/projekte/gruenbeschichtungen/ |titel=Grünbeschichtungen für bessere Sichtbarkeit der Radwege in Berlin |abruf=2019-04-25 |archiv-url=https://web.archive.org/web/20190327213552/https://www.infravelo.de/projekte/gruenbeschichtungen/ |archiv-datum=2019-03-27 |offline=ja }}</ref>
* Vergießen von elektrischen Bauteilen oder anderen Objekten zwecks Isolation und Korrosionsschutz
* [[Leiterplatten]]material wie [[FR-4]] als Trägermaterial von elektronischen Schaltungen
* Matrixmaterial für die Herstellung von [[Faserverbundwerkstoff|Faserverbundbauteilen]], unter anderem für [[Luftfahrt|Luft-]] und [[Raumfahrt]], für den [[Motorsport]], in der Orthopädietechnik und für den [[Yacht]]bau; häufig auch im [[Handlaminat|Handlaminierverfahren]]
* [[Plastination]]; insbesondere spezielle Epoxidharze, wie Epoxy E-12, werden zur Fixierung [[Anatomie|anatomischer]] [[Präparat]]e eingesetzt<ref>[http://www.meduniwien.ac.at/sysanat/about.html ''Plastination. The Medical University Vienna''] (englisch) [[Medizinische Universität Wien]], aufgerufen am 14. Oktober 2021</ref>
* Wird auf Kanten (''{{lang|en|coping}}'') von [[Skateboard]]rampen für bessere Rutschfähigkeit und als Schutz aufgebracht
* Trägermaterial in der [[Kunst]]
* Material zur Abformung in der [[Bildhauerei]]
* Herstellung von [[Dünnschliff]]en
* Bau von Epoxidharz-Tischen wie z.&nbsp;B. Rivertable<ref>{{Internetquelle |url=https://epoxid1.de/pages/epoxidharz-tisch |titel=Epoxidharz Tisch selbst bauen ► Step-by-Step Anleitung |sprache=de |abruf=2023-05-31}}</ref>
* Kunst & Schmuck (Gemälde, Skulpturen, Ringe, Halsketten, Armbänder)<ref>{{Internetquelle |url=https://www.dein-epoxidharz.de/pages/kunst-schmuck-mit-epoxidharz |titel=Kunst & Schmuck mit Epoxidharz |sprache=de |abruf=2025-03-05}}</ref>

Beim Bau von Bootsrümpfen hat Epoxidharz gegenüber manchen [[Polyesterharz]]en unter anderem den Vorteil, dass es [[Osmose]]&shy;schäden ausschließt, selbst wenn Seewasser durch eine beschädigte [[Gelcoat]]-Schicht dringt und mit dem Werkstoff in Berührung kommt. Deshalb wird Epoxidharz auch zur Reparatur von Osmoseschäden an Polyesterharz-Bootsrümpfen verwendet.

== Umweltverträglichkeit ==
Epoxidharz war über lange Zeit nicht [[recycling]]fähig und die Stoffe zu dessen Herstellung wurden überwiegend aus Erdöl gewonnen. Forscher aus [[Graz]] zeigten 2024 erstmals die Synthese [[Bio-basierter Kunststoff|biobasierter]] Epoxid-Duroplaste, die durch eine Reihe chemischer Prozesse wie [[Alkoholyse|Methanolyse]], [[Acetolyse]], [[saure Hydrolyse]] und basische [[Verseifung]] wieder in die Präpolymere umgewandelt werden können. Das ermöglicht eine komplette Wiederverwertung.<ref>{{Literatur |Autor=Xianyuan Wu, Peter Hartmann, Dimitri Berne, Mario De bruyn, Florian Cuminet, Zhiwen Wang, Johannes Matthias Zechner, Adrian Daniel Boese, Vincent Placet, Sylvain Caillol, Katalin Barta |Titel=Closed-loop recyclability of a biomass-derived epoxy-amine thermoset by methanolysis |Sammelwerk=Science |Band=384 |Nummer=6692 |Datum=2024-04-12 |DOI=10.1126/science.adj9989 }}</ref> Die Grundstoffe, die hierbei zum Einsatz kommen, sind [[Dimethyl-2,5-furandicarboxylat]] (DMFD)<ref group="S">{{Substanzinfo|Name=Dimethyl-2,5-furandicarboxylat|Wikidata=Q72470516|CAS=4282-32-0|EG-Nummer=700-514-1|ECHA-ID=100.149.479|PubChem=303530|ChemSpider=268344}}</ref> als Ersatz für Bisphenole, [[4,4′-Methylenbis(cyclohexylamin)]] (MBCA) als Härter und [[Glycidol]] als Epoxid-Komponente. DMFD ist über 4 aneinandergereihte chemische Prozesse aus Lignin zu gewinnen und muss zur Verwendung im Duroplast noch in einem fünften Schritt unter Nutzung von [[Kaliumcyanat]] mit Glycidol zum entsprechenden Diglycidylester [[Umesterung|umgeestert]] werden.<ref>{{Literatur |Autor=Angela Marotta, Veronica Ambrogi, Pierfrancesco Cerruti, Alice Mija |Titel=Green approaches in the synthesis of furan-based diepoxy monomers |Sammelwerk=RSC Advances |Band=8 |Nummer=29 |Datum=2018 |DOI=10.1039/c8ra02739k |Seiten=16330–16335}}</ref> Dieser kann dann mit MBCA zum Duroplast umgesetzt werden. Für die Gewinnung von MBCA aus Lignin sind ebenfalls 5 aneinandergereihte chemische Prozesse notwendig, die auf [[Metall-Katalysator|Metallkatalyse]] und der mehrfachen Reduktion mittels [[Raney-Nickel]] beruhen. Zwischenprodukte in der Rückgewinnung der Grundstoffe sind [[Triacetin]], das Diacetamid des MBCAs und ein Gemisch von an den Amingruppen einfach bis vierfach mit Glycerylgruppen substituiertem MBCA.

Epoxidharz ist bereits seit längerem auch als Variante erhältlich, welche zu 99–100 % aus nachwachsenden Rohstoffen gewonnen wurde. Preislich und in Bezug auf Festigkeit und Klarheit unterscheiden sich diese neuen Produkte kaum von herkömmlichen Produkten.<ref>{{Internetquelle |url=https://www.timeout.de/news/epoxidharz-nachhaltig-bio/ |titel=Nachhaltige und biobasierte Epoxidharze |sprache=de |abruf=2024-08-05}}</ref><ref>{{Internetquelle |url=https://epoxid1.at/pages/die-epoxidharz-revolution-unsere-neuen-produkte |titel=Die Epoxidharz Revolution - Unsere neuen Produkte |sprache=de |abruf=2024-08-05}}</ref>

== Sicherheit und Gesundheit ==
=== Herstellung ===
Epoxidharz wird industriell gewöhnlich aus einer Reaktion von Bisphenol A und Epichlorhydrin hergestellt. Aufgrund der spezifischen Charakteristik insbesondere dieser beiden [[Reaktant]]en sind bei der Herstellung von Epoxidharz besondere Sicherheitsvorschriften zu beachten (zu möglichen Gesundheitsgefahren und Stand der Forschung siehe insbesondere auch die Artikel [[Bisphenol A]] und [[Epichlorhydrin]]).

Epoxidharz wurde unter der Bezeichnung ''Bisphenol-A-diglycidylether'' 2013 von der EU gemäß der [[Verordnung (EG) Nr. 1907/2006]] (REACH) im Rahmen der [[Stoffbewertung]] in den fortlaufenden Aktionsplan der Gemeinschaft ([[CoRAP]]) aufgenommen. Hierbei werden die Auswirkungen des [[Chemischer Stoff#Definitionen des Gesetzgebers|Stoffs]] auf die menschliche Gesundheit bzw. die Umwelt neu bewertet und ggf. Folgemaßnahmen eingeleitet. Ursächlich für die Aufnahme der Substanz waren die Besorgnisse bezüglich [[Verbraucher]]verwendung, hoher (aggregierter) Tonnage und weit verbreiteter Verwendung sowie der Gefahren ausgehend von einer möglichen Zuordnung zur Gruppe der [[CMR-Stoffe]] und als potentieller [[endokriner Disruptor]]. Die Neubewertung läuft seit 2015 und wird von [[Dänemark]] durchgeführt. Um zu einer abschließenden Bewertung gelangen zu können, wurden weitere Informationen nachgefordert.<ref>{{CoRAP-Status |ID=100.015.294 |Name=2,2'-[(1-methylethylidene)bis(4,1-phenyleneoxymethylene)]bisoxirane |Evaluationsjahr=2015 |Status=Information requested |Abruf=2019-05-20}}</ref>

=== Verarbeitung ===
'''Epoxidharz-Produkte'''
{{Infobox Gefahrstoffkennzeichnung
| Name = Bisphenol-A-Epichlorhydrinharze mit durchschnittlicher Molmasse ≤700 g/mol
| CAS = {{CASRN|25068-38-6|Q72501240}}
| Quelle GHS-Kz = <ref name="RG">Sicherheitsdatenblatt [http://www.ezentrumbilder.de/rg/pdf/si_de_100133.pdf ''Epoxydharz L''] (PDF; 119&nbsp;kB), von R&G Faserverbundwerkstoffe GmbH, abgerufen am 6. Mai 2013.</ref>
| GHS-Piktogramme = {{GHS-Piktogramme|7|9}}
| GHS-Signalwort = Achtung
| H = {{H-Sätze|315|319|317|411}}
| EUH = {{EUH-Sätze|-}}
| P = {{P-Sätze|101|102|261|272|280|302+352|333+313|362|363|305+351+338|337+313}}
| Quelle P = <ref name="RG" />
| MAK =
}}
Epoxidharz wird üblicherweise in zwei Komponenten geliefert, die vom Anwender gebrauchsfertig zu mischen sind. Die sog. „A-Komponente“ enthält meist das Epoxidharz, die „B-Komponente“ den Härter, der in einem vorbestimmten Mischungsverhältnis dem Harz zuzugeben ist.

Üblicherweise sind Epoxidharze mit den [[GHS-Symbol]]en GHS07 („Achtung“) und GHS09 („Umweltgefährlich“) und mit entsprechenden [[H- und P-Sätze]]n versehen. Die vielfach zum Einsatz kommenden Epoxidharz-Härter auf [[Amine|Amin]]-Basis müssen üblicherweise ebenfalls mit GHS-Symbolen (häufig GHS05, „Ätzend“) gekennzeichnet und ebenfalls mit H- und P-Sätzen versehen werden. Da die Gefährdungs- und Sicherheitshinweise in Abhängigkeit von eingesetztem Produkt und Härtertyp variieren, ist den [[Sicherheitsdatenblatt|Sicherheitsdatenblättern]] der verwendeten Produkte besondere Aufmerksamkeit zu schenken.

'''Schutzausrüstung bei der Applikation'''

Da der direkte Hautkontakt als weitaus schädlicher anzusehen ist als etwa eine Aufnahme über die Atemwege (z.&nbsp;B. durch ungenügende Belüftung), ist persönliche Schutzausrüstung beim Einsatz vieler Epoxidprodukte vorgeschrieben. Zum Hautschutz eignen sich ausschließlich spezielle [[Nitrile|Nitril]]- oder Butyl-, Butyl/[[Viton]]- und PE-Laminat-Handschuhe. Ungeeignet sind dünne Einweg-Handschuhe unabhängig vom Material (zum Beispiel Latex, Vinyl oder Nitril). Die allergenen Stoffe durchdringen diese Handschuhe auch ohne Beschädigung innerhalb weniger Minuten, während der Eigenschutz der Haut durch Schwitzen bei fehlender Belüftung geschwächt wird. Hautschutzsalben bieten ebenfalls keinen akzeptablen Schutz. Unter Umständen kann zusätzlich das Tragen eines Schutzanzugs notwendig sein.

=== Einsatzgebiete ===
Bezüglich der Verwendung von Epoxidharz-Systemen können ggf. je nach Einsatzgebiet und Anwendungsbereich ergänzende – auch gesetzliche – Anforderungen an Sicherheit und Gesundheit bestehen, so z.&nbsp;B. in den Bereichen [[Kinderspielzeug]], [[Rohrinnensanierung|Trinkwasser]], [[Bedarfsgegenstand|Lebensmittelbedarfsgegenstände]] etc.

=== Arbeitsschutz ===
Inhaltsstoffe von Epoxidharzen haben sensibilisierende Eigenschaften. Bei ungeeigneter Arbeitsweise kann der Verarbeiter sensibilisiert werden, danach kann es zu allergischen Reaktionen in Form von Hautausschlägen kommen, vor allem beim Kontakt mit nicht ausgehärteten Epoxidharzen. Um Möglichkeiten zur Vermeidung von epoxidharzbedingten allergischen Hauterkrankungen zu erarbeiten, wurden verschiedene Arbeitskreise gegründet und Forschungsprojekte initiiert. Die bisherigen Ergebnisse dieser Arbeiten finden sich gesammelt auf der Epoxidharzseite des [[Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung|Instituts für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung]] (IFA)<ref>{{Internetquelle |autor=Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung (IFA) |url=https://www.dguv.de/ifa/praxishilfen/praxishilfen-gefahrstoffe/epoxidharze/index.jsp |titel=Epoxidharze |abruf=2021-11-09}}</ref>.

== Literatur ==
* Walter Krauß (Hrsg.): ''Kittel: Lehrbuch der Lacke und Beschichtungen.'' Band 2: Bindemittel für lösemittelhaltige und lösemittelfreie Systeme, 2. Aufl., Hirzel Verlag, 1998, ISBN 978-3-7776-0886-0.
* Barbara Schmid, Jürgen Wehde, Ursula Vater: ''Gefahrstoffinformation und Gefährdungsbeurteilung bei der Verarbeitung von Epoxidharzen.'' In: ''[[Gefahrstoffe – Reinhaltung der Luft]].'' 70(1/2), 2010, S. 17–21.
* Edward M. Petrie: ''Epoxy Adhesive Formulations.'' Verlag Mc Graw-Hill, 2006, ISBN 0-07-145544-2.

== Weblinks ==
{{Commonscat|Epoxy resins|Epoxidharz}}
* [https://materialarchiv.ch/de/ma:material_24 Material Archiv: Epoxidharze (EP)] – Materialinformationen und Bilder
* [http://pslc.ws/macrog/epoxy.htm ''The Chemistry of Epoxide.''] Polymer Science Learning Centre (PSLC), The University of Southern Mississippi – The Department of Polymer Science, Hattiesburg (Mississippi USA) 2005; Leicht verständliche Erklärung (englisch).
* [https://www.bgbau.de/service/angebote/medien-center-suche/medium/epoxidharze-in-der-bauwirtschaft ''Praxisleitfaden der Berufsgenossenschaft Bau für den Umgang mit Epoxidharzen'']
* [{{Toter Link |url=http://www.hamburg.de/contentblob/116896/data/m44-pdf.pdf |inline=1 |datum=2024-11-11}} ''Leitfaden des Hamburger Amtes für Arbeitsschutz zur Gefährdungsbeurteilung von Epoxidharzsystemen mit Hinweisen zu Schutzmaßnahmen''] (PDF; 814&nbsp;kB).

== Einzelnachweise ==
<references responsive />

== Externe Links zu erwähnten Verbindungen ==
<references group="S" />

{{Normdaten|TYP=s|GND=4070891-3}}

[[Kategorie:Kunstharz]]
[[Kategorie:Polyether| Epoxidharz]]
[[Kategorie:Epoxid| Epoxidharz]]
[[Kategorie:Isolierstoff]]
[[Kategorie:Bodenbelag]]

Aktuelle Version vom 10. Juli 2025, 07:39 Uhr

Anwendung eines Epoxidharzes als Isoliermittel auf einer Hybridschaltung. Die Leiterplatte enthält ebenfalls Epoxidharz (zusätzlich durch Glasfasermatten verstärkt).
Anwendung eines Epoxidharzes als Bindemittel in einem Steinteppich

Als Epoxidharz oder abgekürzt EP-Harz bezeichnet man Kunstharze, die Epoxidgruppen tragen.[1][2] Es handelt sich um Reaktionsharze, die nach Vermischung mit einem Härter zu einem duroplastischen Kunststoff reagieren. Der Härter ist dabei Reaktionspartner und bildet zusammen mit dem Harz einen makromolekularen Polyether mit in der Regel zwei endständigen Epoxidgruppen. Je nach Anwendung können Farb- und weitere Zusatzstoffe eingebunden werden.

Nach der Aushärtung besitzen Epoxidharze gute mechanische Eigenschaften sowie eine gute Temperatur- und Chemikalienbeständigkeit und gelten als hochwertige, aber teure Kunststoffe. Sie werden u. a. als Reaktions- und Einbrennlacke, Klebstoffe, für Laminate, als Einbettmittel in der Metallographie und als Formmassen für Komponenten in der Elektrotechnik und Elektronik verwendet.[3]

Epoxide wurden zuerst von Paul Schlack in Wolfen (Patentanmeldung 1934, erteilt 1939) und Pierre Castan in der Schweiz (Patent-Anmeldung 1938 in der Schweiz, erteilt 1940, von der Ciba AG produziert) entwickelt.

Epoxidharze (Präpolymere und Monomere)

[Bearbeiten | Quelltext bearbeiten]

Die meisten kommerziell verwendeten Epoxidharze werden durch die Umsetzung von einer Verbindung mit Hydroxygruppen und Epichlorhydrin hergestellt:

Zuerst reagiert die Hydroxygruppe in einer Kupplungsreaktion mit Epichlorhydrin, gefolgt von einer Dehydrohalogenierung.
Zuerst reagiert eine Hydroxygruppe in einer Kupplungsreaktion mit Epichlorhydrin, gefolgt von einer Dehydrohalogenierung.

Derartige Epoxidharze werden Glycidyl-basierte Epoxidharze genannt. Die Hydroxygruppe kann dabei von aliphatischen Diolen, Polyolen, phenolischen Verbindungen oder Dicarbonsäuren stammen. Als Phenole werden Verbindungen wie Bisphenol A und Novolake verwendet. Als mehrwertige Alkohole werden Verbindungen wie 1,4-Butandiol eingesetzt. Di- und Polyole führen zu Diglycid-Polyethern. Für Diglycid-Esterharze werden Dicarbonsäuren, wie Hexahydrophthalsäure verwendet. Statt einer Hydroxygruppe kann aber auch das Stickstoffatom eines Amins oder Amids reagieren.

Die zweite Möglichkeit zur Herstellung von Epoxidharzen ist die Umsetzung aliphatischer oder cycloaliphatischer Alkene mit Persäuren:[3][4]

Für diese Herstellung ist im Gegensatz zu Glycidyl-basierten Epoxidharzen kein azides Wasserstoffatom, sondern eine Doppelbindung notwendig.

Bisphenol-basierte Epoxid-Harze

[Bearbeiten | Quelltext bearbeiten]

Etwa 75 % aller weltweit verwendeten Epoxidharze basieren auf Bisphenol A. Aus diesem wird in einer Reaktion mit Epichlorhydrin Bisphenol-A-diglycidylether hergestellt:

Synthese von Bisphenol-A-diglycidylether.
In einer zweistufigen Reaktion wird zuerst Epichlorhydrin an Bisphenol A addiert (es entsteht Bis(3-chlor-2-hydroxy-propoxy)bisphenol A), anschließend in einer Kondensationsreaktion mit einer stöchiometrischen Menge an Natriumhydroxid das Bis-Epoxid gebildet. Das Chloratom wird in Form von Natriumchlorid abgespalten, das Wasserstoffatom in Form von Wasser.

Höhermolekulare Diglycidylether (n ≥ 1) bilden sich bei der Reaktion des gebildeten Epoxids mit weiterem Bisphenol A:

Synthese von Bisphenol-A-diglycidylether mit hoher molarer Masse.

Bei wenigen Moleküleinheiten (n = 1 bis 2) erhält man eine viskose, klare Flüssigkeit und man spricht von flüssigen Epoxidharzen. Bei mehr Moleküleinheiten (n = 2 bis 30) erhält man einen farblosen Feststoff, entsprechend spricht man von festen Epoxidharzen.

Anstelle von Bisphenol A können auch andere Bisphenole verwendet werden (speziell Bisphenol F) oder bromierte Bisphenole.

Novolak-Epoxidharze

[Bearbeiten | Quelltext bearbeiten]
Allgemeine Struktur von Epoxyphenol-Novolak mit n üblicherweise im Bereich von 0 bis 4. Es liegen verschiedene Konstitutionsisomere vor.

Die Umsetzung von Phenolen mit Formaldehyd führt zu Novolaken. Das anschließende Anfügen von Epoxidgruppen mit Epichlorhydrin erzeugt Novolake mit Glycidyl-Resten, wie Epoxyphenol-Novolak (EPN) oder Epoxycresol-Novolak (ECN). Diese hochviskosen bis festen Harze tragen typischerweise 2 bis 6 Epoxidgruppen pro Molekül. Durch die hohe Funktionalität dieser Harze bilden sich bei Härtung hochvernetzte Polymere mit hoher Temperatur- und Chemikalienbeständigkeit, aber geringer mechanischer Flexibilität.[3]

Aliphatische Epoxidharze

[Bearbeiten | Quelltext bearbeiten]

Es gibt zwei Sorten aliphatischer Epoxidharze: Solche, die durch Epoxidierung von Doppelbindungen erhalten werden (cycloaliphatische Epoxide und epoxidierte Pflanzenöle) und solche, die durch Reaktion mit Epichlorhydrin gebildet werden (Glycidyl-Ether und -Ester).

3,4-Epoxycyclohexylmethyl-3′,4′-epoxycyclohexancarboxylat

Cycloaliphatische Epoxide enthalten einen oder mehrere aliphatische Ringe im Molekül, an welchen der Oxiranring enthalten ist (z. B. 3,4-Epoxycyclohexylmethyl-3′,4′-epoxycyclohexancarboxylat). Sie werden durch die Reaktion eines cyclischen Alkens mit einer Persäure hergestellt (siehe oben).[5] Cycloaliphatische Epoxide zeichnen sich durch ihr aliphatisches Gerüst, einen hohen Oxiran-Gehalt und die Abwesenheit von Chlor aus, was zu niedriger Viskosität sowie (wenn ausgehärtet) zu guter Wetterbeständigkeit, niedrigen dielektrischen Konstanten und hohem Tg führt. Jedoch polymerisieren aliphatische Epoxidharze bei Raumtemperatur nur sehr langsam, sodass meist höhere Temperaturen und geeignete Beschleuniger notwendig sind. Da Aliphaten im Gegensatz zu Aromaten eine niedrigere Elektronendichte aufweisen, reagieren cycloaliphatische Epoxide im Vergleich zu Bisphenol-A-basierten Epoxidharze (besitzen aromatische Ethergruppen) weniger leicht mit Nukleophilen. Somit können nur schlecht gewöhnliche, nukleophile Härter wie z. B. Amine zur Vernetzung verwendet werden. Cycloaliphatische Epoxide werden daher meist thermisch oder UV-initiiert in einer elektrophilen bzw. kationischen Reaktion homopolymerisiert. Durch die niedrige dielektrischen Konstanten sowie die Abwesenheit von Chlor werden cycloaliphatischen Epoxide häufig zur Verkapselung elektronischer Systeme verwendet, wie etwa von Mikrochips oder LED. Zudem werden sie für strahlengehärtete Farben und Lacke verwendet. Durch ihren hohen Preis sind sie jedoch bisher auf derartige Anwendungen beschränkt geblieben.[3]

Epoxidierte Pflanzenöle bilden sich durch Epoxidierung von ungesättigten Fettsäuren, ebenfalls durch Umsetzung mit Persäuren. In diesem Fall können die Persäuren auch in-situ durch Umsetzung von Carbonsäuren mit Wasserstoffperoxid gebildet werden. Verglichen mit LERs (liquid epoxy resins) weisen sie sehr niedrige Viskositäten auf. Wenn sie jedoch in größeren Mengen als Reaktivverdünner genutzt werden, führt dies häufig zu verringerter chemischer und thermischer Widerstandsfähigkeit und zu schlechteren mechanischen Eigenschaften der gehärteten Epoxide. In großem Umfang hergestellte epoxidierte Pflanzenöle wie epoxidierte Soja- und Leinöle werden zum großen Teil als Sekundärweichmacher und Costabilisatoren für PVC genutzt.[3]

Aliphatische Glycidyl-Epoxidharze niedriger molarer Masse (mono-, bi- oder auch höherfunktional) werden durch die Reaktion von Epichlorhydrin mit aliphatischen Alkoholen oder Polyolen gebildet (es entstehen Glycidyl-Ether) oder mit aliphatischen Carbonsäuren (es entstehen Glycidyl-Ester). Die Reaktion wird in Anwesenheit einer Base wie Natriumhydroxid durchgeführt, analog der Bildung von Bisphenol A-diglycidether. Auch aliphatische Glycidyl-Epoxidharze weisen meist eine niedrige Viskosität auf. Sie werden daher anderen Epoxidharzen zur Herabsetzung der Viskosität als Reaktivverdünner oder auch als Haftvermittler zugegeben. Epoxidharze aus (langkettigen) Polyolen werden darüber hinaus zur Verbesserung der Zug- und Schlagfestigkeit zugesetzt.

Halogenierte Epoxidharze

[Bearbeiten | Quelltext bearbeiten]

Halogenierte Epoxidharze werden für spezielle Eigenschaften zugesetzt, es kommen bromierte und fluorierte Epoxidharze zum Einsatz.[3]

Bromiertes Bisphenol A wird verwendet, wenn flammhemmende Eigenschaften benötigt werden, wie etwa in manchen elektrischen Anwendungen (z. B. Leiterplatten). Das tetrabromierte Bisphenol A (TBBPA, 2,2-Bis(3,5-dibromphenyl)propan) oder dessen Diglycidether, 2,2-Bis[3,5-dibrom-4-(2,3-epoxypropoxy)phenyl]propan, können dazu der Epoxid-Formulierung beigemischt werden. Die Formulierung kann dann in derselben Weise wie reines Bisphenol A umgesetzt werden. Einige (unvernetzte) Epoxidharze mit sehr hoher molarer Masse werden technischen Thermoplasten beigefügt, ebenfalls um flammhemmende Eigenschaften zu erzielen.

Fluorierte Epoxidharze wurden für einige Hochleistungsanwendungen erforscht, wie beispielsweise der fluorierte Diglycidether 5-Heptafluorpropyl-1,3-bis[2-(2,3-epoxypropoxy)hexafluor-2-propyl]benzol. Da es eine niedrige Oberflächenspannung besitzt, wird es als Netzmittel (Tensid) für den Kontakt mit Glasfasern zugesetzt. Die Reaktivität gegenüber Härtern ist vergleichbar mit Bisphenol A. Ausgehärtet führt das Epoxidharz zu einem Duroplasten mit hoher chemischer Widerstandsfähigkeit und niedriger Wasseraufnahme. Die kommerzielle Verwendung von fluorierten Epoxidharzen wird jedoch durch ihre hohen Kosten und ihren niedrigen Tg eingeschränkt.

Charakterisierung

[Bearbeiten | Quelltext bearbeiten]

Epoxidharz-Produkte werden über unterschiedliche Kennzahlen charakterisiert. Hierzu zählen die Molmasse bzw. die Molmassenverteilung, die Hydroxylzahl sowie das Epoxid-Äquivalentgewicht. Des Weiteren bestimmt die bereits erwähnte Glasübergangstemperatur eine entscheidende Rolle für die Eigenschaften der später erhaltenen Produkte.

Härter und Härtung

[Bearbeiten | Quelltext bearbeiten]
Härter
1,3-Diaminobenzol
1,3-Diaminobenzol
Diethylentriamin
Diethylentriamin
Hexahydrophthalsäureanhydrid
Hexahydrophthalsäure -
anhydrid

Als Härter werden mehrwertige Amine („aminische Härter“), wie zum Beispiel 1,3-Diaminobenzol, und aliphatische Amine, wie zum Beispiel Diethylentriamin oder 4,4′-Methylenbis(cyclohexylamin), verwendet. Die Aushärtung mit aliphatischen Aminen erfolgt bereits bei Zimmertemperatur (Kalthärtung); aromatische Amine erfordern eine Heißhärtung. Bei „sauren Härtern“, die oft Dicarbonsäureanhydride wie Hexahydrophthalsäureanhydrid sind, erfolgt die Aushärtung bei höheren Temperaturen, oft im Bereich zwischen 120 °C bis 160 °C. Die reaktiven Ethylenoxidringe der Epoxidharze reagieren in Additionsreaktionen mit den funktionellen Gruppen der Härter. Weiterhin findet durch den katalytischen Einfluss der Aminogruppen in wechselndem Umfang eine anionische Polymerisation der Epoxidgruppen statt. Starke Säuren bewirken eine kationische Polymerisation.

Schematische Darstellung.
Schematische Darstellung eines Ausschnitts eines Makromoleküls: Additionsprodukt aus Epoxid-Harz und dem Härter Diethylentriamin. Diethylentriamin ist rot markiert, [-R–O-]n symbolisiert Polyethereinheiten des Harzes.
Das Gebinde enthält Harz und Härter exakt im Verhältnis 1:1; vor der Verarbeitung muss es sorgfältig vermischt werden

Wie bei allen Reaktionsharzen muss beim Anmischen von Reaktionsharzmassen das stöchiometrische Harz-Härter-Verhältnis genau eingehalten werden – andernfalls verbleiben Teile von Harz oder Härter ohne Reaktionspartner. Diese unreagierten funktionellen Gruppen bleiben zurück und die Vernetzung bleibt unvollständig, was zu einem weichen Produkt und zu klebrigen Oberflächen führt. Einige Epoxidsysteme sind jedoch weniger empfindlich und innerhalb enger Grenzen ausdrücklich für eine Variation des Mischungsverhältnisses geeignet. Dadurch lassen sich Härte, Elastizität und andere Eigenschaften beeinflussen; so wird die Säurebeständigkeit durch einen höheren Anteil Epoxidharz erhöht. Da eine inhomogene Mischung der beiden Komponenten den gleichen negativen Effekt wie ein falsches Mengenverhältnis hat, sind umfangreiche Mischprozeduren beim Anmischen notwendig. Wenn die Farbgebung des resultierenden Kunststoffes ohne Belang ist, können als Durchmischungsindikator die beiden Ausgangsstoffe kontrastreich gefärbt sein. Die Polyaddition ist stark exotherm. Die entstehende Reaktionswärme kann so groß werden, dass es zum Brand kommt; zumindest können jedoch die Eigenschaften des Harzes durch die Überhitzung negativ beeinflusst werden. Für Bauteile mit großen Wanddicken werden daher niedrigreaktive Harze verwendet.

Die Verarbeitungsdauer von Reaktionsharzmassen wird Topfzeit genannt. Sie hängt von der Verarbeitungstemperatur, der Einstellung der Reaktionsharzmassen und der Ansatzgröße ab. Übliche Topfzeiten liegen bei einigen Minuten bis hin zu mehreren Stunden. Während der Topfzeit steigt die Viskosität des Harzes in einer nichtlinearen Kurve immer weiter an, bis schließlich keine Verarbeitung mehr möglich ist. Die Angabe der Topfzeit bezieht sich in der Regel auf einen Harz/Härter-Ansatz von 100 g bei 20 °C – größere Verarbeitungsmengen entwickeln eine höhere Temperatur und haben eine wesentlich kürzere Verarbeitungszeit.

Eine Erwärmung des angemischten Harzes verringert die Viskosität und verbessert dadurch im Allgemeinen die Verarbeitbarkeit, verkürzt aber auch die Topfzeit. Eine Erhöhung der Verarbeitungstemperatur um 10 °C bewirkt eine Halbierung der Topf- bzw. Aushärtezeit (RGT-Regel). Niedrigreaktive Epoxidharze benötigen lange Härtezeiten und möglichst eine erhöhte Härtungstemperatur (30 °C bis 40 °C). Bei Bedarf können noch Beschleuniger (hochreaktive Härter) zugegeben werden, die die Reaktionszeit verkürzen. Einige Epoxidharze können zur vollständigen Vernetzung und zum Erreichen einer höheren Wärmeformbeständigkeit nach der Aushärtung einer Warmhärtung unterzogen werden.

Beim Warmhärten (Temperung) steigt die Glasübergangstemperatur (Tg) der Matrix um ca. 20 °C bis 25 °C über die maximale Warmhärtungstemperatur an – dies ist der sogenannte Temperaturvorlauf. Raumtemperaturanhärtende Systeme härten bei Raumtemperatur teilweise mit einer sehr spröden Matrix – eine Härtung über 40 °C/5 h bis 6 h beseitigt diese und verbessert zusätzlich die mechanischen Eigenschaften.

Die Reaktionsharzmassen werden häufig mit niedrigviskosen Zusätzen modifiziert. Durch die niedrigere Viskosität der Reaktionsharzmasse wird eine bessere Penetration in poröse Werkstoffe (Tränkung von Geweben, Beschichtung von Beton) erreicht oder die Verarbeitbarkeit durch Spritzpressen (RTM-Verfahren) verbessert. Andererseits erlauben derartige Reaktionsharzmassen eine höhere Beladung mit Füllstoffen, woraus bei der Härtung ein geringerer Volumenschrumpf resultiert. Ebenfalls können die mechanischen Eigenschaften des gehärteten Harzes verbessert werden, ebenso die Ökonomie. Für diese Zwecke werden bevorzugt Glycidylether verwendet, da diese – im Gegensatz zu nicht reaktiven Verdünnern – kovalent an das Polymer gebunden werden und daher auch nicht migrieren können.

Gebräuchlich als Reaktivverdünner sind:

Monoglycidylether neigen dazu, die Polyaddition abzubrechen, da sie nur monofunktionell sind. Daher beeinträchtigen sie die Festigkeit und die Temperaturbeständigkeit, erhöhen aber die Flexibilität. Glycidylether von Phenolen wirken hier weniger nachteilig als Alkylglycidylether, werden aber toxikologisch ungünstiger beurteilt. Bei den Alkylglycidylethern werden langkettige (C12–C14) wegen ihres niedrigen Dampfdrucks bevorzugt eingesetzt; sie lassen sich günstig aus Fettalkoholen herstellen.

  • Polyglycidylether

Diese mehrfunktionellen Reaktivverdünner werden eingesetzt, wenn höhere Ansprüche an die mechanischen Eigenschaften gestellt werden. Da sie über mindestens zwei (wie der häufig eingesetzte 1,6-Hexandioldiglycidylether) Epoxidgruppen verfügen, bewirken sie keinen Abbruch der Polyaddition.

Reaktionsharzmassen können mit Zuschlagstoffen (z. B. pyrogenem Siliciumdioxid) versehen werden, um sie thixotrop einzustellen. Dieses verdickte Harz kann als Füllmasse oder Klebstoff verwendet werden. Andere Zuschlagstoffe dienen als Füllmittel (Hohlkugeln aus Glas, Keramik oder Kunststoffen), um die Dichte des Harzes zu verringern, um die Griffigkeit bzw. Abrasionsbeständigkeit der Oberfläche zu verbessern (Quarzsand, keramische Pulver) oder um die maximale Dauer-Betriebstemperatur zu steigern (Metallische Füllstoffe: Aluminium-, Eisen/Stahlpulver). Zuschlagstoffe (wie Aluminiumhydroxid) können das brandhemmende Verhalten von Epoxidharz verbessern. Dies ist besonders beim Einsatz in Verkehrsmitteln wichtig.

Das Aushärten kann mittels Zugabe von Photoinitiatoren mit Ultraviolett gestartet werden, wodurch Aushärtezeiten im Sekundenbereich erreicht werden.[6]

Das ungefüllte ausgehärtete Harz hat eine Dichte von 1020 bis etwa 1200 kg/m3. Der Elastizitätsmodul beträgt 3000 bis 4500 MPa und die Zugfestigkeit etwa 80 MPa. Diese Werte variieren je nach Formulierung und Herstellung.

Die Dielektrizitätszahl beträgt im Temperaturbereich −40 bis etwa +60 °C etwa 4 und steigt ebenso wie der dielektrische Verlustfaktor bei beginnender Erweichung (80 bis 100 °C) stark an. Der Verlustfaktor hat bei 40 °C ein Minimum, beträgt dort 50 bis 100 · 10−4 und steigt bei 100 bis 120 °C durch Orientierungspolarisation großer Kettensegmente auf etwa das 10- bis 20-fache an. Bei −40 °C ist ebenfalls ein Maximum (3 bis 10-facher Wert desjenigen bei 40 °C), hier hervorgerufen durch Orientierungspolarisation kurzer Kettensegmente.[7] Es werden Werkstoffe mit CTI-Werten (Kriechstromfestigkeit) von über 600 V angeboten. Durch Bromierung wird das Material schwer entflammbar (UL94 V-1 oder besser).

Die Wärmeleitfähigkeit beträgt 0,21 W/(m·K)[8] und kann durch Füllstoffe wesentlich gesteigert werden (isolierende elektrische Vergussmassen etwa 1,26 W/(m·K)[9] bis 6 W/(m·K)[10]).

Die chemische Schwindung bei der Polyaddition ist mit 0,5 bis 5 % deutlich geringer als bei den ungesättigten Polyesterharzen. Sie kann mit Füllstoffen noch weiter verringert werden.

Das ungefüllte Harz ist transparent gelblich bis wasserklar, und es ist auch ultraviolettbeständig bzw. vergilbungsfrei erhältlich. Bei Wellenlängen unterhalb 400 nm wird Epoxidharz nahezu intransparent, im Infrarotbereich ist es bis 2000 nm transparent. Der Brechungsindex liegt bei 1,5 bis 1,59 (bei 589,3 nm Natrium-D-Linie).[11]

Beim Bau von Bootsrümpfen hat Epoxidharz gegenüber manchen Polyesterharzen unter anderem den Vorteil, dass es Osmose­schäden ausschließt, selbst wenn Seewasser durch eine beschädigte Gelcoat-Schicht dringt und mit dem Werkstoff in Berührung kommt. Deshalb wird Epoxidharz auch zur Reparatur von Osmoseschäden an Polyesterharz-Bootsrümpfen verwendet.

Umweltverträglichkeit

[Bearbeiten | Quelltext bearbeiten]

Epoxidharz war über lange Zeit nicht recyclingfähig und die Stoffe zu dessen Herstellung wurden überwiegend aus Erdöl gewonnen. Forscher aus Graz zeigten 2024 erstmals die Synthese biobasierter Epoxid-Duroplaste, die durch eine Reihe chemischer Prozesse wie Methanolyse, Acetolyse, saure Hydrolyse und basische Verseifung wieder in die Präpolymere umgewandelt werden können. Das ermöglicht eine komplette Wiederverwertung.[16] Die Grundstoffe, die hierbei zum Einsatz kommen, sind Dimethyl-2,5-furandicarboxylat (DMFD)[S 1] als Ersatz für Bisphenole, 4,4′-Methylenbis(cyclohexylamin) (MBCA) als Härter und Glycidol als Epoxid-Komponente. DMFD ist über 4 aneinandergereihte chemische Prozesse aus Lignin zu gewinnen und muss zur Verwendung im Duroplast noch in einem fünften Schritt unter Nutzung von Kaliumcyanat mit Glycidol zum entsprechenden Diglycidylester umgeestert werden.[17] Dieser kann dann mit MBCA zum Duroplast umgesetzt werden. Für die Gewinnung von MBCA aus Lignin sind ebenfalls 5 aneinandergereihte chemische Prozesse notwendig, die auf Metallkatalyse und der mehrfachen Reduktion mittels Raney-Nickel beruhen. Zwischenprodukte in der Rückgewinnung der Grundstoffe sind Triacetin, das Diacetamid des MBCAs und ein Gemisch von an den Amingruppen einfach bis vierfach mit Glycerylgruppen substituiertem MBCA.

Epoxidharz ist bereits seit längerem auch als Variante erhältlich, welche zu 99–100 % aus nachwachsenden Rohstoffen gewonnen wurde. Preislich und in Bezug auf Festigkeit und Klarheit unterscheiden sich diese neuen Produkte kaum von herkömmlichen Produkten.[18][19]

Sicherheit und Gesundheit

[Bearbeiten | Quelltext bearbeiten]

Epoxidharz wird industriell gewöhnlich aus einer Reaktion von Bisphenol A und Epichlorhydrin hergestellt. Aufgrund der spezifischen Charakteristik insbesondere dieser beiden Reaktanten sind bei der Herstellung von Epoxidharz besondere Sicherheitsvorschriften zu beachten (zu möglichen Gesundheitsgefahren und Stand der Forschung siehe insbesondere auch die Artikel Bisphenol A und Epichlorhydrin).

Epoxidharz wurde unter der Bezeichnung Bisphenol-A-diglycidylether 2013 von der EU gemäß der Verordnung (EG) Nr. 1907/2006 (REACH) im Rahmen der Stoffbewertung in den fortlaufenden Aktionsplan der Gemeinschaft (CoRAP) aufgenommen. Hierbei werden die Auswirkungen des Stoffs auf die menschliche Gesundheit bzw. die Umwelt neu bewertet und ggf. Folgemaßnahmen eingeleitet. Ursächlich für die Aufnahme der Substanz waren die Besorgnisse bezüglich Verbraucherverwendung, hoher (aggregierter) Tonnage und weit verbreiteter Verwendung sowie der Gefahren ausgehend von einer möglichen Zuordnung zur Gruppe der CMR-Stoffe und als potentieller endokriner Disruptor. Die Neubewertung läuft seit 2015 und wird von Dänemark durchgeführt. Um zu einer abschließenden Bewertung gelangen zu können, wurden weitere Informationen nachgefordert.[20]

Epoxidharz-Produkte

Sicherheitshinweise
Name

Bisphenol-A-Epichlorhydrinharze mit durchschnittlicher Molmasse ≤700 g/mol

CAS-Nummer

25068-38-6

GHS-Gefahrstoffkennzeichnung [21]
Gefahrensymbol Gefahrensymbol

Achtung

H- und P-Sätze H: 315​‐​319​‐​317​‐​411
P: 101​‐​102​‐​261​‐​272​‐​280​‐​302+352​‐​333+313​‐​362​‐​363​‐​305+351+338​‐​337+313 [21]

Epoxidharz wird üblicherweise in zwei Komponenten geliefert, die vom Anwender gebrauchsfertig zu mischen sind. Die sog. „A-Komponente“ enthält meist das Epoxidharz, die „B-Komponente“ den Härter, der in einem vorbestimmten Mischungsverhältnis dem Harz zuzugeben ist.

Üblicherweise sind Epoxidharze mit den GHS-Symbolen GHS07 („Achtung“) und GHS09 („Umweltgefährlich“) und mit entsprechenden H- und P-Sätzen versehen. Die vielfach zum Einsatz kommenden Epoxidharz-Härter auf Amin-Basis müssen üblicherweise ebenfalls mit GHS-Symbolen (häufig GHS05, „Ätzend“) gekennzeichnet und ebenfalls mit H- und P-Sätzen versehen werden. Da die Gefährdungs- und Sicherheitshinweise in Abhängigkeit von eingesetztem Produkt und Härtertyp variieren, ist den Sicherheitsdatenblättern der verwendeten Produkte besondere Aufmerksamkeit zu schenken.

Schutzausrüstung bei der Applikation

Da der direkte Hautkontakt als weitaus schädlicher anzusehen ist als etwa eine Aufnahme über die Atemwege (z. B. durch ungenügende Belüftung), ist persönliche Schutzausrüstung beim Einsatz vieler Epoxidprodukte vorgeschrieben. Zum Hautschutz eignen sich ausschließlich spezielle Nitril- oder Butyl-, Butyl/Viton- und PE-Laminat-Handschuhe. Ungeeignet sind dünne Einweg-Handschuhe unabhängig vom Material (zum Beispiel Latex, Vinyl oder Nitril). Die allergenen Stoffe durchdringen diese Handschuhe auch ohne Beschädigung innerhalb weniger Minuten, während der Eigenschutz der Haut durch Schwitzen bei fehlender Belüftung geschwächt wird. Hautschutzsalben bieten ebenfalls keinen akzeptablen Schutz. Unter Umständen kann zusätzlich das Tragen eines Schutzanzugs notwendig sein.

Bezüglich der Verwendung von Epoxidharz-Systemen können ggf. je nach Einsatzgebiet und Anwendungsbereich ergänzende – auch gesetzliche – Anforderungen an Sicherheit und Gesundheit bestehen, so z. B. in den Bereichen Kinderspielzeug, Trinkwasser, Lebensmittelbedarfsgegenstände etc.

Inhaltsstoffe von Epoxidharzen haben sensibilisierende Eigenschaften. Bei ungeeigneter Arbeitsweise kann der Verarbeiter sensibilisiert werden, danach kann es zu allergischen Reaktionen in Form von Hautausschlägen kommen, vor allem beim Kontakt mit nicht ausgehärteten Epoxidharzen. Um Möglichkeiten zur Vermeidung von epoxidharzbedingten allergischen Hauterkrankungen zu erarbeiten, wurden verschiedene Arbeitskreise gegründet und Forschungsprojekte initiiert. Die bisherigen Ergebnisse dieser Arbeiten finden sich gesammelt auf der Epoxidharzseite des Instituts für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung (IFA)[22].

  • Walter Krauß (Hrsg.): Kittel: Lehrbuch der Lacke und Beschichtungen. Band 2: Bindemittel für lösemittelhaltige und lösemittelfreie Systeme, 2. Aufl., Hirzel Verlag, 1998, ISBN 978-3-7776-0886-0.
  • Barbara Schmid, Jürgen Wehde, Ursula Vater: Gefahrstoffinformation und Gefährdungsbeurteilung bei der Verarbeitung von Epoxidharzen. In: Gefahrstoffe – Reinhaltung der Luft. 70(1/2), 2010, S. 17–21.
  • Edward M. Petrie: Epoxy Adhesive Formulations. Verlag Mc Graw-Hill, 2006, ISBN 0-07-145544-2.
Commons: Epoxidharz – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. Hans-Dieter Jakubke, Ruth Karcher (Hrsg.): Lexikon der Chemie. 3. Bände, Spektrum Akademischer Verlag, Heidelberg, 2003, ISBN 978-3-8274-1151-8.
  2. Deutsches Institut für Normung: DIN-Term Beschichtungsstoffe. Vincentz Network, 2001, ISBN 978-3-87870-721-9, S. 65, eingeschränkte Vorschau in der Google-Buchsuche.
  3. a b c d e f Ha Q. Pham, Maurice J. Marks: Epoxy Resins. In: Ullmann’s Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a09_547.pub2.
  4. Wolfgang Kaiser: Kunststoffchemie für Ingenieure. 3. Aufl. Hanser, München 2011, ISBN 978-3-446-43047-1, S. 437 ff.
  5. L. Hammerton, ed. by Rebecca Dolbey: Recent Developments in Epoxy Resins. RAPRA Review Reports, 1996, ISBN 978-1-85957-083-8, S. 8.
  6. Epoxid-Klebstoffe (Memento vom 5. Juli 2016 im Internet Archive) (PDF; 757 kB), auf panacol.de.
  7. M. Beyer, W. Boeck, K. Möller, W. Zaengl: Hochspannungstechnik: Theoretische und praktische Grundlagen. Springer Verlag, 1992, 362 Seiten, ISBN 978-3-540-16014-4 (Reprint), S. 206 f.
  8. H. Schürmann: Konstruieren mit Faser-Kunststoff-Verbunden. 2. Auflage, Springer-Verlag 2007; 672 Seiten, ISBN 978-3-540-72189-5, S. 269.
  9. Technisches Datenblatt zu ER2074 von Electrolube S. 2. (Memento vom 28. Januar 2017 im Internet Archive) (PDF; 93 kB), auf files.voelkner.de, abgerufen am 28. Januar 2017.
  10. Temperaturbeständiges Epoxid-Gießharz mit hoher Wärmeleitfähigkeit Pressemitteilung der Fa. Kyocera.
  11. Tech Tip 18: Verstehen der optischen Eigenschaften bei Epoxyanwendungen (PDF; 353 kB), Fa. Kummer Semiconductor Technology.
  12. Grünbeschichtungen für bessere Sichtbarkeit der Radwege in Berlin. Archiviert vom Original (nicht mehr online verfügbar) am 27. März 2019; abgerufen am 25. April 2019.
  13. Plastination. The Medical University Vienna (englisch) Medizinische Universität Wien, aufgerufen am 14. Oktober 2021
  14. Epoxidharz Tisch selbst bauen ► Step-by-Step Anleitung. Abgerufen am 31. Mai 2023.
  15. Kunst & Schmuck mit Epoxidharz. Abgerufen am 5. März 2025.
  16. Xianyuan Wu, Peter Hartmann, Dimitri Berne, Mario De bruyn, Florian Cuminet, Zhiwen Wang, Johannes Matthias Zechner, Adrian Daniel Boese, Vincent Placet, Sylvain Caillol, Katalin Barta: Closed-loop recyclability of a biomass-derived epoxy-amine thermoset by methanolysis. In: Science. Band 384, Nr. 6692, 12. April 2024, doi:10.1126/science.adj9989.
  17. Angela Marotta, Veronica Ambrogi, Pierfrancesco Cerruti, Alice Mija: Green approaches in the synthesis of furan-based diepoxy monomers. In: RSC Advances. Band 8, Nr. 29, 2018, S. 16330–16335, doi:10.1039/c8ra02739k.
  18. Nachhaltige und biobasierte Epoxidharze. Abgerufen am 5. August 2024.
  19. Die Epoxidharz Revolution - Unsere neuen Produkte. Abgerufen am 5. August 2024.
  20. Community Rolling Action Plan (CoRAP) der Europäischen Chemikalienagentur (ECHA): 2,2'-[(1-methylethylidene)bis(4,1-phenyleneoxymethylene)]bisoxirane, abgerufen am 20. Mai 2019.Vorlage:CoRAP-Status/2015
  21. a b Sicherheitsdatenblatt Epoxydharz L (PDF; 119 kB), von R&G Faserverbundwerkstoffe GmbH, abgerufen am 6. Mai 2013.
  22. Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung (IFA): Epoxidharze. Abgerufen am 9. November 2021.
[Bearbeiten | Quelltext bearbeiten]
  1. Externe Identifikatoren von bzw. Datenbank-Links zu Dimethyl-2,5-furandicarboxylat: CAS-Nr.: 4282-32-0, EG-Nr.: 700-514-1, ECHA-InfoCard: 100.149.479, PubChem: 303530, ChemSpider: 268344, Wikidata: Q72470516.