„Sporadische Gruppe“ – Versionsunterschied
[ungesichtete Version] | [gesichtete Version] |
Wzwz (Diskussion | Beiträge) KKeine Bearbeitungszusammenfassung |
K →Einteilung: Gruppennamen besser zentriert im Diagramm + geringfügige Änderungen in der Erklärung |
||
(137 dazwischenliegende Versionen von 51 Benutzern werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
Die '''sporadischen Gruppen''' sind 26 spezielle [[Gruppe (Mathematik)|Gruppen]] in der [[Gruppentheorie]]. Es handelt sich um die [[endliche einfache Gruppe|endlichen einfachen Gruppen]], die sich nicht in eine der [[Endliche einfache Gruppe#Familien endlicher einfacher Gruppen|(18) systematischen Familien mit unendlich vielen Mitgliedern]] (von endlichen einfachen Gruppen) einordnen lassen. |
|||
siehe auch: [[Gruppentheorie]] || [[endliche Gruppe]] || [[endliche einfache Gruppe]] |
|||
---- |
|||
Die '''sporadischen Gruppen''' sind jene einfache Gruppen, |
|||
die sich nicht in einer der 18 [[Familien endlicher einfacher Gruppen]] einordnen lassen. |
|||
== Entdeckungsgeschichte == |
|||
Die ersten 5 Gruppen der untenstehenden Tabelle wurden von Émile Mathieu in den Jahren 1862 und 1873 entdeckt, |
|||
Die ersten fünf entdeckten sporadischen Gruppen, die sogenannten [[Mathieugruppe]]n, wurden von [[Émile Mathieu]] in den 1860er-Jahren entdeckt. Die Entdeckungsgeschichte aller anderen sporadischen Gruppen setzte erst 1964 ein. |
|||
die folgenden Gruppen wurden ab 1964 gefunden. |
|||
Die früheste Erwähnung des Begriffes „sporadische Gruppe“ dürfte von [[William Burnside|Burnside]] 1911, bezugnehmend auf die damals bereits bekannten Mathieugruppen, stammen: ''{{lang|en|These apparently sporadic simple groups would probably repay a closer examination than they have yet received.}}'' |
|||
'''Tabelle der 26 sporadischen Gruppen:''' |
|||
{| border="1" cellspacing="0" cellpadding="2" |
|||
| bgcolor="#CCFF00" rowspan="2" valign="top" | '''Name(n)''' |
|||
== Einteilung == |
|||
| bgcolor="#CCFF00" rowspan="2" valign="top" | Entdecker |
|||
[[Datei:SporadicGroups.png|335px|miniatur|rechts|Hasse-Diagramm der 26 sporadischen Gruppen.<br>Eine aufsteigende Linie bedeutet, dass die untere Gruppe Subquotient der oberen ist.<br>Die [[#GG|Generationen]] von Robert Griess haben verschiedene Farben: rot [[Datei:EllipseSubqR.svg]] erste Generation, grün [[Datei:EllipseSubqG.svg]] zweite, blau [[Datei:EllipseSubqB.svg]] dritte; Parias in weiß [[Datei:EllipseSubqW.svg]].]] |
|||
Im nebenstehenden [[Hasse-Diagramm]] bedeutet eine Linie von ''A'' unten nach ''B'' oben, dass ''A'' [[Subquotient]] von ''B'' ist.<ref>zusammengestellt hauptsächlich aus [[#Griess|Griess]] S. 94</ref> Da die Relation [[Subquotient#Transitivität|transitiv]] ist, sind implizierte Verbindungen nicht im Diagramm eingetragen. Und gibt es im Diagramm eine von ''A'' zu ''B'' aufsteigende Linie, dann gibt es keine andere sporadische Gruppe zwischen ''A'' und ''B''.<ref>Es gibt jedoch sehr viele andere (nicht-sporadische) einfache Subquotienten einer sporadischen Gruppe, am unteren Ende auf jeden Fall die Gruppen von Primzahlordnung, aber auch [[alternierende Gruppe]]n einer Ordnung ≥ 5 und einfache [[Gruppe vom Lie-Typ|Gruppen vom Lie-Typ]] wie die Steinberg-Gruppe {{nowrap|<sup>2</sup>E<sub>6</sub>(2<sup>2</sup>)}} (Beispiele in [[#Wilson|Wilsons Atlas]]).<br />Umgekehrt ist nach dem [[Satz von Cayley]] jede endliche Gruppe Untergruppe einer [[Symmetrische Gruppe|symmetrischen Gruppe]] <math>S_n</math> genügend hohen Grades <math>n ,</math> die ihrerseits unter Anhängen der Transposition <math>(n+1,n+2)</math> an alle ungeraden Permutationen in die alternierende Gruppe <math>A_{n+2}</math> eingebettet werden kann. Damit ist jede sporadische Gruppe auch Subquotient einer (einfachen) alternierenden Gruppe.</ref> |
|||
20 der 26 sporadischen Gruppen sind Subquotienten der [[Monstergruppe]] M, von [[Robert Griess (Mathematiker)|Robert Griess]] ''Friendly Giant''<ref>F<sub>1</sub> in [[#Griess|Griess]]</ref> (deutsch: ''freundlicher Riese'') genannt. |
|||
| bgcolor="#CCFF00" colspan="3" align="center" | '''Ordnung''' |
|||
Diese 20 Gruppen werden nach Griess unter dem Namen ''Happy Family'' (deutsch: ''Glückliche Familie'') zusammengefasst.<ref>s. [[#Griess|Griess]]</ref> {{Anker|GG}}Die ''Happy Family'' gliedert sich in drei Generationen, wobei die erste Generation (rot) mit dem erweiterten binären [[Golay-Code]] und die zweite (grün) mit dem [[Leech-Gitter]] bzw. Automorphismengruppen davon in Zusammenhang steht. Zur ersten Generation gehören die fünf Mathieugruppen M<sub>11</sub>, M<sub>12</sub>, M<sub>22</sub>, M<sub>23</sub>, M<sub>24</sub>, zur zweiten Generation die Conwaygruppen Co<sub>1</sub>, Co<sub>2</sub>, Co<sub>3</sub> und die Gruppen J<sub>2</sub>, HS, McL, Suz. Die dritte Generation (blau) ist nahe verwandt mit M und enthält die übrigen Gruppen He, Fi<sub>22</sub>, Fi<sub>23</sub>, Fi<sub>24</sub>, HN, Th, B und M der ''Happy Family''. |
|||
Die sechs sporadischen Gruppen, die nicht Subquotienten von M sind, sind die Jankogruppen [[Jankogruppe J1|J<sub>1</sub>]], [[Jankogruppe J3|J<sub>3</sub>]] und [[Jankogruppe J4|J<sub>4</sub>]], die [[Rudvalisgruppe]] Ru, die [[Lyonsgruppe]] Ly und die [[O’Nan-Gruppe]] ON. Sie werden bei [[#Griess|Griess]] ''Paria''s (engl. ''pariah'') genannt (in der untenstehenden Tabelle als Generation {{nowrap|P).}} |
|||
| bgcolor="#CCFF00" rowspan="2" valign="top" | '''Name(n)''' |
|||
|----- |
|||
| bgcolor="#CCFF00" | circa || bgcolor="#CCFF00" | ... als Produkt |
|||
| bgcolor="#CCFF00" | ... als exakte Dezimalzahl |
|||
|----- |
|||
| bgcolor="#FFFF33" | M<sub>11</sub> || Mathieu |
|||
| 7.92e03 |
|||
Teilweise wird auch die nach dem belgisch-französischen Mathematiker [[Jacques Tits]] benannte [[Tits-Gruppe]] {{nowrap|1=T = <sup>2</sup>F<sub>4</sub>(2)′}} der Ordnung 17.971.200 als eine sporadische Gruppe angesehen, weil sie nicht eine [[Gruppe vom Lie-Typ]] sei. Allerdings ist das [[Definiens]] für »nicht-sporadisch« bei endlichen einfachen Gruppen die »Zugehörigkeit zu einer unendlichen systematischen Familie« — was nicht unmittelbar mit der Eigenschaft »vom Lie-Typ« etwas zu tun hat, denn es gibt andere unendliche Familien endlicher einfacher Gruppen, z. B. die Gruppen von Primzahlordnung oder die alternierenden Gruppen, die auch nicht vom Lie-Typ sind. Mit ihrer Zugehörigkeit zur ''unendlichen'' Familie der [[Reihe (Gruppentheorie)#Reihe der abgeleiteten Gruppen|abgeleiteten]] [[Gruppe vom Lie-Typ#Tabellarische Übersicht|Ree-Gruppen]] {{nowrap|<sup>2</sup>F<sub>4</sub>(2<sup>2''n''+1</sup>)′,}} deren Mitglieder {{nowrap|<sup>2</sup>F<sub>4</sub>(2<sup>2''n''+1</sup>)}} für <math>n\ge 1</math> mit ihren Ableitungen übereinstimmen, ist sie im strengen Sinn keine sporadische Gruppe.<ref>Bei [[#Hiss|Hiss]] und [http://mathworld.wolfram.com/SporadicGroup.html Eric W. Weisstein „Sporadic Group“ From MathWorld--A Wolfram Web Resource] wird die Tits-Gruppe nicht unter den 26 aufgeführt.</ref> Sie ist Subquotient von Fi<sub>22</sub> und Ru und würde demnach, wenn eingeordnet, zur dritten Generation der sporadischen Gruppen gehören. |
|||
| 2<sup>4</sup>×3<sup>2</sup>×5×11 |
|||
| align="right" | 7.920 || bgcolor="#FFFF33" | M<sub>11</sub> |
|||
|----- |
|||
| bgcolor="#FFFF33" | M<sub>12</sub> || Mathieu |
|||
| 9.50e04 |
|||
== Tabelle der 26 sporadischen Gruppen == |
|||
| 2<sup>6</sup>×3<sup>3</sup>×5×11 |
|||
Standardreihenfolge, erste Symbole, Entdeckungsjahr aus [[#Hiss|Hiss]] S. 172. |
|||
| align="right" | 95.040 || bgcolor="#FFFF33" | M<sub>12</sub> |
|||
{| class="wikitable sortable" |
|||
|----- |
|||
|- class="hintergrundfarbe6;vertical-align:bottom" |
|||
| bgcolor="#FFFF33" | M<sub>22</sub> || Mathieu |
|||
!style="width:11em"| Name |
|||
| 4.44e05 |
|||
!style="width:4.5em"| {{vertikal|Symbole}} |
|||
!style="width:7em"| Entdecker |
|||
| 2<sup>7</sup>×3<sup>2</sup>×5×7×11 |
|||
! {{vertikal|Jahr}} |
|||
| align="right" | 443.520 || bgcolor="#FFFF33" | M<sub>22</sub> |
|||
! {{vertikal|Generation}} |
|||
|----- |
|||
! {{vertikal|Ordnung (zirka)}} |
|||
| bgcolor="#FFFF33" | M<sub>23</sub> || Mathieu |
|||
! Ordnung <br/>(als Dezimalzahl {{OEIS|A001228}}) |
|||
| 1.02e07 |
|||
! Ordnung <br/>(in [[Primfaktorzerlegung]]) |
|||
|- |
|||
| 2<sup>7</sup>×3<sup>2</sup>×5×7×11×23 |
|||
|rowspan=5 style="vertical-align:top"| [[Mathieugruppe]] … || M<sub>11</sub> || [[Émile Léonard Mathieu|Mathieu]] || 1861 |
|||
| align="right" | 10.200.960 || bgcolor="#FFFF33" | M<sub>23</sub> |
|||
|style="background-color:#ffaaaa;"| 1 |
|||
|----- |
|||
| {{ZahlExpZelle|8|3}} |
|||
| bgcolor="#FFFF33" | M<sub>24</sub> || Mathieu |
|||
| align="right" | 7.920 |
|||
| 2.45e08 |
|||
| 2<sup>4</sup>·3<sup>2</sup>·5·11 |
|||
|- |
|||
| 2<sup>10</sup>×3<sup>3</sup>×5×7×11×23 |
|||
| M<sub>12</sub> || Mathieu || 1861 |
|||
| align="right" | 244.823.040 || bgcolor="#FFFF33" | M<sub>24</sub> |
|||
|style="background-color:#ffaaaa;"| 1 |
|||
|----- |
|||
| {{ZahlExpZelle|1|5}} |
|||
| bgcolor="#FFFF33" | J<sub>1</sub> || Janko |
|||
| align="right" | 95.040 |
|||
| 1.76e05 |
|||
| 2<sup>6</sup>·3<sup>3</sup>·5·11 |
|||
|- |
|||
| 2<sup>3</sup>×3×5×7×11×19 |
|||
| [[Mathieu-Gruppe M22|M<sub>22</sub>]] || Mathieu || 1861 |
|||
| align="right" | 175.560 || bgcolor="#FFFF33" | J<sub>1</sub> |
|||
|style="background-color:#ffaaaa;"| 1 |
|||
|----- |
|||
| {{ZahlExpZelle|4|5}} |
|||
| bgcolor="#FFFF33" | J<sub>2</sub>/HJ |
|||
| |
| align="right" | 443.520 |
||
| 2<sup>7</sup> |
| 2<sup>7</sup>·3<sup>2</sup>·5·7·11 |
||
|- |
|||
| M<sub>23</sub> || Mathieu || 1861 |
|||
|style="background-color:#ffaaaa;"| 1 |
|||
| {{ZahlExpZelle|1|7}} |
|||
| align="right" | 10.200.960 |
|||
| 2<sup>7</sup>·3<sup>2</sup>·5·7·11·23 |
|||
|- |
|||
| M<sub>24</sub> || Mathieu || 1861 |
|||
|style="background-color:#ffaaaa;"| 1 |
|||
| {{ZahlExpZelle|2|8}} |
|||
| align="right" | 244.823.040 |
|||
| 2<sup>10</sup>·3<sup>3</sup>·5·7·11·23 |
|||
|- |
|||
| rowspan=4 style="vertical-align:top"| [[Jankogruppe]] … || J<sub>1</sub> || [[Zvonimir Janko|Janko]] || 1965 |
|||
| P |
|||
| {{ZahlExpZelle|2|5}} |
|||
| align="right" | 175.560 |
|||
| 2<sup>3</sup>·3·5·7·11·19 |
|||
|- |
|||
| J<sub>2</sub>, HJ || Janko || 1968 |
|||
|style="background-color:#80ff80;"| 2 |
|||
| {{ZahlExpZelle|6|5}} |
|||
| align="right" | 604.800 |
| align="right" | 604.800 |
||
| 2<sup>7</sup>·3<sup>3</sup>·5<sup>2</sup>·7 |
|||
|- |
|||
| bgcolor="#FFFF33" | J<sub>2</sub>/HJ |
|||
| J<sub>3</sub> || Janko || 1968 |
|||
|----- |
|||
| P |
|||
| bgcolor="#FFFF33" | J<sub>3</sub> || Janko |
|||
| {{ZahlExpZelle|5|7}} |
|||
| 5.02e07 |
|||
| align="right" | 50.232.960 |
|||
| 2<sup>7</sup> |
| 2<sup>7</sup>·3<sup>5</sup>·5·17·19 |
||
|- |
|||
| align="right" | 50.232.960 || bgcolor="#FFFF33" | J<sub>3</sub> |
|||
| J<sub>4</sub> || Janko || 1976 |
|||
|----- |
|||
| P |
|||
| bgcolor="#FFFF33" | HS || Higman,Sims |
|||
| {{nowrap|{{ZahlExpZelle|9|19}}}} |
|||
| 4.44e07 |
|||
| align="right" | 86.775.571.046.077.562.880 |
|||
| 2<sup> |
| 2<sup>21</sup>·3<sup>3</sup>·5·7·11<sup>3</sup>·23·29·31·37·43 |
||
|- |
|||
| align="right" | 44.352.000 || bgcolor="#FFFF33" | HS |
|||
| [[Higman-Sims-Gruppe]] || HS || [[Donald G. Higman|Higman]], [[Charles Sims|Sims]] || 1967 |
|||
|----- |
|||
|style="background-color:#80ff80;"| 2 |
|||
| bgcolor="#FFFF33" | Co<sub>1</sub>/C<sub>1</sub> |
|||
| {{ZahlExpZelle|4|7}} |
|||
| Conway || 4.16e18 |
|||
| align="right" | 44.352.000 |
|||
| 2<sup>21</sup>×3<sup>9</sup>×5<sup>4</sup>×7<sup>2</sup>×11×13×23 |
|||
| 2<sup>9</sup>·3<sup>2</sup>·5<sup>3</sup>·7·11 |
|||
|- |
|||
| [[McLaughlin-Gruppe]] || McL, Mc || [[Jack E. McLaughlin|McLaughlin]] || 1969 |
|||
|style="background-color:#80ff80;"| 2 |
|||
| {{ZahlExpZelle|9|8}} |
|||
| align="right" | 898.128.000 |
|||
| 2<sup>7</sup>·3<sup>6</sup>·5<sup>3</sup>·7·11 |
|||
|- |
|||
| [[Suzukigruppe]] || Suz || [[Suzuki Michio (Mathematiker)|Suzuki]] || 1969 |
|||
|style="background-color:#80ff80;"| 2 |
|||
| {{ZahlExpZelle|4|11}} |
|||
| align="right" | 448.345.497.600 |
|||
| 2<sup>13</sup>·3<sup>7</sup>·5<sup>2</sup>·7·11·13 |
|||
|- |
|||
| [[Rudvalisgruppe]] || Ru || [[Arunas Rudvalis|Rudvalis]] || 1972 |
|||
| P |
|||
| {{ZahlExpZelle|1|11}} |
|||
| align="right" | 145.926.144.000 |
|||
| 2<sup>14</sup>·3<sup>3</sup>·5<sup>3</sup>·7·13·29 |
|||
|- |
|||
| [[Heldgruppe]] || He || [[Dieter Held|Held]] || 1969 |
|||
|style="background-color:#aaccff;"| 3 |
|||
| {{ZahlExpZelle|4|9}} |
|||
| align="right" | 4.030.387.200 |
|||
| 2<sup>10</sup>·3<sup>3</sup>·5<sup>2</sup>·7<sup>3</sup>·17 |
|||
|- |
|||
| [[Lyonsgruppe]] || Ly || [[Richard Lyons (Mathematiker)|Lyons]] || 1972 |
|||
| P |
|||
| {{ZahlExpZelle|5|16}} |
|||
| align="right" | 51.765.179.004.000.000 |
|||
| 2<sup>8</sup>·3<sup>7</sup>·5<sup>6</sup>·7·11·31·37·67 |
|||
|- |
|||
| [[O’Nan-Gruppe]] || ON, {{nowrap|O’N}} || [[Michael O’Nan|O’Nan]] || 1976 |
|||
| P |
|||
| {{ZahlExpZelle|4|11}} |
|||
| align="right" | 460.815.505.920 |
|||
| 2<sup>9</sup>·3<sup>4</sup>·5·7<sup>3</sup>·11·19·31 |
|||
|- |
|||
| rowspan=3 style="vertical-align:top"| [[Conwaygruppe]] … || Co<sub>1</sub>, C<sub>1</sub> || [[John Horton Conway|Conway]] || 1969 |
|||
|style="background-color:#80ff80;"| 2 |
|||
| {{ZahlExpZelle|4|18}} |
|||
| align="right" | 4.157.776.806.543.360.000 |
| align="right" | 4.157.776.806.543.360.000 |
||
| 2<sup>21</sup>·3<sup>9</sup>·5<sup>4</sup>·7<sup>2</sup>·11·13·23 |
|||
|- |
|||
| bgcolor="#FFFF33" | Co<sub>1</sub>/C<sub>1</sub> |
|||
| Co<sub>2</sub>, C<sub>2</sub> || Conway || 1969 |
|||
|----- |
|||
|style="background-color:#80ff80;"| 2 |
|||
| bgcolor="#FFFF33" | Co<sub>2</sub>/C<sub>2</sub> |
|||
| {{ZahlExpZelle|4|13}} |
|||
| Conway || 4.23e13 |
|||
| 2<sup>18</sup>×3<sup>6</sup>×5<sup>3</sup>×7×11×23 |
|||
| align="right" | 42.305.421.312.000 |
| align="right" | 42.305.421.312.000 |
||
| 2<sup>18</sup>·3<sup>6</sup>·5<sup>3</sup>·7·11·23 |
|||
|- |
|||
| bgcolor="#FFFF33" | Co<sub>2</sub>/C<sub>2</sub> |
|||
| Co<sub>3</sub>, C<sub>3</sub> || Conway || 1969 |
|||
|----- |
|||
|style="background-color:#80ff80;"| 2 |
|||
| bgcolor="#FFFF33" | Co<sub>3</sub>/C<sub>3</sub> |
|||
| {{ZahlExpZelle|5|11}} |
|||
| Conway || 4.96e11 |
|||
| 2<sup>10</sup>×3<sup>7</sup>×5<sup>3</sup>×7×11×23 |
|||
| align="right" | 495.766.656.000 |
| align="right" | 495.766.656.000 |
||
| 2<sup>10</sup>·3<sup>7</sup>·5<sup>3</sup>·7·11·23 |
|||
|- |
|||
| bgcolor="#FFFF33" | Co<sub>3</sub>/C<sub>3</sub> |
|||
| rowspan=3 style="vertical-align:top"| [[Fischer-Gruppe]] … || Fi<sub>22</sub> || [[Bernd Fischer (Mathematiker)|Fischer]] || 1971 |
|||
|----- |
|||
|style="background-color:#aaccff;"| 3 |
|||
| bgcolor="#FFFF33" | He || Held || 4.03e09 |
|||
| {{ZahlExpZelle|6|13}} |
|||
| 2<sup>10</sup>×3<sup>3</sup>×5<sup>2</sup>×7<sup>3</sup>×17 |
|||
| align="right" | 4.030.387.200 || bgcolor="#FFFF33" | He |
|||
|----- |
|||
| bgcolor="#FFFF33" | Mc/McL || McLaughlin |
|||
| 8.98e08 |
|||
| 2<sup>7</sup>×3<sup>6</sup>×5<sup>3</sup>×7×11 |
|||
| align="right" | 898.128.000 || bgcolor="#FFFF33" | Mc/McL |
|||
|----- |
|||
| bgcolor="#FFFF33" | Suz || Suzuki || 4.48e11 |
|||
| 2<sup>13</sup>×3<sup>7</sup>×5<sup>2</sup>×7×11×13 |
|||
| align="right" | 448.345.497.600 || bgcolor="#FFFF33" | Suz |
|||
|----- |
|||
| bgcolor="#FFFF33" | M(22)/F<sub>22</sub> |
|||
| Fischer || 6.46e13 |
|||
| 2<sup>17</sup>×3<sup>9</sup>×5<sup>2</sup>×7×11×13 |
|||
| align="right" | 64.561.751.654.400 |
| align="right" | 64.561.751.654.400 |
||
| 2<sup>17</sup>·3<sup>9</sup>·5<sup>2</sup>·7·11·13 |
|||
|- |
|||
| bgcolor="#FFFF33" | M(22)/F<sub>22</sub> |
|||
| Fi<sub>23</sub> || Fischer || 1971 |
|||
|----- |
|||
|style="background-color:#aaccff;"| 3 |
|||
| bgcolor="#FFFF33" | M(23)/F<sub>23</sub> |
|||
| {{ZahlExpZelle|4|18}} |
|||
| Fischer || 4.09e18 |
|||
| 2<sup>18</sup>×3<sup>13</sup>×5<sup>2</sup>×7×11×13×17×23 |
|||
| align="right" | 4.089.470.473.293.004.800 |
| align="right" | 4.089.470.473.293.004.800 |
||
| 2<sup>18</sup>·3<sup>13</sup>·5<sup>2</sup>·7·11·13·17·23 |
|||
|- |
|||
| bgcolor="#FFFF33" | M(23)/F<sub>23</sub> |
|||
| Fi<sub>24</sub>, F<sub>24</sub>′ || Fischer || 1971 |
|||
|----- |
|||
|style="background-color:#aaccff;"| 3 |
|||
| bgcolor="#FFFF33" | M(24)/F<sub>24</sub> |
|||
| {{ZahlExpZelle|1|24}} |
|||
| Fischer || 1.26e24 |
|||
| 2<sup>21</sup>×3<sup>16</sup>×5<sup>2</sup>×7<sup>3</sup>×11×13×17×23×29 |
|||
| align="right" | 1.255.205.709.190.661.721.292.800 |
| align="right" | 1.255.205.709.190.661.721.292.800 |
||
| 2<sup>21</sup>·3<sup>16</sup>·5<sup>2</sup>·7<sup>3</sup>·11·13·17·23·29 |
|||
|- |
|||
| bgcolor="#FFFF33" | M(24)/F<sub>24</sub> |
|||
| [[Harada-Norton-Gruppe]] || HN, F<sub>5</sub> || [[Koichiro Harada|Harada]], [[Simon Norton|Norton]], Smith || 1976 |
|||
|----- |
|||
|style="background-color:#aaccff;"| 3 |
|||
| bgcolor="#FFFF33" | Ly || Lyons || 5.18e16 |
|||
| {{ZahlExpZelle|3|14}} |
|||
| 2<sup>8</sup>×3<sup>7</sup>×5<sup>6</sup>×7×11×31×37×67 |
|||
| align="right" | |
| align="right" | 273.030.912.000.000 |
||
| 2<sup>14</sup>·3<sup>6</sup>·5<sup>6</sup>·7·11·19 |
|||
|- |
|||
| bgcolor="#FFFF33" | Ly |
|||
| [[Thompsongruppe]] || Th, F<sub>3</sub> || [[John Griggs Thompson|Thompson]] || 1976 |
|||
|----- |
|||
|style="background-color:#aaccff;"| 3 |
|||
| bgcolor="#FFFF33" | Ru || Rudvalis || 1.46e11 |
|||
| {{ZahlExpZelle|9|16}} |
|||
| 2<sup>14</sup>×3<sup>3</sup>×5<sup>3</sup>×7×13×29 |
|||
| align="right" | |
| align="right" | 90.745.943.887.872.000 |
||
| 2<sup>15</sup>·3<sup>10</sup>·5<sup>3</sup>·7<sup>2</sup>·13·19·31 |
|||
|----- |
|||
|- |
|||
| bgcolor="#FFFF33" | F<sub>2</sub>/B || Fischer |
|||
| [[Baby-Monstergruppe]] || B, F<sub>2</sub> || Fischer || 1973 |
|||
| 4.15e33 |
|||
|style="background-color:#aaccff;"| 3 |
|||
| {{ZahlExpZelle|4|33}} |
|||
| 2<sup>41</sup>×3<sup>13</sup>×5<sup>6</sup>×7<sup>2</sup>×11×13×17×19×23×31×47 |
|||
| align="right" | 4.154.781.481.226.426.191.177.580.544.000.000 |
| align="right" | 4.154.781.481.226.426.191.177.580.544.000.000 |
||
| 2<sup>41</sup>·3<sup>13</sup>·5<sup>6</sup>·7<sup>2</sup>·11·13·17·19·23·31·47 |
|||
|- |
|||
| bgcolor="#FFFF33" | F<sub>2</sub>/B |
|||
| [[Monstergruppe]] || M, F<sub>1</sub> || [[Bernd Fischer (Mathematiker)|Fischer]], [[Robert Griess (Mathematiker)|Griess]] || 1973 |
|||
|----- |
|||
|style="background-color:#aaccff;"| 3 |
|||
| bgcolor="#FFFF33" | ON || O’Nan || 4.61e11 |
|||
| {{ZahlExpZelle|8|53}} |
|||
| 2<sup>9</sup>×3<sup>4</sup>×5×7<sup>3</sup>×11×19×31 |
|||
| align="right" | 460.815.505.920 || bgcolor="#FFFF33" | ON |
|||
|----- |
|||
| bgcolor="#FFFF33" | F<sub>3</sub>/Th |
|||
| Thompson || 9.07e16 |
|||
| 2<sup>15</sup>×3<sup>10</sup>×5<sup>3</sup>×7<sup>2</sup>×13×19×31 |
|||
| align="right" | 90.745.943.887.872.000 |
|||
| bgcolor="#FFFF33" | F<sub>3</sub>/Th |
|||
|----- |
|||
| bgcolor="#FFFF33" | F<sub>5</sub>/HN |
|||
| Harada,Norton,Smith || 2.73e14 |
|||
| 2<sup>14</sup>×3<sup>6</sup>×5<sup>6</sup>×7×11×19 |
|||
| align="right" | 273.030.912.000.000 |
|||
| bgcolor="#FFFF33" | F<sub>5</sub>/HN |
|||
|----- |
|||
| bgcolor="#FFFF33" | F<sub>1</sub>/M || Fischer,Griess |
|||
| 8.08e53 |
|||
| 2<sup>46</sup>×3<sup>20</sup>×5<sup>9</sup>×7<sup>6</sup>×11<sup>2</sup>×13<sup>3</sup>×17×19×23×29×31×41×47×59×71 |
|||
| align="right" | 808.017.424.794.512.875.886.459.904.961.710.757.005.754.368.000.000.000 |
| align="right" | 808.017.424.794.512.875.886.459.904.961.710.757.005.754.368.000.000.000 |
||
| 2<sup>46</sup>·3<sup>20</sup>·5<sup>9</sup>·7<sup>6</sup>·11<sup>2</sup>·13<sup>3</sup>·17·19·23·29·31·41·47·59·71 |
|||
|} |
|||
== Literatur == |
|||
| bgcolor="#FFFF33" | F<sub>1</sub>/M |
|||
* {{Anker|Griess}}{{Literatur|Autor=[[Robert Griess (Mathematiker)|Robert Griess]]|Titel=The Friendly Giant|Seiten=1-102|Sammelwerk=Inventiones Mathematicae|Band=69|Jahr=1982|DOI=10.1007/BF01389186|Online=[http://www.digizeitschriften.de/dms/img/?PPN=PPN356556735_0069&DMDID=dmdlog7 Online bei digizeitschriften.de]}} |
|||
|----- |
|||
* {{Literatur|Autor=Robert Griess|Titel=Twelve Sporadic Groups|Verlag=Springer|Jahr=2002|ISBN=9-783-54062-778-4|DOI=10.1007/978-3-662-03516-0}} |
|||
| bgcolor="#FFFF33" | J<sub>4</sub> || Janko |
|||
* {{Anker|Hiss}}{{Literatur|Autor=Gerhard Hiss|Titel=Die sporadischen Gruppen|Seiten=169–194|Sammelwerk=Jahresbericht der Deutschen Mathematiker-Vereinigung|Band=105|Nummer=4|Jahr=2003|Online=[https://www.mathematik.de/images/DMV/Jahresberichte/Jahresberichte_Archiv/Jahresbericht_04-2003.pdf Online im DMV Jahresberichte-Archiv].}} |
|||
| 8.68e19 |
|||
* {{Literatur|Autor=[[John McKay (Mathematiker)|John McKay]]|Titel=Finite Groups – Coming of Age|Verlag=American Mathematical Society|Jahr=1985|ISBN=9-780-82185-047-3}} |
|||
*[[Michael Aschbacher]]: ''Sporadic Groups'', Cambridge University Press 1994 |
|||
| 2<sup>21</sup>×3<sup>3</sup>×5×7×11<sup>3</sup>×23×29×31×37×43 |
|||
| align="right" | 86.775.571.046.077.562.880 |
|||
| bgcolor="#FFFF33" | J<sub>4</sub> |
|||
|} |
|||
== Einzelnachweise == |
|||
Die Gruppe F<sub>1</sub> trägt als größte sporadische Gruppe auch die Namen ''Monster Group'' und ''friendly giant''.<br> |
|||
<references /> |
|||
Die Gruppe F<sub>2</sub> wird auch als ''Baby Monster'' bezeichnet. |
|||
== Weblinks == |
|||
*{{Anker|Wilson}} [http://brauer.maths.qmul.ac.uk/Atlas/v3/spor/ Robert Wilson’s Atlas of Finite Group Representations: Sporadic groups] (englisch) |
|||
*{{Anker|Atlas}} [http://for.mat.bham.ac.uk/atlas/v2.0/spor/ Die sporadischen Gruppen] (Erzeuger, Untergruppen, Konjugiertenklassen...) im [http://for.mat.bham.ac.uk/atlas/v2.0/ Atlas of Finite Group Representations] (englisch) |
|||
[[Kategorie:Endliche einfache Gruppe]] |
|||
[[en:Sporadic group]] |
Aktuelle Version vom 26. Mai 2024, 17:19 Uhr
Die sporadischen Gruppen sind 26 spezielle Gruppen in der Gruppentheorie. Es handelt sich um die endlichen einfachen Gruppen, die sich nicht in eine der (18) systematischen Familien mit unendlich vielen Mitgliedern (von endlichen einfachen Gruppen) einordnen lassen.
Entdeckungsgeschichte
[Bearbeiten | Quelltext bearbeiten]Die ersten fünf entdeckten sporadischen Gruppen, die sogenannten Mathieugruppen, wurden von Émile Mathieu in den 1860er-Jahren entdeckt. Die Entdeckungsgeschichte aller anderen sporadischen Gruppen setzte erst 1964 ein.
Die früheste Erwähnung des Begriffes „sporadische Gruppe“ dürfte von Burnside 1911, bezugnehmend auf die damals bereits bekannten Mathieugruppen, stammen: These apparently sporadic simple groups would probably repay a closer examination than they have yet received.
Einteilung
[Bearbeiten | Quelltext bearbeiten]
Eine aufsteigende Linie bedeutet, dass die untere Gruppe Subquotient der oberen ist.
Die Generationen von Robert Griess haben verschiedene Farben: rot




Im nebenstehenden Hasse-Diagramm bedeutet eine Linie von A unten nach B oben, dass A Subquotient von B ist.[1] Da die Relation transitiv ist, sind implizierte Verbindungen nicht im Diagramm eingetragen. Und gibt es im Diagramm eine von A zu B aufsteigende Linie, dann gibt es keine andere sporadische Gruppe zwischen A und B.[2]
20 der 26 sporadischen Gruppen sind Subquotienten der Monstergruppe M, von Robert Griess Friendly Giant[3] (deutsch: freundlicher Riese) genannt. Diese 20 Gruppen werden nach Griess unter dem Namen Happy Family (deutsch: Glückliche Familie) zusammengefasst.[4] Die Happy Family gliedert sich in drei Generationen, wobei die erste Generation (rot) mit dem erweiterten binären Golay-Code und die zweite (grün) mit dem Leech-Gitter bzw. Automorphismengruppen davon in Zusammenhang steht. Zur ersten Generation gehören die fünf Mathieugruppen M11, M12, M22, M23, M24, zur zweiten Generation die Conwaygruppen Co1, Co2, Co3 und die Gruppen J2, HS, McL, Suz. Die dritte Generation (blau) ist nahe verwandt mit M und enthält die übrigen Gruppen He, Fi22, Fi23, Fi24, HN, Th, B und M der Happy Family.
Die sechs sporadischen Gruppen, die nicht Subquotienten von M sind, sind die Jankogruppen J1, J3 und J4, die Rudvalisgruppe Ru, die Lyonsgruppe Ly und die O’Nan-Gruppe ON. Sie werden bei Griess Parias (engl. pariah) genannt (in der untenstehenden Tabelle als Generation P).
Teilweise wird auch die nach dem belgisch-französischen Mathematiker Jacques Tits benannte Tits-Gruppe T = 2F4(2)′ der Ordnung 17.971.200 als eine sporadische Gruppe angesehen, weil sie nicht eine Gruppe vom Lie-Typ sei. Allerdings ist das Definiens für »nicht-sporadisch« bei endlichen einfachen Gruppen die »Zugehörigkeit zu einer unendlichen systematischen Familie« — was nicht unmittelbar mit der Eigenschaft »vom Lie-Typ« etwas zu tun hat, denn es gibt andere unendliche Familien endlicher einfacher Gruppen, z. B. die Gruppen von Primzahlordnung oder die alternierenden Gruppen, die auch nicht vom Lie-Typ sind. Mit ihrer Zugehörigkeit zur unendlichen Familie der abgeleiteten Ree-Gruppen 2F4(22n+1)′, deren Mitglieder 2F4(22n+1) für mit ihren Ableitungen übereinstimmen, ist sie im strengen Sinn keine sporadische Gruppe.[5] Sie ist Subquotient von Fi22 und Ru und würde demnach, wenn eingeordnet, zur dritten Generation der sporadischen Gruppen gehören.
Tabelle der 26 sporadischen Gruppen
[Bearbeiten | Quelltext bearbeiten]Standardreihenfolge, erste Symbole, Entdeckungsjahr aus Hiss S. 172.
Name | Symbole | Entdecker | Jahr | Generation | Ordnung (zirka) | Ordnung (als Dezimalzahl Folge A001228 in OEIS) |
Ordnung (in Primfaktorzerlegung) |
---|---|---|---|---|---|---|---|
Mathieugruppe … | M11 | Mathieu | 1861 | 1 | 8e3 | 7.920 | 24·32·5·11 |
M12 | Mathieu | 1861 | 1 | 1e5 | 95.040 | 26·33·5·11 | |
M22 | Mathieu | 1861 | 1 | 4e5 | 443.520 | 27·32·5·7·11 | |
M23 | Mathieu | 1861 | 1 | 1e7 | 10.200.960 | 27·32·5·7·11·23 | |
M24 | Mathieu | 1861 | 1 | 2e8 | 244.823.040 | 210·33·5·7·11·23 | |
Jankogruppe … | J1 | Janko | 1965 | P | 2e5 | 175.560 | 23·3·5·7·11·19 |
J2, HJ | Janko | 1968 | 2 | 6e5 | 604.800 | 27·33·52·7 | |
J3 | Janko | 1968 | P | 5e7 | 50.232.960 | 27·35·5·17·19 | |
J4 | Janko | 1976 | P | 9e19 | 86.775.571.046.077.562.880 | 221·33·5·7·113·23·29·31·37·43 | |
Higman-Sims-Gruppe | HS | Higman, Sims | 1967 | 2 | 4e7 | 44.352.000 | 29·32·53·7·11 |
McLaughlin-Gruppe | McL, Mc | McLaughlin | 1969 | 2 | 9e8 | 898.128.000 | 27·36·53·7·11 |
Suzukigruppe | Suz | Suzuki | 1969 | 2 | 4e11 | 448.345.497.600 | 213·37·52·7·11·13 |
Rudvalisgruppe | Ru | Rudvalis | 1972 | P | 1e11 | 145.926.144.000 | 214·33·53·7·13·29 |
Heldgruppe | He | Held | 1969 | 3 | 4e9 | 4.030.387.200 | 210·33·52·73·17 |
Lyonsgruppe | Ly | Lyons | 1972 | P | 5e16 | 51.765.179.004.000.000 | 28·37·56·7·11·31·37·67 |
O’Nan-Gruppe | ON, O’N | O’Nan | 1976 | P | 4e11 | 460.815.505.920 | 29·34·5·73·11·19·31 |
Conwaygruppe … | Co1, C1 | Conway | 1969 | 2 | 4e18 | 4.157.776.806.543.360.000 | 221·39·54·72·11·13·23 |
Co2, C2 | Conway | 1969 | 2 | 4e13 | 42.305.421.312.000 | 218·36·53·7·11·23 | |
Co3, C3 | Conway | 1969 | 2 | 5e11 | 495.766.656.000 | 210·37·53·7·11·23 | |
Fischer-Gruppe … | Fi22 | Fischer | 1971 | 3 | 6e13 | 64.561.751.654.400 | 217·39·52·7·11·13 |
Fi23 | Fischer | 1971 | 3 | 4e18 | 4.089.470.473.293.004.800 | 218·313·52·7·11·13·17·23 | |
Fi24, F24′ | Fischer | 1971 | 3 | 1e24 | 1.255.205.709.190.661.721.292.800 | 221·316·52·73·11·13·17·23·29 | |
Harada-Norton-Gruppe | HN, F5 | Harada, Norton, Smith | 1976 | 3 | 3e14 | 273.030.912.000.000 | 214·36·56·7·11·19 |
Thompsongruppe | Th, F3 | Thompson | 1976 | 3 | 9e16 | 90.745.943.887.872.000 | 215·310·53·72·13·19·31 |
Baby-Monstergruppe | B, F2 | Fischer | 1973 | 3 | 4e33 | 4.154.781.481.226.426.191.177.580.544.000.000 | 241·313·56·72·11·13·17·19·23·31·47 |
Monstergruppe | M, F1 | Fischer, Griess | 1973 | 3 | 8e53 | 808.017.424.794.512.875.886.459.904.961.710.757.005.754.368.000.000.000 | 246·320·59·76·112·133·17·19·23·29·31·41·47·59·71 |
Literatur
[Bearbeiten | Quelltext bearbeiten]- Robert Griess: The Friendly Giant. In: Inventiones Mathematicae. Band 69, 1982, S. 1–102, doi:10.1007/BF01389186 (Online bei digizeitschriften.de).
- Robert Griess: Twelve Sporadic Groups. Springer, 2002, ISBN 978-3-540-62778-4, doi:10.1007/978-3-662-03516-0.
- Gerhard Hiss: Die sporadischen Gruppen. In: Jahresbericht der Deutschen Mathematiker-Vereinigung. Band 105, Nr. 4, 2003, S. 169–194 (Online im DMV Jahresberichte-Archiv. [PDF]).
- John McKay: Finite Groups – Coming of Age. American Mathematical Society, 1985, ISBN 978-0-8218-5047-3.
- Michael Aschbacher: Sporadic Groups, Cambridge University Press 1994
Einzelnachweise
[Bearbeiten | Quelltext bearbeiten]- ↑ zusammengestellt hauptsächlich aus Griess S. 94
- ↑ Es gibt jedoch sehr viele andere (nicht-sporadische) einfache Subquotienten einer sporadischen Gruppe, am unteren Ende auf jeden Fall die Gruppen von Primzahlordnung, aber auch alternierende Gruppen einer Ordnung ≥ 5 und einfache Gruppen vom Lie-Typ wie die Steinberg-Gruppe 2E6(22) (Beispiele in Wilsons Atlas).
Umgekehrt ist nach dem Satz von Cayley jede endliche Gruppe Untergruppe einer symmetrischen Gruppe genügend hohen Grades die ihrerseits unter Anhängen der Transposition an alle ungeraden Permutationen in die alternierende Gruppe eingebettet werden kann. Damit ist jede sporadische Gruppe auch Subquotient einer (einfachen) alternierenden Gruppe. - ↑ F1 in Griess
- ↑ s. Griess
- ↑ Bei Hiss und Eric W. Weisstein „Sporadic Group“ From MathWorld--A Wolfram Web Resource wird die Tits-Gruppe nicht unter den 26 aufgeführt.
Weblinks
[Bearbeiten | Quelltext bearbeiten]- Robert Wilson’s Atlas of Finite Group Representations: Sporadic groups (englisch)
- Die sporadischen Gruppen (Erzeuger, Untergruppen, Konjugiertenklassen...) im Atlas of Finite Group Representations (englisch)