„Stickstoffmonoxid“ – Versionsunterschied
[ungesichtete Version] | [gesichtete Version] |
Zwobot (Diskussion | Beiträge) K Head - Bot: Automatisierte Textersetzung |
|||
(450 dazwischenliegende Versionen von mehr als 100 Benutzern, die nicht angezeigt werden) | |||
Zeile 1: | Zeile 1: | ||
{{Infobox Chemikalie |
|||
{| width=40% border="1" cellpadding="2" cellspacing="0" align="right" style="margin-left:0.5em;" |
|||
| Strukturformel = [[Datei:Stickstoffmonoxid.svg|100px|alt=|Strukturformel von Stickstoffmonoxid]] |
|||
| colspan=2 align="center" | |
|||
| Suchfunktion = NO |
|||
|----- |
|||
| Andere Namen = |
|||
* Stickstoffoxid |
|||
* Stickoxid |
|||
| Summenformel = NO |
|||
| CAS = {{CASRN|10102-43-9}} |
|||
| EG-Nummer = 233-271-0 |
|||
| ECHA-ID = 100.030.233 |
|||
| PubChem = 145068 |
|||
| ChemSpider = |
|||
| DrugBank = DB00435 |
|||
| ATC-Code = {{ATC|R07|AX01}} |
|||
| Beschreibung = farb- und geruchloses Gas<ref name="al">Sicherheitsdatenblatt [http://gasekatalog.airliquide.de/sdb/088-DE-DE-Stickstoffmonoxid.pdf ''Stickstoffmonoxid''] (PDF; 192 kB) AirLiquide.</ref><ref name="GESTIS" /> |
|||
| Molare Masse = 30,01 g·[[mol]]<sup>−1</sup> |
|||
| Aggregat = gasförmig |
|||
| Dichte = 1,25 kg·m<sup>−3</sup> (15 °C, 1 bar)<ref name="praxair">Sicherheitsdatenblatt [http://www.praxair.com/eu/de/deu.nsf/AllContent/95A4B9BD59C1C49C85257495006BA897/$File/SDB_Stickstoffmonoxid_20101129.pdf ''Stickstoffmonoxid''] (PDF; 201 kB) Praxair.</ref> |
|||
| Schmelzpunkt = −164 [[Grad Celsius|°C]]<ref name="praxair" /> |
|||
| Siedepunkt = −152 °C<ref name="praxair" /> |
|||
| Dampfdruck = |
|||
| Löslichkeit = 60 mg·l<sup>−1</sup> in Wasser (20 °C)<ref name="praxair" /> |
|||
| Dipolmoment = 0,15872 [[Debye|D]]<ref name="CRC90_9_51">{{CRC Handbook|Auflage=90|Titel=Dipole Moments|Kapitel=9|Startseite=51}}</ref> (5,29 · 10<sup>−31</sup> [[Coulomb|C]] · [[Meter|m]]) |
|||
| Brechungsindex = 1,000297 (0 °C, 101,325 kPa)<ref name="CRC90_10_254">{{CRC Handbook|Auflage=90|Titel=Index of Refraction of Gases|Kapitel=10|Startseite=254}}</ref> |
|||
| Quelle GHS-Kz = <ref name="GESTIS">{{GESTIS|Name=Stickstoffmonoxid|ZVG=1080|CAS=10102-43-9|Abruf=2021-01-08}}</ref> |
|||
| GHS-Piktogramme = {{GHS-Piktogramme|03|04|05|06}} |
|||
| GHS-Signalwort = Gefahr |
|||
| H = {{H-Sätze|270|280|330|314}} |
|||
| EUH = {{EUH-Sätze|071}} |
|||
| P = {{P-Sätze|220|244|260|280|303+361+353+315|304+340+315|305+351+338+315|370+376|403|405}} |
|||
| Quelle P = <ref name="GESTIS" /> |
|||
| MAK = |
|||
* [[Deutsche Forschungsgemeinschaft|DFG]]: 0,5 ml·m<sup>−3</sup> bzw. 0,63 mg·m<sup>−3</sup><ref name="GESTIS" /> |
|||
* Schweiz: 5 ml·m<sup>−3</sup> bzw. 6 mg·m<sup>−3</sup><ref>{{SUVA-MAK |Name=Stickstoffmonoxid |CAS-Nummer=10102-43-9 |Abruf=2021-02-16}}</ref> |
|||
| ToxDaten = |
|||
* {{ToxDaten |Typ=LCLo |Organismus=Hund |Applikationsart=inhalativ |Wert=5000 ppm·25 min<sup>−1</sup> |Bezeichnung= |Quelle=<ref>''British Journal of Anesthesia.'' Vol. 39, 1967, S. 393.</ref> }} |
|||
* {{ToxDaten |Typ=LCLo |Organismus=Maus |Applikationsart=inhalativ |Wert=320 [[Parts per million|ppm]] |Bezeichnung= |Quelle=<ref>''Naunyn-Schmiedeberg’s Archiv für Experimentelle Pathologie und Pharmakologie.'' Vol. 181, 1936, S. 145.</ref> }} |
|||
* {{ToxDaten |Typ=LC50 |Organismus=Ratte |Applikationsart=inhalativ |Wert=1068 mg·m<sup>−3</sup>·4 h<sup>−1</sup> |Bezeichnung= |Quelle=<ref>''Gigiena Truda i Professional'nye Zabolevaniya. Labor Hygiene and Occupational Diseases.'' Vol. 19(4), 1975, S. 52.</ref> }} |
|||
| Standardbildungsenthalpie = 91,3 kJ/mol<ref name="CRC90_5_16">{{CRC Handbook|Auflage=90|Titel=Standard Thermodynamic Properties of Chemical Substances|Kapitel=5|Startseite=16}}</ref> |
|||
}} |
|||
'''Stickstoffmonoxid''', kurz '''NO''', ist ein farb- und geruchloses, an Luft instabiles Gas mit der Formel N=O. Es ist eine [[chemische Verbindung]] aus den Elementen [[Stickstoff]] und [[Sauerstoff]] und gehört zur Gruppe der [[Stickoxide]]. NO ist ein [[Radikale (Chemie)|Radikal]]. |
|||
!colspan="2" bgcolor="#FFDEAD" | '''Allgemeines''' |
|||
|----- |
|||
| Name ||Stickstoffoxid |
|||
|----- |
|||
| [[Summenformel]]||NO |
|||
|----- |
|||
| Andere Namen|| Stickstoffmonoxid, Stickoxid |
|||
|----- |
|||
| Kurzbeschreibung|| farbloses Gas |
|||
|----- |
|||
|[[CAS-Nummer]]|| 10102-43-9 |
|||
|----- |
|||
!colspan="2" align="center" bgcolor="#FFDEAD" | '''Sicherheitshinweise''' |
|||
|----- |
|||
!colspan="2" | |
|||
|----- |
|||
|[[R- und S-Sätze]]||R 8, R 26, R 34, S 9, S 17, S 26, S 28, S 36/37/39, S 45 |
|||
|----- |
|||
|Handhabung|| |
|||
|----- |
|||
|Lagerung|| |
|||
|----- |
|||
|[[MAK]]|| |
|||
|----- |
|||
|[[Letale Dosis|LD]]<sub>50</sub> (Ratte, oral)|| |
|||
|----- |
|||
|[[Letale Dosis|LD]]<sub>50</sub> (Kaninchen)|| |
|||
|----- |
|||
== Eigenschaften == |
|||
Das Stickstoffmonoxid hat eine [[molare Masse]] von 30,01 g/mol, der Schmelzpunkt liegt bei −163,6 °C, der Siedepunkt bei −151,8 °C. Die kritische Temperatur für NO beträgt −93 °C und der kritische Druck liegt bei 6,4 MPa. |
|||
|----- |
|||
In Wasser ist Stickstoffoxid wenig löslich. Die Bindungslänge der N=O Bindung beträgt 117 pm. Unter Einwirkung von [[Sauerstoff]] und anderen [[Oxidationsmittel]]n wird NO sehr schnell zu braunem [[Stickstoffdioxid]] oxidiert, das in Wasser zu [[Salpetersäure]] und [[Salpetrige Säure|Salpetriger Säure]] [[Disproportionierung|disproportioniert]]. Außer mit [[Iod]] reagiert es mit [[Halogen]]en zu [[Nitrosyl]]halogeniden, wie z. B. [[Nitrosylchlorid]]. Unter Einwirkung von [[Schwefeldioxid]] wird Stickstoffoxid zu [[Distickstoffoxid]] reduziert. |
|||
|[[Aggregatzustand]]||gasförmig |
|||
|----- |
|||
|[[Farbe]]||farblos |
|||
|----- |
|||
|[[Dichte]]|| g/m³ |
|||
|----- |
|||
|[[Molmasse]]||30,01 g/[[mol]] |
|||
|----- |
|||
|[[Schmelzpunkt]]|| -163,6 [[Celsius|°C]]'' |
|||
|----- |
|||
|[[Siedepunkt]]|| -151,8 [[Celsius|°C]] |
|||
|----- |
|||
|[[Dampfdruck]]|| |
|||
|----- |
|||
Durch die schnelle Umwandlung in [[Stickstoffdioxid]] an der Luft wirkt Stickstoffmonoxid [[schleimhaut]]reizend, und durch die Bildung von [[Methämoglobin]] wirkt Stickstoffmonoxid toxisch. Die Ausbildung der [[Methämoglobinämie]] beruht auf einer Reaktion von HbO<sub>2</sub> mit NO selbst, wobei Nitrat und Methämoglobin entstehen, sowie auf der Reaktion mit aus NO entstandenem Nitrit.<ref>Patrick Horn: {{Webarchiv |url=http://darwin.bth.rwth-aachen.de/opus3/volltexte/2008/2448/pdf/Horn_Patrick.pdf |text=''Aktivität und Bedeutung der erythrozytären NOS bei kardiovaskulären Risikofaktoren''. |format=PDF; 1,1 MB |wayback=20151205011341}}</ref> |
|||
! colspan="2" align="center" bgcolor="#FFDEAD"|'''Weitere Eigenschaften''' |
|||
: <math>\mathrm{Hb(Fe^{3+}){-}O{-}O^- + NO_2^- + H_2O \longrightarrow }</math><math>\mathrm{Hb(Fe^{3+})OH + NO_3^- + OH^-}</math> <ref>Martin Ledig, Georg Wittke: ''Nitrat in Lebensmitteln.'' In: ''Naturwissenschaften im Unterricht. Chemie.'', 5 (42) 23, 1994, S. 7–12.</ref> |
|||
|----- |
|||
|[[Löslichkeit]]|| |
|||
|----- |
|||
|Gut löslich in|| |
|||
|----- |
|||
|Schlecht löslich in|| Wasser |
|||
|----- |
|||
|Unlöslich in|| |
|||
|----- |
|||
== Herstellung == |
|||
!colspan="2" align="center"bgcolor="#FFDEAD"|'''Analytik''' |
|||
Labortechnisch kann NO durch Reduktion von etwa 65-prozentiger [[Salpetersäure]] mit [[Kupfer]] gewonnen werden. Das Produkt ist aber relativ unrein. Reines Stickstoffmonoxid ist zugänglich<ref>G. Brauer (Hrsg.): ''Handbook of Preparative Inorganic Chemistry.'' 2. Auflage. vol. 1, Academic Press 1963, S. 485–487.</ref> |
|||
|----- |
|||
* aus einer Lösung von [[Kaliumnitrit]] und [[Kaliumiodid]] in Wasser, in die [[Schwefelsäure]] getropft wird:<br /> <math>\mathrm{2\ KNO_2 + 2\ KI + 2\ H_2SO_4 \longrightarrow }</math><math>\mathrm{2\ {}^\bullet\mathrm{NO} + I_2 + 2\ K_2SO_4 + 2\ H_2O}</math><br /> Statt Kaliumiodid kann auch [[Kaliumhexacyanoferrat(II)]] verwendet werden:<br /> <math>\mathrm{KNO_2 + K_4[Fe(CN)_6] + H_2SO_4 \longrightarrow }</math><math>\mathrm{ {}^\bullet\mathrm{NO} + K_3[Fe(CN)_6] + K_2SO_4 + H_2O}</math> |
|||
||Klassische Verfahren|| |
|||
* aus [[Nitrosylhydrogensulfat]] und [[Quecksilber]] |
|||
|----- |
|||
* aus [[Natriumnitrit]] und Schwefelsäure:<br /> <math>\mathrm{6\ NaNO_2 + 3\ H_2SO_4 \longrightarrow }</math><math>\mathrm{4\ {}^\bullet\mathrm{NO} + 2\ H_2O + 3\ Na_2SO_4 + 2\ HNO_3}</math> |
|||
* aus [[Eisen(II)-sulfat]] und einer Mischung von [[Natriumbromid]] und Natriumnitrit. Das Endprodukt dieser einfachen Reaktion enthält 98,8 % NO und 1,2 % N<sub>2</sub>. |
|||
Industriell wird das Gas durch die katalytische Ammoniakverbrennung ([[Ostwald-Verfahren]]) gewonnen. Früher wurde das Gas großtechnisch auch durch sogenannte ''Luftverbrennung'' von Stickstoff und Sauerstoff in einem elektrischen [[Lichtbogen]] gewonnen. Die verwendeten Verfahren ([[Birkeland-Eyde-Verfahren]], [[Schönherr-Verfahren]], [[Pauling-Verfahren]]) zielten auf einen möglichst kurzen Kontakt der Gase mit dem sehr heißen Flammbogen ab, um so das [[Gleichgewichtsreaktion|Reaktionsgleichgewicht]] zum Stickstoffmonoxid zu verschieben. Da hierbei sehr viel [[elektrische Energie]] benötigt wird, sind die Verfahren nicht konkurrenzfähig zum Ostwaldverfahren und werden nicht mehr eingesetzt. |
|||
!colspan="2" align="center" bgcolor="#FFDEAD"|<font size="-1"> |
|||
[[SI-Einheitensystem|SI-Einheiten]] wurden, wo möglich, verwendet. Wenn nicht anders vermerkt, wurden [[Normbedingungen]] benutzt.</font> |
|||
|} |
|||
== Verwendung == |
|||
'''Stickstoffoxid''', NO. |
|||
=== Technisch === |
|||
Stickstoffoxid tritt als Zwischenprodukt bei der technischen Herstellung von Salpetersäure auf und wird zusammen mit Stickstoffdioxid zur Herstellung von Nitriten verwendet. Reinstes Stickstoffmonoxid wird als [[Prüfgas]] zur Kalibrierung von Messgeräten eingesetzt. |
|||
== |
=== Medizinisch === |
||
Stickstoffmonoxid hat eine erweiternde Wirkung auf die [[Blutgefäß]]e und wird in der Lunge sowie unter anderem bei [[Sepsis]] durch ein körpereigenes Enzym, die [[Endotheliale Stickstoffmonoxid-Synthase|endotheliale Stickstoffmonoxid-Synthase (eNOS)]], aus der Aminosäure <small>L</small>-[[Arginin]] abgespalten. |
|||
Das Stickstoffoxid hat eine rel. Molmasse von 46,01, der Schmelzpunkt liegt bei -163,6°C, der Siedepunkt bei -151,8°C. Die kritische Temperatur für NO beträgt -93°C und der kritische Druck liegt bei 6,4 MPa. |
|||
In Wasser ist Stickstoffoxid wenig löslich. Unter Einwirkung von Sauerstoff wird NO sofort in braunes [[Stickstoffdioxid]] überführt. Außer mit Jod reagiert es mit [[Halogen]]en zu [[Nitrosylhalgenid]]en. Starke Oxidationsmittel oxidieren NO zu [[Salpetersäure]]. Unter Einwirkung von [[Schwefeldioxid]] wird Stickstoffoxid zu [[Distickstoffoxid]] reduziert. |
|||
Originalarbeiten und Meta-Analysen sowie systematische Übersichtsarbeiten belegen die protektiven Wirkungen von NO und seiner Vorstufe <small>L</small>-Arginin bei Gesunden ebenso wie bei Patienten mit kardiovaskulären Erkrankungen wie [[Arteriosklerose]], [[Bluthochdruck]] und Durchblutungsstörungen und empfehlen eine Sicherstellung der NO-Bildung durch eine gezielte Zufuhr ausreichender Mengen an <small>L</small>-Arginin.<ref name="Dongetal2011">J. Y. Dong, L. Q. Qin, Z. Zhang, Y. Zhao, J. Wang, F. Arigoni, W. Zhang: ''Effect of oral L-arginine supplementation on blood pressure: A meta-analysis of randomized, double-blind, placebo-controlled trials.'' In: ''Am Heart.'' Band 162, 2011, S. 959–965.</ref><ref name="Pizzarelli2013">F. Pizzarelli, R. Maas, P. Dattolo, G. Tripepi, S. Michelassi, G. D’Arrigo, M. Mieth, S. Bandinelli, L. Ferrucci, C. Zoccali: ''Asymmetric dimethylarginine predicts survival in the elderly.'' In: ''Age.'' Band 35, Nr. 6, 2013, S. 2465–2475.</ref><ref name="BodeBöger2003">S. M. Bode-Böger, J. Muke, A. Surdacki, G. Brabant, R. H. Böger, J. C. Frölich: ''Oral L-arginine improves endothelial function in healthy individuals older than 70 years.'' In: ''Vasc. Med.'' Band 8, 2003, S. 77–81.</ref><ref name="Jung2008">K. Jung, O. Petrowicz: ''L-Arginin und Folsäure bei Arteriosklerose. Ergebnisse einer prospektiven, multizentrischen Verzehrsstudie.'' In: ''Perfusion.'' Band 21, 2008, S. 148–156.</ref><ref name="Lucotti2009">P. Lucotti, L. Monti, E. Setola, G. La Canna, A. Castiglioni, A. Rossodivita, M. G. Pala, F. Formica, G. Paolini, A. L. Catapano, E. Bosi, O. Alfieri, P. Piatti: ''Oral L-arginine supplementation improves endothelial function and ameliorates insulin sensitivity and inflammation in cardiopathic nondiabetic patients after an aortocoronary bypass.'' In: ''Metabolism.'' Band 58, Nr. 9, 2009, S. 1270–1276.</ref><ref name="Baietal2009">Y. Bai, L. Sun, T. Yang, K. Sun, R. Chen J. Hui: ''Increase in fasting vascular endothelial function after short-term oral L-arginine is effective when baseline flow-mediated dilation is low: a meta-analysis of randomized controlled trials.'' In: ''Am. J. Clin. Nutr.'' Band 89, Nr. 1, 2009, S. 77–84.</ref><ref name="Drover2011">J. W. Drover, R. Dhaliwal, L. Weitzel, P. E. Wischmeyer, J. B. Ochoa, D. K. Heyland: ''Perioperative use of arginine-supplemented diets: a systematic review of the evidence.'' In: ''J. Am. Coll. Surg.'' Band 212, Nr. 3, 2011, S. 385–399.</ref> |
|||
== Herstellung == |
|||
Labortechnisch kann NO durch Reduktion von verdünnter Salpetersäure mit Kupfer gewonnen werden. Industriell wird das Gas durch die katalytische Ammoniakverbrennung ([[Ostwaldverfahren]]) gewonnen. |
|||
Das Gasgemisch ''INOmax'' des Herstellers [[Linde AG]] wurde 1999 durch die [[Food and Drug Administration]] (FDA) in den USA<ref>[http://www.accessdata.fda.gov/drugsatfda_docs/nda/99/20845_INOmax_Approv.pdf FDA Approval Letter.] (PDF; 100 kB) [[Food and Drug Administration|FDA]] (englisch)</ref> und 2001 durch die [[Europäische Kommission]] in der EU<ref name="epar">{{Webarchiv |url=http://www.emea.europa.eu/humandocs/Humans/EPAR/inomax/inomax.htm |text=Europäischer öffentlicher Beurteilungsbericht (EPAR) und Produktinformation zu INOmax |wayback=20090307021042}} auf der Website der [[Europäische Arzneimittelagentur|Europäischen Arzneimittelagentur]]</ref> für die Behandlung von Neugeborenen bei Lungenversagen mit hohem Blutdruck in der Lunge zugelassen ([[Hypoxie (Medizin)|hypoxisch]] [[respiratorische Insuffizienz]], ''„[[Pulmonale Hypertonie|Lungenhochdruck]]“''). Es ist weltweit das erste [[Medizinische Gase|medizinische Gas]], das als Arzneimittel zugelassen wurde, und enthält 100, 400 oder 800 [[Parts per million|ppm]] (0,01 %, 0,04 % oder 0,08 %) Stickstoffmonoxid als wirksamen Bestandteil, der Rest ist [[Inerte Substanz|inerter]] [[Stickstoff]]. INOmax wird als komprimiertes Gas in Aluminium-Gasflaschen vertrieben. Zur Anwendung wird es der [[Atemluft]] zugesetzt, die empfohlene Dosis liegt bei 20 ppm.<ref name="epar" /><ref>[http://inomax.com/full-pi Fachinformation für USA.] (PDF; 618 kB) inomax.com (englisch).</ref> |
|||
== Verwendung == |
|||
Stickstoffoxid tritt als Zwischenprodukt bei der technischen Herstellung von Salpetersäure auf und wird zusammen mit Stickstoffdioxid zu Herstellung von Nitriten verwendet. Reinstes Stickstoffoxid wird als Prüfgas zur Kalibrierung von Messgeräten eingesetzt. |
|||
Stickstoffmonoxid wirkt sehr schnell, wodurch lebensbedrohliche Komplikationen gut behandelt werden können. In der [[Herzchirurgie]] ([[Herzklappenfehler|Klappenerkrankungen]], [[Herztransplantation]]en) kann NO verwendet werden, um einen erhöhten pulmonalen Druck zu behandeln. Für die Behandlung des [[ARDS]], einer schweren Lungenfunktionsstörung, die nach Lungenverletzungen, -entzündungen und Reizgasverätzungen auftreten kann, ist ein therapeutischer Effekt von NO nicht belegt.<ref>N. K. Adhikari u. a.: ''Effect of nitric oxide on oxygenation and mortality in acute lung injury: systematic review and meta-analysis.'' In: ''British Medical Journal'', 334(7597), 14. April 2007, S. 779. PMID 17383982</ref><ref>H. R. Bream-Rouwenhorst u. a.: ''Recent developments in the management of acute respiratory distress syndrome in adults.'' In: ''[[American Journal of Health-System Pharmacy]]'', 65(1), 1. Januar 2008, S. 29–36. PMID 18159036.</ref> |
|||
== Physiologische Bedeutung == |
== Physiologische Bedeutung == |
||
Stickstoffmonoxid ist ein bioaktives Molekül, das mit anderen Molekülen sowohl [[Redoxreaktion]]en als auch additive Reaktionen eingehen kann. Aufgrund seiner geringen Größe kann es in kurzer Zeit [[biologische Membran]]en durchqueren und lokal verschiedene Funktionen ausüben, von denen ein Teil auch destruktiv für den jeweiligen Organismus ist. Diese reichen von der [[Signaltransduktion]] im Gefäß- und Nervensystem (etwa als Transmitter bei [[Vasomotorik]], [[Hämostase]], Infektabwehr, neuronaler Kommunikation, in höherer Konzentration auch bei [[chronisch]]en [[Entzündung]]sreaktionen, [[Neurodegeneration]] und [[Schock (Medizin)|Schock]]; zudem auch bei der Entstehung und Verarbeitung von [[Schmerz]]signalen, zumindest beim Entzündungsschmerz<ref>Jens Ulrich Stegmann, Uta Muth-Selbach, Holger Holthusen: ''Die Bedeutung von Stickstoffmonoxid (NO) für Nozizeption und spinale Schmerzverarbeitung.'' In: ''Anästhesiologie Intensivmedizin Notfallmedizin Schmerztherapie.'' Jahrgang 36, Nr. 5, Mai 2001, S. 276–281.</ref>) über die Verwendung als protektiver [[Radikalfänger]] bis zur Rolle als [[reaktive Stickstoffspezies]] bei der unspezifischen [[Immunabwehr]]. Auch in Pflanzen werden mehrere Prozesse über NO-Signale gesteuert; lediglich bei [[Archaeen]] ist fraglich, ob Stickstoffmonoxid eine biologische Funktion hat. Auf der destruktiven Seite ist die Schädigung von [[Protein]]en und [[DNA]] zu nennen, die mit chronischem Entzündungsgeschehen in Säugetieren und daraus folgender lokaler NO-Produktion einhergeht.<ref name="DOI10.1046/j.1365-3040.2001.00672.x">M. V. Beligni, L. Lamattina: ''Nitric oxide in plants: the history is just beginning.'' In: ''Plant, Cell and Environment.'' 24, 2001, S. 267–278, [[doi:10.1046/j.1365-3040.2001.00672.x]].</ref> |
|||
Erst [[1987]] wurde festgestellt, das NO auch im menschlichen Körper hergestellt wird. Es sind verschiedene Wirkungen bekannt. |
|||
Weitere [[Gasotransmitter]] sind das [[Kohlenstoffmonoxid]] und der [[Schwefelwasserstoff]].<ref>Anton Hermann, Guzel F. Sitdikova, Thomas M. Weiger: {{Webarchiv|url=https://www.uni-salzburg.ac.at/fileadmin/oracle_file_imports/1539258.PDF |wayback=20200322205109 |text=''Gasotransmitter: flüchtige Überträgerstoffe. Stickoxid, Kohlenmonoxid und Schwefelwasserstoff fungieren als Botenstoffe und sind physiologisch wirksam.'' }} (PDF) In: ''Ärzte Woche.'' Springer, New York 21. Oktober 2010 (PDF; 1,6 MB).</ref><ref>Anton Hermann, Guzel F. Sitdikova, Thomas M. Weiger: {{Webarchiv |url=http://www2.sbg.ac.at/pr/fotos/Gasotransmitter.pdf |text=''Gase als zelluläre Signalstoffe. Gasotransmitter''. |format=PDF |wayback=20131203025900}} In: ''Biologie in unserer Zeit'', 40, 2010, S. 185–193; [[doi:10.1002/biuz.201010422]].</ref> |
|||
Das [[Asymmetrisches Dimethylarginin|asymmetrische Dimethylarginin]] (ADMA) ist ein endogener Inhibitor der NO-Synthese aus [[L-Arginin|<small>L</small>-Arginin]] und führt zu einer Entkopplung der eNOS-Aktivität unter Bildung von [[Hyperoxide|Superoxidanionradikalen]], die dann mit NO zu [[Peroxinitrit]] reagieren.<ref name="Poeggeler2012">B. Poeggeler: ''Oxidative Stress und <small>L</small>-Arginin schützt vor nitrosativem Stress. Stickstoffmonoxid als endogener Regulator des nitrosativen Stoffwechsels.'' In: ''Perfusion'', Band 25 (2), 2012, S. 40–43.</ref><ref name="Schulz2011">E. Schulz, T. Gori, T. Münzel: ''Oxidative stress and endothelial dysfunction in hypertension.'' In: ''Hypertens Res.'' Band 34 (6), 2011, S. 665–673, [[doi:10.1038/hr.2011.39]]. PMID 21512515.</ref><ref name="Seljeflot2011">I. Seljeflot, B. B. Nilsson, A. S. Westhelm, V. Bratseth, H. Arnesen: ''The <small>L</small>-arginine-asymmetric dimethylarginine ratio is strongly related to the severity of chronic heart failure. No effects of exercise training.'' In: ''J Card Fail.'', Band 17 (2), 2011, S. 135–142; [[doi:10.1016/j.cardfail.2010.09.003]]. PMID 21300303</ref> Das Verhältnis von <small>L</small>-Arginin und ADMA beeinflusst die Bildung von Stickstoffmonoxid.<ref name="Poeggeler2012" /> Die NO-Bildung sollte klar überwiegen.<ref name="Schulz2011" /> Die Entkopplung von eNOS durch verstärkt gebildetes ADMA (verringerter <small>L</small>-Arginin/ADMA-Quotient) führt zu nitrosativem Stress,<ref name="Seljeflot2011" /> und ist ein Indikator für eine Herz-Kreislauf-Erkrankung. Die Synthese von NO sollte daher durch eine ausreichende Zufuhr von <small>L</small>-Arginin sichergestellt sein.<ref name="Dongetal2011" /><ref name="Pizzarelli2013" /><ref name="BodeBöger2003" /><ref name="Jung2008" /><ref name="Lucotti2009" /><ref name="Baietal2009" /><ref name="Drover2011" /><ref name="Poeggeler2012" /><ref name="Schulz2011" /><ref name="Seljeflot2011" /> Stickstoffmonoxid reagiert im Blut innerhalb von Sekunden mit Oxyhämoglobin zu NO<sub>3</sub><sup>−</sup>; Stickstoffdioxid ist dabei kein Zwischenprodukt.<ref>Joseph S. Beckman, Willem H. Koppenol: ''Nitric oxide, superoxide and peroxynitrite: the good, the bad, and the ugly.'' In: ''AM. J. Physiol.'', 271/5, S. C1424; [[doi:10.1152/ajpcell.1996.271.5.C1424]]</ref> |
|||
=== Geschichte === |
|||
Ende der 1970er Jahre wurde der [[Pharmakologie|Pharmakologe]] [[Ferid Murad]] erstmals auf die physiologischen Wirkungen des Stickstoffmonoxid (NO) aufmerksam. Bei Untersuchungen mit [[Organische Nitrate|organischen Nitraten]] – einer Substanzgruppe, die bei akuten Brustschmerzen eingesetzt wird – entdeckte er, dass diese NO freisetzen, welches eine Erweiterung der Blutgefäße ([[Vasodilatation]]) bewirkt. Auch der Pharmakologe [[Robert F. Furchgott]] untersuchte die Auswirkungen von Medikamenten auf die Blutgefäße. Er fand heraus, dass die innerste Gefäßschicht ([[Endothel]]) eine unbekannte Substanz (Faktor) produziert, die in der darüberliegenden Muskelschicht deren Erschlaffung (Relaxierung) herbeiführt. Da er die Substanz nicht bestimmen konnte, nannte er sie EDRF (Endothelium-derived relaxing Factor, von dem Endothel stammender, gefäßmuskulatur-erschlaffender Faktor). Erst im Laufe der 1980er Jahre gelang es, die unbekannte Substanz EDRF zu entschlüsseln. Unabhängig voneinander identifizierten [[Louis J. Ignarro]] und Robert F. Furchgott EDRF als Stickstoffmonoxid. |
|||
1998 wurde der [[Nobelpreis]] für Physiologie und Medizin an die Amerikaner Robert Furchgott, [[Ferid Murad]] und [[Louis J. Ignarro]] verliehen. |
|||
Den Forschern gelang es erstmals, die große Bedeutung des NO für die Blutversorgung von Organen und dessen Rolle als Botenstoff im Organismus nachzuweisen. |
|||
Mit den Erkenntnissen über NO erschließen sich somit neue Möglichkeiten bei der Behandlung von Gefäßerkrankungen und den dadurch bedingten Organschäden. |
|||
=== Biosynthese === |
|||
NO entsteht unter Verbrauch von [[Nicotinamidadenindinukleotidphosphat|NADPH]], [[Tetrahydrobiopterin]] (BH4), [[Flavin-Adenin-Dinukleotid]] (FAD), [[Flavinmononukleotid]] (FMN) und in Gegenwart von [[Häme (Stoffgruppe)|Häm]] und dem Calcium-bindenden Protein (Calmodulin, CaM) mit katalytischer Hilfe von [[NO-Synthase]]n (NOS) aus der [[Aminosäure]] [[Arginin|<small>L</small>-Arginin]] und Sauerstoff. Als Nebenprodukte entstehen dabei [[Citrullin]] und Wasser. Von den bisher identifizierten NOS-[[Isoform]]en sind die [[Endotheliale Stickstoffmonoxid-Synthase|endotheliale NOS]] (eNOS oder NOS 3) und die neuronale NOS (nNOS oder NOS 1) konstitutiv exprimierte Enzyme. Daneben existiert eine transkriptionell induzierbare Isoform (iNOS oder NOS 2). Alle Isoformen besitzen hohe Sequenz-Homologie mit der [[Cytochrom P450]]-Reduktase. |
|||
{{Hauptartikel|NO-Synthasen}} |
|||
=== Physiologische Anpassung === |
|||
So wird NO durch Zellen an der Innenseite von Blutgefäßen aus der [[Aminosäure]] [[Arginin]] hergestellt. Dadurch entspannen sich die nahegelegenen Muskelzellen, was zu einer Absenkung des Blutdruck führt. Durch diese Reaktion wurde die Wirkungsweise eine ganzen Gruppe von Medikamente verständlich, darunter [[Amylnitrit]] und [[Nitroglycerin]], die Patienten bei [[Angina Pectoris]]-Attacken helfen können. Diese Medikamente setzen NO im Körper frei. Das gasförmige NO selbst kann aus praktischen Gründen nicht verabreicht werden. |
|||
In Anpassung an das Leben im Hochland auf 4000 Metern verfügen [[Tibet]]er über zehnmal so viel NO im Blut wie Tieflandbewohner. Die dadurch bewirkte Verdoppelung ihres Blutflusses ermöglicht ihnen eine angemessene Sauerstoffversorgung.<ref>S. C. Erzurum u. a.: ''Higher blood flow and circulating NO products offset high-altitude hypoxia among Tibetans.'' In: ''PNAS'', 104, November 2007, S. 17593–17598; [[doi:10.1073/pnas.0707462104]]</ref> |
|||
== Weblinks == |
|||
Eine weitere Wirkung von NO ist der Schutz des Körper vor Eindringlingen. So injizieren [[Mikrophagen]] [[Bakterien]] und [[Mutation|mutierte]] Zellen ein tödliche Dosis NO, um sie zu zerstören. Eine übermässige Produktion von NO durch die Mikrophagen kann auch tödliche Auswirkungen haben. So ist die gefährliche Absenkung des Blutdrucks bei einem [[septischer Schock|septischen Schock]] zu erklären. |
|||
{{Wiktionary|Stickstoffmonoxid}} |
|||
== Einzelnachweise == |
|||
NO wurde auch im Gehirn entdeckt. Dabei übernimmt es die Funktion eines Botenstoffes ([[Second Messenger]]), wobei es unter anderem die Synthese von [[Guanosinmonophosphat]] steuern kann. Das kleine Molekül kann leicht in Zellen hinein- und hinaus[[Diffusion|diffundieren]]. Man vermutet hinter NO auch den [[retrograd]]en Botenstoff, der die Grundlage des Gedächtnises bildet. |
|||
<references /> |
|||
{{Gesundheitshinweis}} |
|||
[[1998]] wurde der [[Nobelpreis]] für Physiologie und Medizin für die Erforschung der Wirkung von NO als Botenstoff an die Amerikaner [[Robert Furchgott]], [[Ferid Murad]] und [[Louis Ignarro]] verliehen. |
|||
{{Normdaten|TYP=s|GND=4183282-6}} |
|||
== Weitere Wirkungen == |
|||
NO hat auch eine Wirkung auf die Haltbarkeit von Lebensmitteln. Schon seit über hundert Jahren wird [[Natriumnitrit]] von Metzgern verwendet, um das Wachstum von Bakterien auf Pökelschinken und in Fleischkonserven zu hemmen. Inzwischen ist bekannt, dass NO aus dem Natriumnitrit freigesetzt wird. Auch nach dem Verzehr von konservierten Fleisch hat NO eine positive Wirkung im Körper, indem es nämlich die wellenförmige Kontraktion in Magen und Darm steuert, die den Nahrungsbrei weitertransportiert. |
|||
[[Kategorie: |
[[Kategorie:Stickstoff-Sauerstoff-Verbindung]] |
||
[[Kategorie:Neurotransmitter]] |
|||
[[Kategorie:Sekundärer Botenstoff]] |
|||
[[Kategorie:Arzneistoff]] |
|||
[[Kategorie:Oxid]] |
|||
[[Kategorie:Radikal (Chemie)]] |
Aktuelle Version vom 9. Juni 2025, 07:31 Uhr
Strukturformel | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
![]() | |||||||||||||||||||
Allgemeines | |||||||||||||||||||
Name | Stickstoffmonoxid | ||||||||||||||||||
Andere Namen |
| ||||||||||||||||||
Summenformel | NO | ||||||||||||||||||
Kurzbeschreibung | |||||||||||||||||||
Externe Identifikatoren/Datenbanken | |||||||||||||||||||
| |||||||||||||||||||
Arzneistoffangaben | |||||||||||||||||||
ATC-Code | |||||||||||||||||||
Eigenschaften | |||||||||||||||||||
Molare Masse | 30,01 g·mol−1 | ||||||||||||||||||
Aggregatzustand |
gasförmig | ||||||||||||||||||
Dichte |
1,25 kg·m−3 (15 °C, 1 bar)[3] | ||||||||||||||||||
Schmelzpunkt | |||||||||||||||||||
Siedepunkt |
−152 °C[3] | ||||||||||||||||||
Löslichkeit |
60 mg·l−1 in Wasser (20 °C)[3] | ||||||||||||||||||
Dipolmoment | |||||||||||||||||||
Brechungsindex |
1,000297 (0 °C, 101,325 kPa)[5] | ||||||||||||||||||
Sicherheitshinweise | |||||||||||||||||||
| |||||||||||||||||||
MAK | |||||||||||||||||||
Toxikologische Daten | |||||||||||||||||||
Thermodynamische Eigenschaften | |||||||||||||||||||
ΔHf0 |
91,3 kJ/mol[10] | ||||||||||||||||||
Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen (0 °C, 1000 hPa). Brechungsindex: Na-D-Linie, 20 °C |
Stickstoffmonoxid, kurz NO, ist ein farb- und geruchloses, an Luft instabiles Gas mit der Formel N=O. Es ist eine chemische Verbindung aus den Elementen Stickstoff und Sauerstoff und gehört zur Gruppe der Stickoxide. NO ist ein Radikal.
Eigenschaften
[Bearbeiten | Quelltext bearbeiten]Das Stickstoffmonoxid hat eine molare Masse von 30,01 g/mol, der Schmelzpunkt liegt bei −163,6 °C, der Siedepunkt bei −151,8 °C. Die kritische Temperatur für NO beträgt −93 °C und der kritische Druck liegt bei 6,4 MPa. In Wasser ist Stickstoffoxid wenig löslich. Die Bindungslänge der N=O Bindung beträgt 117 pm. Unter Einwirkung von Sauerstoff und anderen Oxidationsmitteln wird NO sehr schnell zu braunem Stickstoffdioxid oxidiert, das in Wasser zu Salpetersäure und Salpetriger Säure disproportioniert. Außer mit Iod reagiert es mit Halogenen zu Nitrosylhalogeniden, wie z. B. Nitrosylchlorid. Unter Einwirkung von Schwefeldioxid wird Stickstoffoxid zu Distickstoffoxid reduziert.
Durch die schnelle Umwandlung in Stickstoffdioxid an der Luft wirkt Stickstoffmonoxid schleimhautreizend, und durch die Bildung von Methämoglobin wirkt Stickstoffmonoxid toxisch. Die Ausbildung der Methämoglobinämie beruht auf einer Reaktion von HbO2 mit NO selbst, wobei Nitrat und Methämoglobin entstehen, sowie auf der Reaktion mit aus NO entstandenem Nitrit.[11]
Herstellung
[Bearbeiten | Quelltext bearbeiten]Labortechnisch kann NO durch Reduktion von etwa 65-prozentiger Salpetersäure mit Kupfer gewonnen werden. Das Produkt ist aber relativ unrein. Reines Stickstoffmonoxid ist zugänglich[13]
- aus einer Lösung von Kaliumnitrit und Kaliumiodid in Wasser, in die Schwefelsäure getropft wird:
Statt Kaliumiodid kann auch Kaliumhexacyanoferrat(II) verwendet werden:
- aus Nitrosylhydrogensulfat und Quecksilber
- aus Natriumnitrit und Schwefelsäure:
- aus Eisen(II)-sulfat und einer Mischung von Natriumbromid und Natriumnitrit. Das Endprodukt dieser einfachen Reaktion enthält 98,8 % NO und 1,2 % N2.
Industriell wird das Gas durch die katalytische Ammoniakverbrennung (Ostwald-Verfahren) gewonnen. Früher wurde das Gas großtechnisch auch durch sogenannte Luftverbrennung von Stickstoff und Sauerstoff in einem elektrischen Lichtbogen gewonnen. Die verwendeten Verfahren (Birkeland-Eyde-Verfahren, Schönherr-Verfahren, Pauling-Verfahren) zielten auf einen möglichst kurzen Kontakt der Gase mit dem sehr heißen Flammbogen ab, um so das Reaktionsgleichgewicht zum Stickstoffmonoxid zu verschieben. Da hierbei sehr viel elektrische Energie benötigt wird, sind die Verfahren nicht konkurrenzfähig zum Ostwaldverfahren und werden nicht mehr eingesetzt.
Verwendung
[Bearbeiten | Quelltext bearbeiten]Technisch
[Bearbeiten | Quelltext bearbeiten]Stickstoffoxid tritt als Zwischenprodukt bei der technischen Herstellung von Salpetersäure auf und wird zusammen mit Stickstoffdioxid zur Herstellung von Nitriten verwendet. Reinstes Stickstoffmonoxid wird als Prüfgas zur Kalibrierung von Messgeräten eingesetzt.
Medizinisch
[Bearbeiten | Quelltext bearbeiten]Stickstoffmonoxid hat eine erweiternde Wirkung auf die Blutgefäße und wird in der Lunge sowie unter anderem bei Sepsis durch ein körpereigenes Enzym, die endotheliale Stickstoffmonoxid-Synthase (eNOS), aus der Aminosäure L-Arginin abgespalten.
Originalarbeiten und Meta-Analysen sowie systematische Übersichtsarbeiten belegen die protektiven Wirkungen von NO und seiner Vorstufe L-Arginin bei Gesunden ebenso wie bei Patienten mit kardiovaskulären Erkrankungen wie Arteriosklerose, Bluthochdruck und Durchblutungsstörungen und empfehlen eine Sicherstellung der NO-Bildung durch eine gezielte Zufuhr ausreichender Mengen an L-Arginin.[14][15][16][17][18][19][20]
Das Gasgemisch INOmax des Herstellers Linde AG wurde 1999 durch die Food and Drug Administration (FDA) in den USA[21] und 2001 durch die Europäische Kommission in der EU[22] für die Behandlung von Neugeborenen bei Lungenversagen mit hohem Blutdruck in der Lunge zugelassen (hypoxisch respiratorische Insuffizienz, „Lungenhochdruck“). Es ist weltweit das erste medizinische Gas, das als Arzneimittel zugelassen wurde, und enthält 100, 400 oder 800 ppm (0,01 %, 0,04 % oder 0,08 %) Stickstoffmonoxid als wirksamen Bestandteil, der Rest ist inerter Stickstoff. INOmax wird als komprimiertes Gas in Aluminium-Gasflaschen vertrieben. Zur Anwendung wird es der Atemluft zugesetzt, die empfohlene Dosis liegt bei 20 ppm.[22][23]
Stickstoffmonoxid wirkt sehr schnell, wodurch lebensbedrohliche Komplikationen gut behandelt werden können. In der Herzchirurgie (Klappenerkrankungen, Herztransplantationen) kann NO verwendet werden, um einen erhöhten pulmonalen Druck zu behandeln. Für die Behandlung des ARDS, einer schweren Lungenfunktionsstörung, die nach Lungenverletzungen, -entzündungen und Reizgasverätzungen auftreten kann, ist ein therapeutischer Effekt von NO nicht belegt.[24][25]
Physiologische Bedeutung
[Bearbeiten | Quelltext bearbeiten]Stickstoffmonoxid ist ein bioaktives Molekül, das mit anderen Molekülen sowohl Redoxreaktionen als auch additive Reaktionen eingehen kann. Aufgrund seiner geringen Größe kann es in kurzer Zeit biologische Membranen durchqueren und lokal verschiedene Funktionen ausüben, von denen ein Teil auch destruktiv für den jeweiligen Organismus ist. Diese reichen von der Signaltransduktion im Gefäß- und Nervensystem (etwa als Transmitter bei Vasomotorik, Hämostase, Infektabwehr, neuronaler Kommunikation, in höherer Konzentration auch bei chronischen Entzündungsreaktionen, Neurodegeneration und Schock; zudem auch bei der Entstehung und Verarbeitung von Schmerzsignalen, zumindest beim Entzündungsschmerz[26]) über die Verwendung als protektiver Radikalfänger bis zur Rolle als reaktive Stickstoffspezies bei der unspezifischen Immunabwehr. Auch in Pflanzen werden mehrere Prozesse über NO-Signale gesteuert; lediglich bei Archaeen ist fraglich, ob Stickstoffmonoxid eine biologische Funktion hat. Auf der destruktiven Seite ist die Schädigung von Proteinen und DNA zu nennen, die mit chronischem Entzündungsgeschehen in Säugetieren und daraus folgender lokaler NO-Produktion einhergeht.[27] Weitere Gasotransmitter sind das Kohlenstoffmonoxid und der Schwefelwasserstoff.[28][29]
Das asymmetrische Dimethylarginin (ADMA) ist ein endogener Inhibitor der NO-Synthese aus L-Arginin und führt zu einer Entkopplung der eNOS-Aktivität unter Bildung von Superoxidanionradikalen, die dann mit NO zu Peroxinitrit reagieren.[30][31][32] Das Verhältnis von L-Arginin und ADMA beeinflusst die Bildung von Stickstoffmonoxid.[30] Die NO-Bildung sollte klar überwiegen.[31] Die Entkopplung von eNOS durch verstärkt gebildetes ADMA (verringerter L-Arginin/ADMA-Quotient) führt zu nitrosativem Stress,[32] und ist ein Indikator für eine Herz-Kreislauf-Erkrankung. Die Synthese von NO sollte daher durch eine ausreichende Zufuhr von L-Arginin sichergestellt sein.[14][15][16][17][18][19][20][30][31][32] Stickstoffmonoxid reagiert im Blut innerhalb von Sekunden mit Oxyhämoglobin zu NO3−; Stickstoffdioxid ist dabei kein Zwischenprodukt.[33]
Geschichte
[Bearbeiten | Quelltext bearbeiten]Ende der 1970er Jahre wurde der Pharmakologe Ferid Murad erstmals auf die physiologischen Wirkungen des Stickstoffmonoxid (NO) aufmerksam. Bei Untersuchungen mit organischen Nitraten – einer Substanzgruppe, die bei akuten Brustschmerzen eingesetzt wird – entdeckte er, dass diese NO freisetzen, welches eine Erweiterung der Blutgefäße (Vasodilatation) bewirkt. Auch der Pharmakologe Robert F. Furchgott untersuchte die Auswirkungen von Medikamenten auf die Blutgefäße. Er fand heraus, dass die innerste Gefäßschicht (Endothel) eine unbekannte Substanz (Faktor) produziert, die in der darüberliegenden Muskelschicht deren Erschlaffung (Relaxierung) herbeiführt. Da er die Substanz nicht bestimmen konnte, nannte er sie EDRF (Endothelium-derived relaxing Factor, von dem Endothel stammender, gefäßmuskulatur-erschlaffender Faktor). Erst im Laufe der 1980er Jahre gelang es, die unbekannte Substanz EDRF zu entschlüsseln. Unabhängig voneinander identifizierten Louis J. Ignarro und Robert F. Furchgott EDRF als Stickstoffmonoxid.
1998 wurde der Nobelpreis für Physiologie und Medizin an die Amerikaner Robert Furchgott, Ferid Murad und Louis J. Ignarro verliehen. Den Forschern gelang es erstmals, die große Bedeutung des NO für die Blutversorgung von Organen und dessen Rolle als Botenstoff im Organismus nachzuweisen. Mit den Erkenntnissen über NO erschließen sich somit neue Möglichkeiten bei der Behandlung von Gefäßerkrankungen und den dadurch bedingten Organschäden.
Biosynthese
[Bearbeiten | Quelltext bearbeiten]NO entsteht unter Verbrauch von NADPH, Tetrahydrobiopterin (BH4), Flavin-Adenin-Dinukleotid (FAD), Flavinmononukleotid (FMN) und in Gegenwart von Häm und dem Calcium-bindenden Protein (Calmodulin, CaM) mit katalytischer Hilfe von NO-Synthasen (NOS) aus der Aminosäure L-Arginin und Sauerstoff. Als Nebenprodukte entstehen dabei Citrullin und Wasser. Von den bisher identifizierten NOS-Isoformen sind die endotheliale NOS (eNOS oder NOS 3) und die neuronale NOS (nNOS oder NOS 1) konstitutiv exprimierte Enzyme. Daneben existiert eine transkriptionell induzierbare Isoform (iNOS oder NOS 2). Alle Isoformen besitzen hohe Sequenz-Homologie mit der Cytochrom P450-Reduktase.
Physiologische Anpassung
[Bearbeiten | Quelltext bearbeiten]In Anpassung an das Leben im Hochland auf 4000 Metern verfügen Tibeter über zehnmal so viel NO im Blut wie Tieflandbewohner. Die dadurch bewirkte Verdoppelung ihres Blutflusses ermöglicht ihnen eine angemessene Sauerstoffversorgung.[34]
Weblinks
[Bearbeiten | Quelltext bearbeiten]Einzelnachweise
[Bearbeiten | Quelltext bearbeiten]- ↑ Sicherheitsdatenblatt Stickstoffmonoxid (PDF; 192 kB) AirLiquide.
- ↑ a b c d Eintrag zu Stickstoffmonoxid in der GESTIS-Stoffdatenbank des IFA, abgerufen am 8. Januar 2021. (JavaScript erforderlich)
- ↑ a b c d Sicherheitsdatenblatt Stickstoffmonoxid (PDF; 201 kB) Praxair.
- ↑ David R. Lide (Hrsg.): CRC Handbook of Chemistry and Physics. 90. Auflage. (Internet-Version: 2010), CRC Press / Taylor and Francis, Boca Raton FL, Dipole Moments, S. 9-51.
- ↑ David R. Lide (Hrsg.): CRC Handbook of Chemistry and Physics. 90. Auflage. (Internet-Version: 2010), CRC Press / Taylor and Francis, Boca Raton FL, Index of Refraction of Gases, S. 10-254.
- ↑ Schweizerische Unfallversicherungsanstalt (Suva): Grenzwerte – Aktuelle MAK- und BAT-Werte (Suche nach 10102-43-9 bzw. Stickstoffmonoxid), abgerufen am 16. Februar 2021.
- ↑ British Journal of Anesthesia. Vol. 39, 1967, S. 393.
- ↑ Naunyn-Schmiedeberg’s Archiv für Experimentelle Pathologie und Pharmakologie. Vol. 181, 1936, S. 145.
- ↑ Gigiena Truda i Professional'nye Zabolevaniya. Labor Hygiene and Occupational Diseases. Vol. 19(4), 1975, S. 52.
- ↑ David R. Lide (Hrsg.): CRC Handbook of Chemistry and Physics. 90. Auflage. (Internet-Version: 2010), CRC Press / Taylor and Francis, Boca Raton FL, Standard Thermodynamic Properties of Chemical Substances, S. 5-16.
- ↑ Patrick Horn: Aktivität und Bedeutung der erythrozytären NOS bei kardiovaskulären Risikofaktoren. ( vom 5. Dezember 2015 im Internet Archive; PDF; 1,1 MB)
- ↑ Martin Ledig, Georg Wittke: Nitrat in Lebensmitteln. In: Naturwissenschaften im Unterricht. Chemie., 5 (42) 23, 1994, S. 7–12.
- ↑ G. Brauer (Hrsg.): Handbook of Preparative Inorganic Chemistry. 2. Auflage. vol. 1, Academic Press 1963, S. 485–487.
- ↑ a b J. Y. Dong, L. Q. Qin, Z. Zhang, Y. Zhao, J. Wang, F. Arigoni, W. Zhang: Effect of oral L-arginine supplementation on blood pressure: A meta-analysis of randomized, double-blind, placebo-controlled trials. In: Am Heart. Band 162, 2011, S. 959–965.
- ↑ a b F. Pizzarelli, R. Maas, P. Dattolo, G. Tripepi, S. Michelassi, G. D’Arrigo, M. Mieth, S. Bandinelli, L. Ferrucci, C. Zoccali: Asymmetric dimethylarginine predicts survival in the elderly. In: Age. Band 35, Nr. 6, 2013, S. 2465–2475.
- ↑ a b S. M. Bode-Böger, J. Muke, A. Surdacki, G. Brabant, R. H. Böger, J. C. Frölich: Oral L-arginine improves endothelial function in healthy individuals older than 70 years. In: Vasc. Med. Band 8, 2003, S. 77–81.
- ↑ a b K. Jung, O. Petrowicz: L-Arginin und Folsäure bei Arteriosklerose. Ergebnisse einer prospektiven, multizentrischen Verzehrsstudie. In: Perfusion. Band 21, 2008, S. 148–156.
- ↑ a b P. Lucotti, L. Monti, E. Setola, G. La Canna, A. Castiglioni, A. Rossodivita, M. G. Pala, F. Formica, G. Paolini, A. L. Catapano, E. Bosi, O. Alfieri, P. Piatti: Oral L-arginine supplementation improves endothelial function and ameliorates insulin sensitivity and inflammation in cardiopathic nondiabetic patients after an aortocoronary bypass. In: Metabolism. Band 58, Nr. 9, 2009, S. 1270–1276.
- ↑ a b Y. Bai, L. Sun, T. Yang, K. Sun, R. Chen J. Hui: Increase in fasting vascular endothelial function after short-term oral L-arginine is effective when baseline flow-mediated dilation is low: a meta-analysis of randomized controlled trials. In: Am. J. Clin. Nutr. Band 89, Nr. 1, 2009, S. 77–84.
- ↑ a b J. W. Drover, R. Dhaliwal, L. Weitzel, P. E. Wischmeyer, J. B. Ochoa, D. K. Heyland: Perioperative use of arginine-supplemented diets: a systematic review of the evidence. In: J. Am. Coll. Surg. Band 212, Nr. 3, 2011, S. 385–399.
- ↑ FDA Approval Letter. (PDF; 100 kB) FDA (englisch)
- ↑ a b Europäischer öffentlicher Beurteilungsbericht (EPAR) und Produktinformation zu INOmax ( vom 7. März 2009 im Internet Archive) auf der Website der Europäischen Arzneimittelagentur
- ↑ Fachinformation für USA. (PDF; 618 kB) inomax.com (englisch).
- ↑ N. K. Adhikari u. a.: Effect of nitric oxide on oxygenation and mortality in acute lung injury: systematic review and meta-analysis. In: British Medical Journal, 334(7597), 14. April 2007, S. 779. PMID 17383982
- ↑ H. R. Bream-Rouwenhorst u. a.: Recent developments in the management of acute respiratory distress syndrome in adults. In: American Journal of Health-System Pharmacy, 65(1), 1. Januar 2008, S. 29–36. PMID 18159036.
- ↑ Jens Ulrich Stegmann, Uta Muth-Selbach, Holger Holthusen: Die Bedeutung von Stickstoffmonoxid (NO) für Nozizeption und spinale Schmerzverarbeitung. In: Anästhesiologie Intensivmedizin Notfallmedizin Schmerztherapie. Jahrgang 36, Nr. 5, Mai 2001, S. 276–281.
- ↑ M. V. Beligni, L. Lamattina: Nitric oxide in plants: the history is just beginning. In: Plant, Cell and Environment. 24, 2001, S. 267–278, doi:10.1046/j.1365-3040.2001.00672.x.
- ↑ Anton Hermann, Guzel F. Sitdikova, Thomas M. Weiger: Gasotransmitter: flüchtige Überträgerstoffe. Stickoxid, Kohlenmonoxid und Schwefelwasserstoff fungieren als Botenstoffe und sind physiologisch wirksam. ( vom 22. März 2020 im Internet Archive) (PDF) In: Ärzte Woche. Springer, New York 21. Oktober 2010 (PDF; 1,6 MB).
- ↑ Anton Hermann, Guzel F. Sitdikova, Thomas M. Weiger: Gase als zelluläre Signalstoffe. Gasotransmitter. ( vom 3. Dezember 2013 im Internet Archive; PDF) In: Biologie in unserer Zeit, 40, 2010, S. 185–193; doi:10.1002/biuz.201010422.
- ↑ a b c B. Poeggeler: Oxidative Stress und L-Arginin schützt vor nitrosativem Stress. Stickstoffmonoxid als endogener Regulator des nitrosativen Stoffwechsels. In: Perfusion, Band 25 (2), 2012, S. 40–43.
- ↑ a b c E. Schulz, T. Gori, T. Münzel: Oxidative stress and endothelial dysfunction in hypertension. In: Hypertens Res. Band 34 (6), 2011, S. 665–673, doi:10.1038/hr.2011.39. PMID 21512515.
- ↑ a b c I. Seljeflot, B. B. Nilsson, A. S. Westhelm, V. Bratseth, H. Arnesen: The L-arginine-asymmetric dimethylarginine ratio is strongly related to the severity of chronic heart failure. No effects of exercise training. In: J Card Fail., Band 17 (2), 2011, S. 135–142; doi:10.1016/j.cardfail.2010.09.003. PMID 21300303
- ↑ Joseph S. Beckman, Willem H. Koppenol: Nitric oxide, superoxide and peroxynitrite: the good, the bad, and the ugly. In: AM. J. Physiol., 271/5, S. C1424; doi:10.1152/ajpcell.1996.271.5.C1424
- ↑ S. C. Erzurum u. a.: Higher blood flow and circulating NO products offset high-altitude hypoxia among Tibetans. In: PNAS, 104, November 2007, S. 17593–17598; doi:10.1073/pnas.0707462104