„Polonium“ – Versionsunterschied
[ungesichtete Version] | [gesichtete Version] |
K + Link zu HH Binder |
|||
(512 dazwischenliegende Versionen von mehr als 100 Benutzern, die nicht angezeigt werden) | |||
Zeile 1: | Zeile 1: | ||
{{Infobox Chemisches Element |
|||
{| {{prettytable-R}} |
|||
<!--- Periodensystem ---> |
|||
! colspan="2" style="background-color:#a9a9a9;" | <font size="+1">Eigenschaften</font> |
|||
| Name = Polonium |
|||
|----- |
|||
| Symbol = Po |
|||
| colspan="2" style="background-color:#ffffff;" | |
|||
| Ordnungszahl = 84 |
|||
{| align="center" |
|||
| Serie = Me |
|||
| |
|||
| Gruppe = 16 |
|||
| align="center" | [[Bismut]] - '''Polonium''' - [[Astat]] |
|||
| Periode = 6 |
|||
|----- |
|||
| Block = p |
|||
| [[Tellur|Te]]<br />'''Po'''<br />[[Ununhexium|Uuh]] <br /> <br /> |
|||
<!--- Allgemein ---> |
|||
| <div id="table" style="position:relative;"> |
|||
| Hauptquelle = <ref>Die Werte für die Eigenschaften (Infobox) sind, wenn nicht anders angegeben, aus [http://www.webelements.com/polonium/ www.webelements.com (Polonium)] entnommen.</ref> |
|||
{{Periodensystem}} |
|||
| Aussehen = silbrig |
|||
<div id="text0" style="font-size:12px; font-weight:normal; position:absolute; top:11px; left:27px;">[Xe]4f<sup>14</sup>5d<sup>10</sup>6s<sup>2</sup>6p<sup>4</sup></div> |
|||
| CAS = {{CASRN|7440-08-6}} (<sup>209</sup>Po) |
|||
<div id="text2" style="font-size:10px; position:absolute; top:5px; left:140px;">209</div> |
|||
| EG-Nummer = 231-118-2 |
|||
<div id="text3" style="font-size:10px; position:absolute; top:15px; left:146px;">84</div> |
|||
| ECHA-ID = 100.028.289 |
|||
<div id="text1" style="font-size:20px; font-weight:bold; position:absolute; top:11px; left:160px;">Po</div> |
|||
| Massenanteil = 2,1 · 10<sup>−11</sup> ppm<ref name="Harry H. Binder">[[Harry H. Binder]]: ''Lexikon der chemischen Elemente'', S. Hirzel Verlag, Stuttgart 1999, ISBN 3-7776-0736-3.</ref> |
|||
<div id="box2" style="border:solid 1px black; position:absolute; top:50px; left:232px; width:7px; height:9px; overflow:hidden;" /> |
|||
<!--- Atomar ---> |
|||
</div> |
|||
| Atommasse = 209,98 |
|||
<div style="text-align: right"><small>[[Periodensystem]]</small></div> |
|||
| Atomradius = 190 |
|||
|} |
|||
| AtomradiusBerechnet = 135 |
|||
|----- |
|||
| KovalenterRadius = 140 |
|||
! colspan="2" style="background-color:#a9a9a9;" | Allgemein |
|||
| VanDerWaalsRadius = 197<ref>Manjeera Mantina, Adam C. Chamberlin, Rosendo Valero, Christopher J. Cramer, Donald G. Truhlar: ''Consistent van der Waals Radii for the Whole Main Group.'' In: ''J. Phys. Chem. A.'' 2009, 113, S. 5806–5812, [[doi:10.1021/jp8111556]].</ref> |
|||
|----- |
|||
| Elektronenkonfiguration = [[[Xenon|Xe]]] 4[[F-Orbital|f]]<sup>14</sup> 5[[D-Orbital|d]]<sup>10</sup> 6[[S-Orbital|s]]<sup>2</sup> 6[[P-Orbital|p]]<sup>4</sup> |
|||
| [[Chemisches Element#Sortierte Liste chemischer Elemente|Name]], [[Atomsymbol|Symbol]], [[Ordnungszahl]] |
|||
| Austrittsarbeit = |
|||
| Polonium, Po, 84 |
|||
| Ionisierungsenergie_1 = {{ZahlExp|8,418070|suffix=(4)|post=[[Elektronenvolt|eV]]<ref name="NIST-ASD-polonium">{{NIST-ASD|polonium|Abruf=2020-06-13}}</ref>}} ≈ {{ZahlExp|811,8|post=[[Joule|kJ]]/[[mol]]<ref name="Webelements-polonium">{{Webelements|polonium|atoms|Abruf=2020-06-13}}</ref>}} |
|||
|----- |
|||
| Ionisierungsenergie_2 = {{ZahlExp|19,3|suffix=(1,7)|post=eV<ref name="NIST-ASD-polonium" />}} ≈ {{ZahlExp|1860|post=kJ/mol<ref name="Webelements-polonium" />}} |
|||
| [[Serie des Periodensystems|Serie]] || [[Metall]]e |
|||
| Ionisierungsenergie_3 = {{ZahlExp|27,3|suffix=(7)|post=eV<ref name="NIST-ASD-polonium" />}} ≈ {{ZahlExp|2630|post=kJ/mol<ref name="Webelements-polonium" />}} |
|||
|----- |
|||
| Ionisierungsenergie_4 = {{ZahlExp|36,0|suffix=(1,7)|post=eV<ref name="NIST-ASD-polonium" />}} ≈ {{ZahlExp|3470|post=kJ/mol<ref name="Webelements-polonium" />}} |
|||
|----- |
|||
| Ionisierungsenergie_5 = {{ZahlExp|57,0|suffix=(1,9)|post=eV<ref name="NIST-ASD-polonium" />}} ≈ {{ZahlExp|5500|post=kJ/mol<ref name="Webelements-polonium" />}} |
|||
|[[Letale Dosis|LD]]<sub>50</sub> || 6-9 ng/kg |
|||
| Ionisierungsenergie_6 = {{ZahlExp|69,1|suffix=(2,0)|post=eV<ref name="NIST-ASD-polonium" />}} ≈ {{ZahlExp|6670|post=kJ/mol<ref name="Webelements-polonium" />}} |
|||
|----- |
|||
<!--- Physikalisch ---> |
|||
| [[Gruppe des Periodensystems|Gruppe]], [[Periode des Periodensystems|Periode]], [[Block des Periodensystems|Block]] |
|||
| Aggregatzustand = fest |
|||
| [[Gruppe-16-Element|6 (VIA)]], [[Periode-6-Element|6]], [[P-Block|p]] |
|||
| Modifikationen = α-Po, β-Po |
|||
|----- |
|||
| Kristallstruktur = kubisch-primitiv (α-Po)<br />rhomboedrisch (β-Po) |
|||
| [[Farbe|Aussehen]] || silbrig |
|||
| Dichte = 9,196 g/cm<sup>3</sup> |
|||
|----- |
|||
| RefTempDichte_K = |
|||
| Massenanteil an der [[Erdhülle]] || 2 · 10<sup>-14</sup> %<br /><small>(berechnet aus natürlichen Zerfallsreihen)</small> |
|||
| Mohshärte = |
|||
|----- |
|||
| Magnetismus = |
|||
! colspan="2" bgcolor="#A9A9A9" | Atomar |
|||
| Schmelzpunkt_K = 527 |
|||
|----- |
|||
| Schmelzpunkt_C = 254 |
|||
| [[Atommasse]] || 208,9824 |
|||
| Siedepunkt_K = 1235 K |
|||
|----- |
|||
| Siedepunkt_C = 962 |
|||
| [[Atomradius]] (berechnet) || 190 (135)[[Picometer|pm]] |
|||
| MolaresVolumen = 22,97 · 10<sup>−6</sup> |
|||
|----- |
|||
| Verdampfungswärme = ca. 100 kJ·mol<sup>−1</sup> |
|||
| [[Kovalenter Radius]] || - |
|||
| Schmelzwärme = ca. 13 |
|||
|----- |
|||
| Dampfdruck = |
|||
| [[van der Waals-Radius]] || - |
|||
| RefTempDampfdruck_K = |
|||
|----- |
|||
| Schallgeschwindigkeit = |
|||
| [[Elektronenkonfiguration]] |
|||
| RefTempSchallgeschwindigkeit_K = |
|||
| <nowiki>[</nowiki>[[Xenon|Xe]]<nowiki>]</nowiki>4[[F-Orbital|f]]<sup>14</sup>5[[D-Orbital|d]]<sup>10</sup>6[[S-Orbital|s]]<sup>2</sup>6p<sup>4</sup> |
|||
| SpezifischeWärmekapazität = |
|||
|----- |
|||
| RefTempSpezifischeWärmekapazität_K = |
|||
| [[Elektronen]] pro [[Energieniveau]] |
|||
| ElektrischeLeitfähigkeit = 2,5 · 10<sup>6</sup> |
|||
| 2, 8, 18, 32, 18, 6 |
|||
| RefTempElektrischeLeitfähigkeit_K = |
|||
|----- |
|||
| Wärmeleitfähigkeit = 20 |
|||
| 1. [[Ionisierungsenergie]] || 812,1 [[Kilojoule pro Mol|kJ/mol]] |
|||
| RefTempWärmeleitfähigkeit_K = |
|||
|----- |
|||
<!--- Chemisch ---> |
|||
! colspan="2" style="background-color:#a9a9a9;" | Physikalisch |
|||
| Oxidationszustände = (−2), +2, '''+4''', +6 |
|||
|----- |
|||
| Normalpotential = 0,37 [[Volt|V]] (Po<sup>2+</sup> + 2 e<sup>−</sup> → Po) |
|||
| [[Aggregatzustand]] || fest |
|||
| Elektronegativität = 2,0 |
|||
|----- |
|||
| Quelle GHS-Kz = NV |
|||
| [[Modifikation (Chemie)|Modifikationen]] || α-Po, β-Po |
|||
| GHS-Piktogramme = {{GHS-Piktogramme|/}} |
|||
|----- |
|||
| GHS-Signalwort = |
|||
| [[Kristallstruktur]] || kubisch-primitiv (α-Po)<br />rhomboedrisch (β-Po) |
|||
| H = {{H-Sätze|/}} |
|||
|----- |
|||
| EUH = {{EUH-Sätze|/}} |
|||
| [[Dichte]] ([[Mohshärte]]) |
|||
| P = {{P-Sätze|/}} |
|||
| 9196 [[Kilogramm pro Kubikmeter|kg/m<sup>3</sup>]] (-) (Gilt für α-Po) |
|||
| Quelle P = |
|||
|----- |
|||
| Radioaktiv = Ja |
|||
| [[Magnetismus]] || unmagnetisch |
|||
<!--- Isotope ---> |
|||
| Isotope = |
|||
| [[Schmelzpunkt]] |
|||
{{Infobox Chemisches Element/Isotop |
|||
| 527 [[Kelvin|K]] (254 °[[Grad Celsius|C]]) |
|||
| AnzahlZerfallstypen = 2 |
|||
|----- |
|||
| Symbol = Po |
|||
| [[Siedepunkt]] || 1235 K (962 °C) |
|||
| Massenzahl = 208 |
|||
|----- |
|||
| NH = 0 |
|||
| [[Molares Volumen]] |
|||
| Halbwertszeit = 2,898 [[Jahr|a]] |
|||
| 22,97 · 10<sup>-6</sup> [[Kubikmeter pro Mol|m<sup>3</sup>/mol]] |
|||
| Zerfallstyp1ZM = [[Alphastrahlung|α]] |
|||
|----- |
|||
| Zerfallstyp1ZE = 5,215 |
|||
| [[Verdampfungswärme]] || 102 kJ/mol |
|||
| Zerfallstyp1ZP = [[Blei|<sup>204</sup>Pb]] |
|||
|----- |
|||
| Zerfallstyp2ZM = [[Elektronen-Einfang|ε]] |
|||
| [[Schmelzwärme]] || 60,1 kJ/mol (?13 kJ/mol?) |
|||
| Zerfallstyp2ZE = 1,401 |
|||
|----- |
|||
| Zerfallstyp2ZP = [[Bismut|<sup>208</sup>Bi]] |
|||
| [[Dampfdruck]] |
|||
}} |
|||
| 0,0176 [[Pascal (Einheit)|Pa]] bei 527 K |
|||
{{Infobox Chemisches Element/Isotop |
|||
|----- |
|||
| AnzahlZerfallstypen = 2 |
|||
| [[Schallgeschwindigkeit]] || - |
|||
| Symbol = Po |
|||
|----- |
|||
| Massenzahl = 209 |
|||
| [[Spezifische Wärmekapazität]] || - |
|||
| NH = 0 |
|||
|----- |
|||
| Halbwertszeit = 103 [[Jahr|a]] |
|||
| [[Elektrische Leitfähigkeit]] || 2,19 · 10<sup>6</sup> [[Siemens (Einheit)|S]]/m |
|||
| Zerfallstyp1ZM = [[Alphastrahlung|α]] |
|||
|----- |
|||
| Zerfallstyp1ZE = 4,879 |
|||
| [[Wärmeleitfähigkeit]] |
|||
| Zerfallstyp1ZP = [[Blei|<sup>205</sup>Pb]] |
|||
| 20 [[Watt pro Meter und Kelvin|W/(m · K)]] |
|||
| Zerfallstyp2ZM = [[Elektronen-Einfang|ε]] |
|||
|----- |
|||
| Zerfallstyp2ZE = 1,893 |
|||
! colspan="2" style="background-color:#a9a9a9;" | Chemisch |
|||
| Zerfallstyp2ZP = [[Bismut|<sup>209</sup>Bi]] |
|||
|----- |
|||
}} |
|||
| [[Oxidationszahl|Oxidationszustände]] |
|||
{{Infobox Chemisches Element/Isotop |
|||
| (-2) 2, '''4''', 6 |
|||
| AnzahlZerfallstypen = 1 |
|||
|----- |
|||
| Symbol = Po |
|||
| [[Hydride]] und [[Oxide]] ([[Basizität]]) |
|||
| Massenzahl = 210 |
|||
| (PoO<sub>2</sub>)<sub>x</sub> ([[amphoter]]) |
|||
| NH = '''99,998''' |
|||
|----- |
|||
| Halbwertszeit = 138,376 [[Tag|d]] |
|||
| [[Normalpotential]] || 0,9 [[Volt (Einheit)|V]] (Po<sup>2+</sup> + 2e<sup>-</sup> → Po) |
|||
| Zerfallstyp1ZM = [[Alphastrahlung|α]] |
|||
|----- |
|||
| Zerfallstyp1ZE = 5,307 |
|||
| [[Elektronegativität]] || 2,0 ([[Pauling-Skala]]) |
|||
| Zerfallstyp1ZP = [[Blei|<sup>206</sup>Pb]] |
|||
|----- |
|||
}} |
|||
| colspan="2" |{{Gefahrensymbol 1|R}} |
|||
{{Infobox Chemisches Element/Isotop |
|||
|----- |
|||
| AnzahlZerfallstypen = 1 |
|||
! colspan="2" style="background-color:#a9a9a9;" | Isotope |
|||
| Symbol = Po |
|||
|----- |
|||
| Massenzahl = 211 |
|||
| colspan="2" | |
|||
| NH = 5 · 10<sup>−10</sup> |
|||
{| width="100%" cellspacing="0" cellpadding="2" border="1" style="background-color:#f9f9f9;border:1px #aaa solid;border-collapse:collapse;" |
|||
| Halbwertszeit = 0,516 [[Sekunde|s]] |
|||
! [[Isotop]] |
|||
| Zerfallstyp1ZM = [[Alphastrahlung|α]] |
|||
! [[Natürliche Häufigkeit|NH]] |
|||
| Zerfallstyp1ZE = 7,595 |
|||
! [[Halbwertszeit|t<sub>1/2</sub>]] |
|||
| Zerfallstyp1ZP = [[Blei|<sup>207</sup>Pb]] |
|||
! [[Radioaktivität|ZM]] |
|||
}} |
|||
! [[Zerfallsenergie|ZE]] [[Mega|M]][[Elektronenvolt|eV]] |
|||
{{Infobox Chemisches Element/Isotop |
|||
! [[Zerfallsprodukt|ZP]] |
|||
| AnzahlZerfallstypen = 2 |
|||
|----- |
|||
| <sup> |
| Symbol = <sup>[[Isomer (Kernphysik)|m]]</sup>Po |
||
| Massenzahl = 211 |
|||
| |
|||
| NH = 0 |
|||
| 2,898 [[Jahr|a]] |
|||
| Halbwertszeit = 25 s |
|||
| [[Alphastrahlung|Alpha]]<br />[[Elektronen-Einfang|Epsilon]] |
|||
| Zerfallstyp1ZM = [[Alphastrahlung|α]] |
|||
| 5,215<br />1,401 |
|||
| Zerfallstyp1ZE = 9,057 |
|||
| [[Blei|<sup>204</sup>Pb]]<br />[[Wismut|<sup>208</sup>Bi]] |
|||
| Zerfallstyp1ZP = [[Blei|<sup>207</sup>Pb]] |
|||
|----- |
|||
| |
| Zerfallstyp2ZM = [[Isomerie-Übergang|IT]] |
||
| Zerfallstyp2ZE = 1,462 |
|||
| [[Alphastrahlung|Alpha]]<br />[[Elektronen-Einfang|Epsilon]] |
|||
| Zerfallstyp2ZP = <sup>211</sup>Po |
|||
| 4,979<br />1,893 |
|||
}} |
|||
| [[Blei|<sup>205</sup>Pb]]<br />[[Wismut|<sup>209</sup>Bi]] |
|||
{{Infobox Chemisches Element/Isotop |
|||
|----- |
|||
| AnzahlZerfallstypen = 1 |
|||
| <sup>210</sup>Po || || 138,376 [[Tag|d]] |
|||
| Symbol = Po |
|||
| [[Alphastrahlung|Alpha]] || 5,407 || [[Blei|<sup>206</sup>Pb]] |
|||
| Massenzahl = 212 |
|||
|----- |
|||
| <sup> |
| NH = 2 · 10<sup>−12</sup> |
||
| Halbwertszeit = 304 ns |
|||
| [[Alphastrahlung|Alpha]] || 8,78 || [[Blei|<sup>208</sup>Pb]] |
|||
| Zerfallstyp1ZM = [[Alphastrahlung|α]] |
|||
|----- |
|||
| Zerfallstyp1ZE = 8,78 |
|||
| <sup>214</sup>Po || || 164 μs |
|||
| |
| Zerfallstyp1ZP = [[Blei|<sup>208</sup>Pb]] |
||
}} |
|||
|----- |
|||
{{Infobox Chemisches Element/Isotop |
|||
| <sup>216</sup>Po || || 0,15 s |
|||
| AnzahlZerfallstypen = 2 |
|||
| [[Alphastrahlung|Alpha]] || 6,78 || [[Blei|<sup>212</sup>Pb]] |
|||
| Symbol = <sup>[[Isomer (Kernphysik)|m]]</sup>Po |
|||
|----- |
|||
| Massenzahl = 212 |
|||
| <sup>218</sup>Po || || 3,05 min |
|||
| NH = 0 |
|||
| [[Alphastrahlung|Alpha]] || 6,00 || [[Blei|<sup>214</sup>Pb]] |
|||
| Halbwertszeit = 45,1 s |
|||
|} |
|||
| Zerfallstyp1ZM = [[Alphastrahlung|α]] |
|||
|----- |
|||
| Zerfallstyp1ZE = 11,8 |
|||
! colspan="2" style="background-color:#a9a9a9;" | <small>Soweit möglich und gebräuchlich, werden [[SI-Einheitensystem|SI-Einheiten]] verwendet.<br />Wenn nicht anders vermerkt,<br />gelten die angegebenen Daten bei [[Standardbedingungen]].</small> |
|||
| Zerfallstyp1ZP = [[Blei|<sup>208</sup>Pb]] |
|||
|} |
|||
| Zerfallstyp2ZM = [[Isomerie-Übergang|IT]] |
|||
| Zerfallstyp2ZE = 2,922 |
|||
| Zerfallstyp2ZP = <sup>212</sup>Po |
|||
}} |
|||
{{Infobox Chemisches Element/Isotop |
|||
| AnzahlZerfallstypen = 1 |
|||
| Symbol = Po |
|||
| Massenzahl = 213 |
|||
| NH = 0 |
|||
| Halbwertszeit = 4 µs |
|||
| Zerfallstyp1ZM = [[Alphastrahlung|α]] |
|||
| Zerfallstyp1ZE = 8,5 |
|||
| Zerfallstyp1ZP = [[Blei|<sup>209</sup>Pb]] |
|||
}} |
|||
{{Infobox Chemisches Element/Isotop |
|||
| AnzahlZerfallstypen = 1 |
|||
| Symbol = Po |
|||
| Massenzahl = 214 |
|||
| NH = 1 · 10<sup>−9</sup> |
|||
| Halbwertszeit = 164 µs |
|||
| Zerfallstyp1ZM = [[Alphastrahlung|α]] |
|||
| Zerfallstyp1ZE = 7,69 |
|||
| Zerfallstyp1ZP = [[Blei|<sup>210</sup>Pb]] |
|||
}} |
|||
{{Infobox Chemisches Element/Isotop |
|||
| AnzahlZerfallstypen = 2 |
|||
| Symbol = Po |
|||
| Massenzahl = 215 |
|||
| NH = 7 · 10<sup>−10</sup> |
|||
| Halbwertszeit = 1,781 ms |
|||
| Zerfallstyp1ZM = [[Alphastrahlung|α]] |
|||
| Zerfallstyp1ZE = 7,526 |
|||
| Zerfallstyp1ZP = [[Blei|<sup>211</sup>Pb]] |
|||
| Zerfallstyp2ZM = [[Betastrahlung|β<sup>−</sup>]] |
|||
| Zerfallstyp2ZE = 0,721 |
|||
| Zerfallstyp2ZP = [[Astat|<sup>215</sup>At]] |
|||
}} |
|||
{{Infobox Chemisches Element/Isotop |
|||
| AnzahlZerfallstypen = 1 |
|||
| Symbol = Po |
|||
| Massenzahl = 216 |
|||
| NH = 1 · 10<sup>−6</sup> |
|||
| Halbwertszeit = 0,15 s |
|||
| Zerfallstyp1ZM = [[Alphastrahlung|α]] |
|||
| Zerfallstyp1ZE = 6,78 |
|||
| Zerfallstyp1ZP = [[Blei|<sup>212</sup>Pb]] |
|||
}} |
|||
{{Infobox Chemisches Element/Isotop |
|||
| AnzahlZerfallstypen = 1 |
|||
| Symbol = Po |
|||
| Massenzahl = 217 |
|||
| NH = 0 |
|||
| Halbwertszeit = 2 s |
|||
| Zerfallstyp1ZM = [[Alphastrahlung|α]] |
|||
| Zerfallstyp1ZE = 6,7 |
|||
| Zerfallstyp1ZP = [[Blei|<sup>213</sup>Pb]] |
|||
}} |
|||
{{Infobox Chemisches Element/Isotop |
|||
| AnzahlZerfallstypen = 2 |
|||
| Symbol = Po |
|||
| Massenzahl = 218 |
|||
| NH = 1,6 · 10<sup>−3</sup> |
|||
| Halbwertszeit = 3,05 min |
|||
| Zerfallstyp1ZM = [[Alphastrahlung|α]] |
|||
| Zerfallstyp1ZE = 6,115 |
|||
| Zerfallstyp1ZP = [[Blei|<sup>214</sup>Pb]] |
|||
| Zerfallstyp2ZM = [[Betastrahlung|β<sup>−</sup>]] |
|||
| Zerfallstyp2ZE = 0,260 |
|||
| Zerfallstyp2ZP = [[Astat|<sup>218</sup>At]] |
|||
}} |
|||
| NMREigenschaften = |
|||
}} |
|||
'''Polonium''' ist ein [[Radioaktivität|radioaktives]] [[chemisches Element]] mit dem [[Elementsymbol]] Po und der [[Ordnungszahl]] 84. Im [[Periodensystem]] steht es in der 6. [[Hauptgruppe]], bzw. der 16. [[Gruppe des Periodensystems|IUPAC-Gruppe]], wird also den [[Chalkogene]]n zugeordnet. Das häufigste in der Natur vorkommende Isotop Po-210 findet sich als vorletztes Glied der [[Zerfallsreihe]] von Uran-238 in uranhaltigen Mineralien, inzwischen wird jedoch Polonium für technische oder wissenschaftliche Anwendungen hauptsächlich durch Einwirkung von [[Neutronenstrahlung]] auf [[Bismut]]-209 erzeugt, da die Extraktion aus natürlichen Materialien zu aufwendig ist. Polonium gilt allgemein als „hochgiftig“, da bereits eine Dosis von einem Mikrogramm tödlich sein kann. Es ist bekannt als Einsatzmittel bei der [[Alexander Walterowitsch Litwinenko#Tod|Ermordung von Alexander Litwinenko]]. |
|||
'''Polonium''' ist ein [[Radioaktivität|radioaktives]] [[chemisches Element]] mit der [[Ordnungszahl]] 84 und dem [[Elementsymbol]] Po. Es wird der Elementgruppe der [[Chalkogene]] zugeordnet. |
|||
== Geschichte == |
== Geschichte == |
||
Polonium wurde [[1898]] entdeckt. Seine Entdeckerin [[Marie Curie]] nannte es zu Ehren ihres Heimatlandes [[Polen]] (lateinisch: Polonia) Polonium. Marie Curie verzichtete auf die [[Patentierung]] des Gewinnungsverfahrens, damit die Erforschung dieses Elements ungehindert weitergehen konnte. Für die Entdeckung und Beschreibung von Polonium (zusammen mit [[Radium]]) erhielt Marie Curie 1911 den [[Nobelpreis]] für Chemie. |
|||
Die Existenz eines sehr stark strahlenden Elements in Uran-haltiger [[Pechblende]] wurde erstmals 1898 vom Ehepaar [[Pierre Curie|Pierre]] und [[Marie Curie]] postuliert.<ref name="Sieghard Neufeldt">{{Literatur |Autor=Sieghard Neufeldt |Titel=Chronologie Chemie |Verlag=John Wiley & Sons |Datum=2012 |ISBN=3-527-66284-7 |Seiten=115 |Online={{Google Buch | BuchID = 0lFQjLAlgC0C | Seite = 115 }}}}</ref> Zu Ehren von Marie Curies Heimat [[Russisch-Polen|Polen]] nannten sie es Polonium (vom lateinischen Wort „Polonia“). Eine Isolierung gelang ihnen nicht, sondern erst 1902 dem Chemiker [[Willy Marckwald]],<ref>{{Polytechnisches Journal|Dokumentencode=mi322is23_1 |Autor= |Titel=Die 14. Hauptversammlung der Bunsengesellschaft |Jahr=1907 |Seiten=364 }}: „3 mg Poloniumsalz aus 5.000 kg Uranerz“.</ref> der dieses Element als ''Radiotellur'' charakterisierte. Für die Entdeckung und Beschreibung von Polonium (zusammen mit [[Radium]]) erhielt Marie Curie 1911 den [[Nobelpreis]] für Chemie. Die Entdeckung von Radium – und später Polonium – war möglich, da den Curies auffiel, dass Uranerze stärker radioaktiv waren als reine Uransalze, welche damals bereits für Experimente verfügbar waren. Die Curies nahmen – richtigerweise – an, dass Uranerze neben Uran weitere radioaktive [[Spurenelement]]e enthalten, welche in gereinigten Uransalzen (beinahe) abwesend sind. Da Radium eine bedeutend längere Halbwertszeit als Polonium hat, und die chemische Extraktion aufgrund der Unlösbarkeit von [[Radiumsulfat]] aus dem löslichen [[Uran(IV)-sulfat]] im Bereich der Möglichkeiten damaliger extraktiver Chemie lag, konnte Radium tatsächlich in nennenswerten Mengen extrahiert werden. In Uranerz liegt pro Tonne Uran etwa 300 Milligramm Radium vor. Eine kleine, aber dennoch stofflich nachweisbare und extrahierbare Konzentration Polonium hingegen, welches sich zu Radium im Masseverhältnis von etwa 230 [[parts per million|ppm]] befindet und chemisch dem Blei stark ähnelt, war mit damaligen Mitteln nur aufgrund seiner Radioaktivität nachweisbar. Daher war die Existenz von Polonium bis zur Entdeckung der [[Kernspaltung]] und praktikablen großtechnischen Möglichkeiten der [[Transmutation]] mittels Neutronenbestrahlung eher von theoretischem Interesse, um die „Lücken“ im Periodensystem der Elemente zu füllen. Die Extraktion von Polonium aus natürlichen Materialien erfolgte nie über den Labormaßstab hinaus und heute wird allfällig benötigtes Polonium in entsprechenden [[Forschungsreaktor]]en gezielt hergestellt. |
|||
== Gewinnung und Herstellung == |
== Gewinnung und Herstellung == |
||
Polonium ist grundsätzlich ein seltenes Gift und deshalb sehr teuer. |
|||
Wenn man es kostengüstig bekommen möchte sollte man in Londoner Sushi-Bars ein wenig rohen Fisch bestellen. |
|||
Noch Angaben eines gewissen Alexander L., erhält man pro Bestellung etwa 0,25 Gramm des wertvollen Poloniums! |
|||
Poloniumisotope sind Zwischenprodukte der [[Thorium-Reihe]] und der [[Uran-Radium-Reihe]], wobei letztere das häufigste Isotop <sup>210</sup>Po produziert. Polonium kann daher bei der Aufarbeitung von [[Pechblende]] gewonnen werden (1000 Tonnen Uranpechblende enthalten etwa 0,03 Gramm Polonium <ref>Holleman, Wiberg; Lehrbuch der Anorganischen Chemie; 101. Auflage; S.635</ref>). Dabei reichert es sich zusammen mit [[Bismut]] an. Von diesem Element kann man es anschließend mittels fraktionierter Fällung der [[Sulfide]] ([[Poloniumsulfid]] ist schwerer löslich als [[Bismutsulfid]]) trennen. |
|||
Poloniumisotope sind Zwischenprodukte der [[Thorium-Reihe]] und der [[Uran-Radium-Reihe]], wobei letztere das häufigste Isotop <sup>210</sup>Po produziert. Polonium kann daher bei der Aufarbeitung von [[Pechblende]] gewonnen werden (1000 Tonnen Uranpechblende enthalten etwa 0,03 Gramm Polonium<ref name="HOWI_617">{{Holleman-Wiberg|Auflage=102.|Startseite=617}}</ref>). Dabei reichert es sich zusammen mit [[Bismut]] an. Von diesem Element kann man es anschließend mittels fraktionierter Fällung der [[Sulfide]] trennen, da [[Poloniumsulfid]] schwerer löslich ist als [[Bismutsulfid]]. |
|||
Heutzutage erfolgt die Herstellung von Polonium jedoch im [[Kernreaktor]] durch [[Neutronen]]beschuss von Bismut: |
|||
Heutzutage erfolgt die Herstellung von Polonium jedoch im [[Kernreaktor]] durch [[Neutron]]enbeschuss von Bismut: |
|||
:<math>\mathrm{{ }^{209}Bi + n \rightarrow { }^{210}Bi \rightarrow { }^{210}Po + \beta^-}</math> |
:<math>\mathrm{{ }^{209}Bi + n \rightarrow { }^{210}Bi \rightarrow { }^{210}Po + \beta^-}</math> |
||
Die [[Halbwertszeit]] t<sub> |
Die [[Halbwertszeit]] t<sub>½</sub> für den [[Betazerfall]] von <sup>210</sup>Bi liegt bei 5,01 Tagen. Durch [[Destillation]] werden die beiden Elemente anschließend getrennt ([[Siedepunkt]] von Polonium: 962 [[Grad Celsius|°C]]; Siedepunkt von Bismut: 1564 °C).<ref>osti.gov: [http://www.osti.gov/scitech/servlets/purl/4367751/4367751.PDF Energy Citations Database (ECD)].</ref> Eine andere Methode ist die Extraktion mit Hydroxidschmelzen bei Temperaturen um 400 °C.<ref>{{Patent| Land=US| V-Nr=4018561A| Titel=Apparatus for extraction of polonium - 210 from irradiated bismuth using molten caustic| A-Datum=1975-02-26| V-Datum=1977-04-19| Anmelder=Minnesota Mining & Mfg| Erfinder=Dan H. Siemens Jr, Earl J. Wheelwright}}</ref> Die Weltjahresproduktion beträgt ca. 100 g.<ref>{{Internetquelle |autor=John Emsley |url=https://www.chemistryworld.com/news/qanda-polonium-210/3003354.article |titel=Q&A: Polonium 210 |werk=[[Chemistry World]] |datum=2006-11-27 |sprache=en |abruf=2024-01-07}}</ref> |
||
== Eigenschaften == |
== Eigenschaften == |
||
Polonium ist ein silberweiß glänzendes [[Metall]]. Als einziges Metall weist die α-Modifikation eine [[Kubisches Gitter|kubisch-primitive Kristallstruktur]] auf. Dabei sind nur die Ecken eines Würfels mit Polonium-Atomen besetzt. Diese Kristallstruktur findet man sonst nur noch bei den Hochdruckmodifikationen von [[Phosphor]] und [[Antimon]]. |
|||
Polonium ist ein silberweiß glänzendes [[Metalle|Metall]]. Als einziges Metall weist die α-Modifikation eine [[Kubisches Gitter|kubisch-primitive Kristallstruktur]] auf. Dabei sind nur die Ecken eines Würfels mit Polonium-Atomen besetzt. Diese Kristallstruktur findet man sonst nur noch bei den Hochdruckmodifikationen von [[Phosphor]] und [[Antimon]]. |
|||
Die chemischen Eigenschaften sind vergleichbar mit denen seines linken [[Periode des Periodensystems|Perioden]]-Nachbarn [[Bismut]]. Es ist metallisch leitend und [[Edelmetall|edler]] als [[Silber]]. |
|||
Die chemischen Eigenschaften sind vergleichbar mit denen seines linken [[Periode des Periodensystems|Perioden]]-Nachbarn [[Bismut]]. Es ist metallisch leitend und steht mit seiner Redox-[[Edelmetall|Edelheit]] zwischen [[Rhodium]] und [[Silber]]. |
|||
Polonium löst sich in [[Säuren]] wie [[Salzsäure]], [[Schwefelsäure]] oder [[Salpetersäure]]. |
|||
Polonium löst sich in [[Säuren]] wie [[Salzsäure]], [[Schwefelsäure]] und [[Salpetersäure]] unter Bildung des rosaroten Po<sup>2+</sup>-Ions. Po<sup>2+</sup>-Ionen in wässrigen Lösungen werden langsam zu gelben Po<sup>4+</sup>-Ionen oxidiert, da durch die [[Alphastrahlung]] des Poloniums im Wasser oxidierende Verbindungen gebildet werden.<ref name="HOWI_620">{{Holleman-Wiberg|Auflage=102.|Startseite=620}}</ref> |
|||
== Isotope == |
== Isotope == |
||
Bekannt sind die Polonium-[[Isotop]]e <sup>190</sup>Po bis <sup>218</sup>Po<ref>http://atom.kaeri.re.kr/cgi-bin/nuclide?nuc=Po Polonium Daten bei KAERI (Einem koreanischen Kernforschungsinstitut)</ref>, welche ausnahmslos radioaktiv sind. Die [[Halbwertszeit]]en sind recht unterschiedlich und reichen von etwa 3·10<sup>-7</sup> Sekunden für <sup>212</sup>Po bis zu 103 Jahren für <sup>209</sup>Po. Das wichtigste, natürlich vorkommende Isotop <sup>210</sup>Po hat eine Halbwertszeit von 138 Tagen und zerfällt unter Aussendung von [[Alpha-Strahlung]] in das [[Blei]]-Isotop <sup>206</sup>Pb. |
|||
Bekannt sind von den Polonium-[[Isotop]]en, die alle radioaktiv sind, die Isotope <sup>190</sup>Po bis <sup>218</sup>Po.<ref>Daten zu [http://atom.kaeri.re.kr/cgi-bin/nuclide?nuc=Po Polonium] bei KAERI (einem koreanischen Kernforschungsinstitut)</ref> Die [[Halbwertszeit]]en sind recht unterschiedlich und reichen von etwa 3·10<sup>−7</sup> Sekunden für <sup>212</sup>Po bis zu 103 Jahren für das künstlich hergestellte <sup>209</sup>Po. Trotz der längeren Halbwertszeit von Polonium-209 ist es seltener als Polonium-210, da es nicht Bestandteil einer Zerfallsreihe ist, da der beta-stabile [[Isobar (Kernphysik)|Isobar]] mit [[Massezahl]] 209 Bismut ist. Auch die künstlichen Routen zur Erzeugung von Polonium in Kernreaktoren erzeugen zumeist Polonium-210, da dieses relativ einfach durch [[Neutroneneinfang]] in Bismut-209 darstellbar ist und die leichteren Isotope bedeutend schwieriger zu erzeugen sind. |
|||
Das häufigste, natürlich vorkommende Isotop <sup>210</sup>Po hat eine Halbwertszeit von 138 Tagen und zerfällt unter Aussendung von [[Alphastrahlung]] in das [[Blei]]-Isotop <sup>206</sup>Pb. Wegen dieser geringen Halbwertszeit erfolgt die Gewinnung des industriell genutzten <sup>210</sup>Po überwiegend künstlich in Kernreaktoren. Das für [[schneller Brüter|schnelle Kernreaktoren]] vorgeschlagene Kühlmittel [[Blei-Bismut-Eutektikum|Blei-Bismut]], ein [[Eutektikum]] mit niedrigem Schmelz- und hohem Siedepunkt, erzeugt, wenn es [[Neutronenstrahlung]], ausgesetzt ist, unweigerlich Polonium-210. Dies wird wahlweise als Nachteil oder als mögliches gewinnbringendes [[Koppelprodukt]] angesehen. Sollten mit Blei-Bismut gekühlte Kernkraftwerke in größerem Umfang zum Einsatz kommen, gäbe es mit an Sicherheit grenzender Wahrscheinlichkeit ein Angebot an Polonium-210, welches die derzeitige Nachfrage um Größenordnungen überschreitet. Eine Abtrennung ist – wie oben skizziert – durch Destillation möglich (mit 1740 °C ist der Siedepunkt des Bleis sogar noch oberhalb jenes von Bismut). |
|||
== Radiotoxikologische Bedeutung == |
== Radiotoxikologische Bedeutung == |
||
Die größte Gefährdung stellt Polonium als Zerfallsprodukt des radioaktiven [[ |
Die größte Gefährdung stellt Polonium als Zerfallsprodukt des radioaktiven [[Edelgase]]s [[Radon]] dar. [[Radon in Häusern|Radon in der Atemluft]] erhöht das Risiko, an [[Lungenkrebs]] zu erkranken. Die eigentliche Ursache ist nicht Radon, sondern die Inhalation der kurzlebigen [[Radon-Zerfallsprodukte|Radonzerfallsprodukte]], die sich im Gegensatz zum gasförmigen Radon im Atemtrakt anreichern. Die unter den Zerfallsprodukten befindlichen Poloniumisotope <sup>210</sup>Po, <sup>212</sup>Po, <sup>214</sup>Po, <sup>216</sup>Po und <sup>218</sup>Po haben die größte radiologische Wirkung, weil sie [[Alphastrahlung|Alphateilchen]] aussenden. |
||
Während [[ |
Während [[Alphastrahlung]] etwa bei äußerer Einwirkung bereits von der obersten Hautschicht aus abgestorbenen Zellen abgeschirmt wird, wirkt sie auf den Menschen stark schädigend, wenn Alpha-Strahler in den Körper gelangen. Über den Blutstrom verteilt sich das Polonium im Körpergewebe. Die zerstörerische Wirkung macht sich bei hohen Akutdosen (500 [[Sievert (Einheit)|mSv]] und mehr) als [[Strahlenkrankheit]] zunächst an Zellen bemerkbar, die sich häufig teilen (z. B. Darmepithelien, Knochenmark). Zu den typischen Symptomen gehören neben [[Haarausfall]] und allgemeiner Schwäche auch [[Diarrhö]], [[Anämie]] sowie [[Blutung]]en aus Nase, Mund, Zahnfleisch und Rektum. |
||
Zum Beispiel produzieren 12 µg (millionstel Gramm) Polonium 210 eine Aktivität von ca. 2 GBq (Milliarden [[Becquerel (Einheit)|Becquerel]]). Das genügt bei einer Absorptionsmasse von ca. 75 kg um innerhalb von ca. 6 Stunden eine Äquivalentdosis von 10 [[Sievert (Einheit)|Sievert]] zu erzeugen, die allgemein als [[Letale Dosis|letale]] Strahlungsdosis angenommen wird. |
|||
Polonium wird vom menschlichen Körper mit einer [[Biologische Halbwertszeit|biologischen Halbwertszeit]] von ca. 50 Tagen ausgeschieden. Reste und Zerfallsprodukte finden sich größtenteils im Kot sowie zu rund 10 % im Urin.<ref>[http://hpschapters.org/northcarolina/NSDS/210PoPDF.pdf Gefahrenhinweise zu Polonium 210] (PDF; 83 kB).</ref> Darüber hinaus sind [[Inkorporation (Medizin)|Inkorporationen]] von außen nur schwer zu entdecken und eine Diagnose schwierig, da kaum Gammastrahlung emittiert wird. Bei einer [[Obduktion]] ist Polonium nur so lange detektierbar, wie nennenswerte Mengen im Körper vorhanden sind. Da nach 10 Halbwertszeiten (bei Polonium-210 also etwas weniger als vier Jahre) nur noch 1/2<sup>10</sup>=1/1024 des Ausgangswertes vorhanden ist, lässt sich ein erst Jahre nach dem Tod aufkommender Verdacht einer Polonium-Vergiftung nicht mehr erhärten oder widerlegen. Da die [[LD-50|LD<sub>50</sub>]] sehr gering ist, kann aus dem Blei-Isotopen-Verhältnis nicht sicher auf <sup>210</sup>Po-Exposition geschlossen werden. Die LD<sub>50</sub> wird auf 50 Nanogramm geschätzt. Im Falle Litwinenko (siehe unten) geht man von 10 Mikrogramm (also dem 200-fachen) aus. Je nach örtlicher Exposition und Lebenswandel enthält ein gesunder erwachsener menschlicher Körper im Bereich von hunderten Milligramm Blei.<ref>{{Internetquelle |url=https://labs.icahn.mssm.edu/toddlab/bone-lead-test/ |titel=Lead Toxicity and Human Health {{!}} Bone Lead Testing Facility |datum=2018-08-21 |sprache=en-US |abruf=2023-03-27}}</ref> |
|||
Einer speziellen Polonium-Exposition sind Raucher ausgesetzt. Als mögliche Quellen kommen sowohl die im Tabakanbau eingesetzten Phosphatdüngemittel als auch eine [[Adsorption]] atmosphärischer Einträge durch die Tabakpflanzen in Frage. Die Anteile der Teer-Kanzerogene und der radioaktiven Exposition am Prozess der Krebsentstehung werden kontrovers diskutiert.<ref>http://www.sueddeutsche.de/panorama/artikel/367/32335/print.html</ref><ref>http://www.qualm-nix.de/umwelt.htm</ref> |
|||
Einer speziellen Polonium-Exposition sind Raucher ausgesetzt.<ref>{{Literatur |Autor=Bernhard Ludewig, Dirk Eidemüller |Titel=Der nukleare Traum: Die Geschichte der deutschen Atomkraft |Auflage=1 |Verlag=DOM publishers |Datum=2020 |ISBN=978-3-86922-088-8 |Seiten=29}}</ref> Als mögliche Quellen kommen sowohl die im Tabakanbau eingesetzten Phosphatdüngemittel<ref name="PMID21772848">V. Zagà, C. Lygidakis u. a.: ''Polonium and lung cancer.'' In: ''Journal of oncology.'' Band 2011, 2011, S. 860103, [[doi:10.1155/2011/860103]], PMID 21772848, {{PMC|3136189}}.</ref> als auch eine [[Adsorption]] atmosphärischer Einträge durch die Tabakpflanzen in Frage. Die Anteile der Teer-Kanzerogene und der radioaktiven Exposition am Prozess der Krebsentstehung werden kontrovers diskutiert.<ref>sueddeutsche.de: [http://www.sueddeutsche.de/panorama/warum-tabak-radioaktiv-ist-ein-rauch-wie-roentgenaufnahmen-pro-jahr-1.857291 Warum Tabak radioaktiv ist Ein Rauch wie 250 Röntgenaufnahmen — pro Jahr], 17. Mai 2010, abgerufen am 27. Mai 2013.</ref><ref>qualm-nix.de: {{Webarchiv |url=http://www.qualm-nix.de/umwelt.htm |text=Rauchen und Umwelt |wayback=20070315211447}}</ref> Schätzungen gehen davon aus, dass bei Rauchern 9 bis 14 % der Bronchialkarzinome durch über Tabakrauch aufgenommene Radioaktivität verursacht werden.<ref name="PMID18344474">M. J. Tidd: ''The big idea: polonium, radon and cigarettes.'' In: ''Journal of the Royal Society of Medicine.'' Band 101, Nummer 3, März 2008, S. 156–157, [[doi:10.1258/jrsm.2007.070021]], PMID 18344474, {{PMC|2270238}} (Review).</ref> |
|||
Im November 2006 kam das Isotop <sup>210<sup>Po in die internationalen Schlagzeilen, als der ehemalige russische Geheimdienstagent [[Alexander Walterowitsch Litwinenko]] durch diese Substanz starb. |
|||
== Verwendung == |
== Verwendung == |
||
Polonium wird in Verbindung mit [[Beryllium]] in transportablen [[Neutronenquelle]]n benutzt. |
|||
Dabei wird die [[Kernreaktion]] <sup>9</sup>Be(<math>\alpha</math>, n)<sup>12</sup>C zur Erzeugung freier [[Neutron]]en genutzt. |
|||
In manchen |
In manchen industriellen [[Ionisator]]en wird <sup>210</sup>Po eingesetzt, z. B. in Anlagen, in denen Papier, Textil oder synthetische Materialien gerollt werden, oder wenn optische Linsen von [[Elektrostatische Aufladung|statischen Aufladungen]] befreit werden sollen. |
||
Die Zündstifte von Firestone-Zündkerzen enthielten um 1940 in den USA das radioaktive Schwermetall. Es sollte die Luft ionisieren und damit die Dauer des Zündfunkens verlängern. |
|||
<sup>210</sup>Po wurde historisch auch in kurzlebigen [[Radioisotopengenerator]]en eingesetzt wie z. B. in frühen Satelliten<ref>http://www.ohio.doe.gov/oh_seb/docs/isotopes.pdf Ausführlicher Bericht über Gewinnung und frühe Verwendung von Polonium (und anderen Elementen).</ref>. Heute kommen i. A. nur noch langlebigere Isotope anderer Elemente zum Einsatz. |
|||
<sup>210</sup>Po entwickelt 140 Watt Wärme pro Gramm, daher wurde es in kurzlebigen [[Radionuklidbatterie]]n, etwa für die sowjetischen Mondfahrzeuge [[Lunochod 1]] und [[Lunochod 2]] eingesetzt.<ref>[[Cornelius Keller]], Walter Wolf, Jashovam Shani: ''Radionuclides, 2. Radioactive Elements and Artificial Radionuclides.'' In: ''[[Ullmanns Enzyklopädie der Technischen Chemie|Ullmann’s Encyclopedia of Industrial Chemistry]].'' 7. Auflage, Wiley-VCH, Weinheim 2012, {{DOI|10.1002/14356007.o22_o15}}.</ref> Die Wärmeleistung genügt, um einen Poloniumkörper zum Schmelzen zu bringen.<ref>[[Igor Wassiljewitsch Petrjanow-Sokolow|Petrjanow-Sokolow]] (Hrsg.): ''Bausteine der Erde'', Bd. 4, Verlag Mir Moskau, Urania Verlag Leipzig, 1977, S. 15.</ref> Heute kommen im Allgemeinen nur noch langlebigere Isotope anderer Elemente zum Einsatz. Gängigstes Element zur Verwendung in Radionuklidbatterien ist heute Plutonium-238 mit einer Halbwertszeit über 80 Jahren. Gerade für Raumsonden, welche ins äußere Sonnensystem unterwegs sind, ist diese Langlebigkeit essentiell um entsprechende Flugzeiten zu überdauern. |
|||
Der Alpha-Strahler Polonium wird in Verbindung mit [[Beryllium]] in transportablen [[Neutronenquelle]]n benutzt. Dabei wird folgende [[Kernreaktion]] zur Erzeugung freier [[Neutron]]en genutzt: |
|||
:<math>\mathrm{{}^{9}_4 Be + {}^{4}_2 \alpha \to {}^{12}_{\ 6} C + {}^{1}_0 n }</math> |
|||
Auch in [[Kernwaffe]]n diente Polonium als Neutronenquelle. So wurden zum Beispiel in den amerikanischen [[Atombombe]]n ''[[Little Boy]]'' und ''[[Fat Man]]'', die [[Atombombenabwürfe auf Hiroshima und Nagasaki|auf Hiroshima und Nagasaki abgeworfen wurden]], Initiatoren aus Polonium und Beryllium zum Start der [[Kettenreaktion (Kernphysik)|Kettenreaktion]] verwendet. |
|||
== Polonium als Gift == |
|||
Wie bei allen Alphastrahlern hinreichender Aktivität ist die allfällige chemische Giftigkeit für die Giftwirkung nicht relevant. Da jedoch bereits die äußere [[Epidermis (Wirbeltiere)|Epidermis]] in der Lage ist, Alphateilchen abzufangen, ist die Radiotoxizität erst bei [[Inkorporation (Medizin)|Inkorporation]] (Essen, Trinken, Einatmen, o. ä.) relevant. Aufgrund der geringen [[Gammastrahlung]], welche beim Zerfall von <sup>210</sup>Po entsteht, ist ein Nachweis [[in vivo]] schwierig, was Poloniumvergiftungen schwer nachweisbar macht. Auch postmortem ist aufgrund der geringen Halbwertszeit der Nachweis nur für einen begrenzten Zeitraum möglich. Da Polonium jedoch (siehe oben) heutzutage fast ausschließlich in entsprechend gesicherten kerntechnischen Anlagen erzeugt und verarbeitet wird, ist der Nachweis von Polonium ein starker Hinweis auf einen entsprechend „ausgestatteten“ Täter oder Auftraggeber. |
|||
=== Alexander Litwinenko === |
|||
2006 starb der zum britischen Geheimdienst [[Secret Intelligence Service|MI6]] übergelaufene, ehemalige Agent des Inlandsgeheimdienstes der Russischen Föderation [[FSB (Geheimdienst)|FSB]] und spätere [[Wladimir Wladimirowitsch Putin|Putin]]-Kritiker Alexander Litwinenko an den Folgen einer durch <sup>210</sup>Po verursachten [[Strahlenkrankheit]]. Das Polonium war ihm vermutlich über kontaminierten Tee verabreicht worden.<ref>[http://www.chemie-im-alltag.de/articles/0089/index.html Polonium-210 – In tödlicher Mission]</ref> |
|||
=== Jassir Arafat === |
|||
Ab Juli 2012 wurden mehrere Studien veröffentlicht, die sich mit einer möglichen Vergiftung des 2004 verstorbenen [[Palästinenser]]-Präsidenten [[Jassir Arafat#Verdacht auf Vergiftung mit Polonium-210|Jassir Arafat]] mit <sup>210</sup>Po befassten. Da seit der etwaigen Vergiftung etliche Halbwertszeiten vergingen, gestaltete sich ein Nachweis im Leichnam schwer. |
|||
Eine Untersuchung von Radiophysikern der [[Universität Lausanne]] im November 2013 bekräftigte jedoch die These der Polonium-Vergiftung.<ref>{{Internetquelle |url=https://www.spiegel.de/politik/ausland/arafat-untersuchung-legt-ermordung-durch-gift-polonium-nahe-a-932254.html|titel=Das Gift-Rätsel - Polonium-Fund in Arafats Leichnam|werk=spiegel.de|datum=2016-11-06|abruf=2023-08-16}}</ref><ref>{{Internetquelle |url=https://www.documentcloud.org/documents/815515/expert-forensics-report-concerning-the-late.pdf|titel=Mangin, Bochud, Augsburger et al: Expert forensics report concerning the late President Yasser Arafat|werk=aljazeera.com via documentcloud.org|datum=2016-11-05|abruf=2023-08-16}}</ref><ref>{{Internetquelle |url=https://taz.de/Schweizer-Untersuchungsbericht/!5055484/|titel= Doch Polonium in Arafats Körper|werk=taz.de|abruf=2023-08-16}}</ref> |
|||
== Verbindungen == |
== Verbindungen == |
||
Aufgrund der hohen Radioaktivität des am leichtesten verfügbaren Isotops <sup>210</sup>Po behindern Hitzeentwicklung und [[Radiolyse]] die Analyse des chemischen Verhaltens. Da nur geringe Mengen verfügbar sind, finden darüber hinaus nur wenige Studien im Gebiet der Poloniumchemie statt. |
|||
=== Polonide === |
|||
Die [[Polonide]] sind salzartige Verbindungen, in welchen das Polonid-[[Anion]] Po<sup>2−</sup> vorliegt und gelten als die stabilsten Verbindungen des Poloniums. Bekannte Polonide sind [[Natriumpolonid]], [[Magnesiumpolonid]] und [[Bleipolonid]]. |
|||
=== Sauerstoffverbindungen === |
=== Sauerstoffverbindungen === |
||
Poloniumdioxid, (PoO<sub>2</sub>)<sub>x</sub>, ist wie das Oxid des Gruppennachbarn [[Tellur]] (Tellurdioxid, (TeO<sub>2</sub>)<sub>x</sub>) eine ionische Verbindung, die in einer gelben und einer roten Modifikation auftritt. Weiterhin kennt man Poloniumtrioxid (PoO<sub>3</sub>). |
|||
[[Polonium(IV)-oxid]] (PoO<sub>2</sub>)<sub>x</sub> ist wie das Oxid des Gruppennachbarn [[Tellur]] ([[Tellurdioxid]], (TeO<sub>2</sub>)<sub>x</sub>) eine ionische Verbindung, die in einer gelben und einer roten Modifikation auftritt. Weiterhin kennt man das schwarze [[Polonium(II)-oxid]] (PoO) und [[Polonium(VI)-oxid]] (PoO<sub>3</sub>). |
|||
=== Sulfide === |
=== Sulfide === |
||
Schwarzes Poloniumsulfid (PoS) erhält man durch Fällung von in Säure gelöstem Polonium mit [[Schwefelwasserstoff]]. |
|||
Schwarzes [[Polonium(II)-sulfid|Poloniummonosulfid]] (PoS) erhält man durch Fällung von in Säure gelöstem Polonium mit [[Schwefelwasserstoff]]. |
|||
=== Wasserstoffverbindungen === |
=== Wasserstoffverbindungen === |
||
[[Poloniumwasserstoff]] (H<sub>2</sub>Po) ist eine bei Raumtemperatur flüssige [[Wasserstoff]]-Verbindung, von der sich zahlreiche Polonide ableiten lassen. |
[[Poloniumwasserstoff]] (H<sub>2</sub>Po) ist eine bei Raumtemperatur flüssige [[Wasserstoff]]-Verbindung, von der sich zahlreiche Polonide ableiten lassen. |
||
=== Halogenide === |
=== Halogenide === |
||
Poloniumhalogenide kennt man mit den Summenformeln PoX<sub>2</sub>, PoX<sub>4</sub> und PoX<sub>6</sub>. Zu nennen sind Poloniumdifluorid, Poloniumdichlorid (rubinrot), Poloniumdibromid (purpurbraun) und Poloniumtetrafluorid, hellgelbes Poloniumtetrachlorid, rotes Poloniumtetrabromid, schwarzes Poloniumtetraiodid sowie das weiße, leicht flüchtige Poloniumhexafluorid. |
|||
Poloniumhalogenide kennt man mit den Summenformeln PoX<sub>2</sub>, PoX<sub>4</sub> und PoX<sub>6</sub>. Zu nennen sind [[Polonium(II)-fluorid|Poloniumdifluorid]], [[Polonium(II)-chlorid|Poloniumdichlorid]] (rubinrot), [[Polonium(II)-bromid|Poloniumdibromid]] (purpurbraun) und [[Polonium(IV)-fluorid|Poloniumtetrafluorid]], hellgelbes [[Polonium(IV)-chlorid|Poloniumtetrachlorid]], rotes [[Polonium(IV)-bromid|Poloniumtetrabromid]] sowie das schwarze [[Polonium(IV)-iodid|Poloniumtetraiodid]]. Die Synthese von [[Polonium(VI)-fluorid|Poloniumhexafluorid]] (PoF<sub>6</sub>) wurde 1945 versucht, führte aber zu keinen eindeutigen Ergebnissen, der Siedepunkt wurde auf −40 °C geschätzt.<ref>''Summary of work to date on volatile neutron source'', Monsanto Chemical Company, Unit 3 abstracts of progress reports, August 16–31, 1945; [http://www.osti.gov/scitech/biblio/443206 Abstract]; [http://www.osti.gov/scitech/servlets/purl/443206/443206.PDF PDF].</ref> |
|||
== Weblinks == |
== Weblinks == |
||
{{Wiktionary |
{{Wiktionary}} |
||
{{Commonscat}} |
|||
{{Commons|Polonium}} |
|||
*[http://www.lenntech.com/deutsch/Data-PSE/Po.htm Gesundheits- und Umweltaspekte |
* [http://www.lenntech.com/deutsch/Data-PSE/Po.htm Gesundheits- und Umweltaspekte von Polonium] |
||
<!-- Der folgende Link zeigt zur Zeit nicht auf den Inhalt den er zeigen sollte. Korrekter Link wurde noch nicht gefunden. |
|||
*[http://www.webelements.com/webelements/elements/text/Po/ Polonium] bei webelements.com |
|||
* [http://www.fz-juelich.de/gs/DE/UeberUns/Organisation/S-B/S-BA/_node.html Verfahren zur Bestimmung von Polonium-210 in Urin] in einem radiochemischen Labor des [[Forschungszentrum Jülich|Forschungszentrums Jülich]] |
|||
*[http://chemlab.pc.maricopa.edu/periodic/Po.html Poloniumisotope] |
|||
//--> |
|||
*[http://www.welt.de/data/2006/11/28/1127590.html Wie Polonium im Reaktor entsteht] Welt.de |
|||
== |
== Einzelnachweise == |
||
<references/> |
<references /> |
||
{{Navigationsleiste Periodensystem}} |
{{Navigationsleiste Periodensystem}} |
||
{{Normdaten|TYP=s|GND=4175077-9|LCCN=sh/85/104579|NDL=00569159}} |
|||
[[Kategorie:Chemisches Element]] |
|||
[[Kategorie:Chalkogen]] |
|||
[[Kategorie:Metall]] |
|||
[[Kategorie:Periode-6-Element]] |
|||
[[Kategorie:Radioaktiver Stoff]] |
|||
[[af:Polonium]] |
|||
[[ar:بولونيوم]] |
|||
[[ast:Poloniu]] |
|||
[[bs:Polonijum]] |
|||
[[ca:Poloni]] |
|||
[[co:Poloniu]] |
|||
[[cs:Polonium]] |
|||
[[da:Polonium]] |
|||
[[el:Πολώνιο]] |
|||
[[en:Polonium]] |
|||
[[eo:Polonio]] |
|||
[[es:Polonio]] |
|||
[[et:Poloonium]] |
|||
[[fa:پولونیوم]] |
|||
[[fi:Polonium]] |
|||
[[fr:Polonium]] |
|||
[[gl:Polonio (elemento)]] |
|||
[[he:פולוניום]] |
|||
[[hr:Polonij]] |
|||
[[hu:Polónium]] |
|||
[[hy:Պոլոնիում]] |
|||
[[id:Polonium]] |
|||
[[io:Polonio]] |
|||
[[is:Pólon]] |
|||
[[it:Polonio]] |
|||
[[ja:ポロニウム]] |
|||
[[ko:폴로늄]] |
|||
[[ku:Polonyûm]] |
|||
[[la:Polonium]] |
|||
[[lb:Polonium]] |
|||
[[lt:Polonis]] |
|||
[[lv:Polonijs]] |
|||
[[nl:Polonium]] |
|||
[[nn:Polonium]] |
|||
[[no:Polonium]] |
|||
[[oc:Polòni]] |
|||
[[pl:Polon]] |
|||
[[pt:Polônio]] |
|||
[[ro:Poloniu]] |
|||
[[ru:Полоний]] |
|||
[[sh:Polonijum]] |
|||
[[simple:Polonium]] |
|||
[[sk:Polónium]] |
|||
[[sr:Полонијум]] |
|||
[[sv:Polonium]] |
|||
[[th:พอโลเนียม]] |
|||
[[uk:Полоній]] |
|||
[[zh:钋]] |
Aktuelle Version vom 10. Februar 2025, 21:01 Uhr
Eigenschaften | |||
---|---|---|---|
Allgemein | |||
Name, Symbol, Ordnungszahl | Polonium, Po, 84 | ||
Elementkategorie | Metalle | ||
Gruppe, Periode, Block | 16, 6, p | ||
Aussehen | silbrig | ||
CAS-Nummer |
7440-08-6 (209Po) | ||
EG-Nummer | 231-118-2 | ||
ECHA-InfoCard | 100.028.289 | ||
Massenanteil an der Erdhülle | 2,1 · 10−11 ppm[1] | ||
Atomar[2] | |||
Atommasse | 209,98 u | ||
Atomradius (berechnet) | 190 (135) pm | ||
Kovalenter Radius | 140 pm | ||
Van-der-Waals-Radius | 197[3] pm | ||
Elektronenkonfiguration | [Xe] 4f14 5d10 6s2 6p4 | ||
1. Ionisierungsenergie | 8.418070(4) eV[4] ≈ 811.8 kJ/mol[5] | ||
2. Ionisierungsenergie | 19.3(1,7) eV[4] ≈ 1860 kJ/mol[5] | ||
3. Ionisierungsenergie | 27.3(7) eV[4] ≈ 2630 kJ/mol[5] | ||
4. Ionisierungsenergie | 36.0(1,7) eV[4] ≈ 3470 kJ/mol[5] | ||
5. Ionisierungsenergie | 57.0(1,9) eV[4] ≈ 5500 kJ/mol[5] | ||
6. Ionisierungsenergie | 69.1(2,0) eV[4] ≈ 6670 kJ/mol[5] | ||
Physikalisch[2] | |||
Aggregatzustand | fest | ||
Modifikationen | α-Po, β-Po | ||
Kristallstruktur | kubisch-primitiv (α-Po) rhomboedrisch (β-Po) | ||
Dichte | 9,196 g/cm3 | ||
Schmelzpunkt | 527 K (254 °C) | ||
Siedepunkt | 1235 K (962 °C) | ||
Molares Volumen | 22,97 · 10−6 m3·mol−1 | ||
Verdampfungsenthalpie | ca. 100 kJ·mol−1 | ||
Schmelzenthalpie | ca. 13 kJ·mol−1 | ||
Elektrische Leitfähigkeit | 2,5 · 106 S·m−1 | ||
Wärmeleitfähigkeit | 20 W·m−1·K−1 | ||
Chemisch[2] | |||
Oxidationszustände | (−2), +2, +4, +6 | ||
Normalpotential | 0,37 V (Po2+ + 2 e− → Po) | ||
Elektronegativität | 2,0 (Pauling-Skala) | ||
Isotope | |||
Weitere Isotope siehe Liste der Isotope | |||
Gefahren- und Sicherheitshinweise | |||
![]() Radioaktiv | |||
| |||
Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen. |
Polonium ist ein radioaktives chemisches Element mit dem Elementsymbol Po und der Ordnungszahl 84. Im Periodensystem steht es in der 6. Hauptgruppe, bzw. der 16. IUPAC-Gruppe, wird also den Chalkogenen zugeordnet. Das häufigste in der Natur vorkommende Isotop Po-210 findet sich als vorletztes Glied der Zerfallsreihe von Uran-238 in uranhaltigen Mineralien, inzwischen wird jedoch Polonium für technische oder wissenschaftliche Anwendungen hauptsächlich durch Einwirkung von Neutronenstrahlung auf Bismut-209 erzeugt, da die Extraktion aus natürlichen Materialien zu aufwendig ist. Polonium gilt allgemein als „hochgiftig“, da bereits eine Dosis von einem Mikrogramm tödlich sein kann. Es ist bekannt als Einsatzmittel bei der Ermordung von Alexander Litwinenko.
Geschichte
[Bearbeiten | Quelltext bearbeiten]Die Existenz eines sehr stark strahlenden Elements in Uran-haltiger Pechblende wurde erstmals 1898 vom Ehepaar Pierre und Marie Curie postuliert.[7] Zu Ehren von Marie Curies Heimat Polen nannten sie es Polonium (vom lateinischen Wort „Polonia“). Eine Isolierung gelang ihnen nicht, sondern erst 1902 dem Chemiker Willy Marckwald,[8] der dieses Element als Radiotellur charakterisierte. Für die Entdeckung und Beschreibung von Polonium (zusammen mit Radium) erhielt Marie Curie 1911 den Nobelpreis für Chemie. Die Entdeckung von Radium – und später Polonium – war möglich, da den Curies auffiel, dass Uranerze stärker radioaktiv waren als reine Uransalze, welche damals bereits für Experimente verfügbar waren. Die Curies nahmen – richtigerweise – an, dass Uranerze neben Uran weitere radioaktive Spurenelemente enthalten, welche in gereinigten Uransalzen (beinahe) abwesend sind. Da Radium eine bedeutend längere Halbwertszeit als Polonium hat, und die chemische Extraktion aufgrund der Unlösbarkeit von Radiumsulfat aus dem löslichen Uran(IV)-sulfat im Bereich der Möglichkeiten damaliger extraktiver Chemie lag, konnte Radium tatsächlich in nennenswerten Mengen extrahiert werden. In Uranerz liegt pro Tonne Uran etwa 300 Milligramm Radium vor. Eine kleine, aber dennoch stofflich nachweisbare und extrahierbare Konzentration Polonium hingegen, welches sich zu Radium im Masseverhältnis von etwa 230 ppm befindet und chemisch dem Blei stark ähnelt, war mit damaligen Mitteln nur aufgrund seiner Radioaktivität nachweisbar. Daher war die Existenz von Polonium bis zur Entdeckung der Kernspaltung und praktikablen großtechnischen Möglichkeiten der Transmutation mittels Neutronenbestrahlung eher von theoretischem Interesse, um die „Lücken“ im Periodensystem der Elemente zu füllen. Die Extraktion von Polonium aus natürlichen Materialien erfolgte nie über den Labormaßstab hinaus und heute wird allfällig benötigtes Polonium in entsprechenden Forschungsreaktoren gezielt hergestellt.
Gewinnung und Herstellung
[Bearbeiten | Quelltext bearbeiten]Poloniumisotope sind Zwischenprodukte der Thorium-Reihe und der Uran-Radium-Reihe, wobei letztere das häufigste Isotop 210Po produziert. Polonium kann daher bei der Aufarbeitung von Pechblende gewonnen werden (1000 Tonnen Uranpechblende enthalten etwa 0,03 Gramm Polonium[9]). Dabei reichert es sich zusammen mit Bismut an. Von diesem Element kann man es anschließend mittels fraktionierter Fällung der Sulfide trennen, da Poloniumsulfid schwerer löslich ist als Bismutsulfid.
Heutzutage erfolgt die Herstellung von Polonium jedoch im Kernreaktor durch Neutronenbeschuss von Bismut:
Die Halbwertszeit t½ für den Betazerfall von 210Bi liegt bei 5,01 Tagen. Durch Destillation werden die beiden Elemente anschließend getrennt (Siedepunkt von Polonium: 962 °C; Siedepunkt von Bismut: 1564 °C).[10] Eine andere Methode ist die Extraktion mit Hydroxidschmelzen bei Temperaturen um 400 °C.[11] Die Weltjahresproduktion beträgt ca. 100 g.[12]
Eigenschaften
[Bearbeiten | Quelltext bearbeiten]Polonium ist ein silberweiß glänzendes Metall. Als einziges Metall weist die α-Modifikation eine kubisch-primitive Kristallstruktur auf. Dabei sind nur die Ecken eines Würfels mit Polonium-Atomen besetzt. Diese Kristallstruktur findet man sonst nur noch bei den Hochdruckmodifikationen von Phosphor und Antimon.
Die chemischen Eigenschaften sind vergleichbar mit denen seines linken Perioden-Nachbarn Bismut. Es ist metallisch leitend und steht mit seiner Redox-Edelheit zwischen Rhodium und Silber.
Polonium löst sich in Säuren wie Salzsäure, Schwefelsäure und Salpetersäure unter Bildung des rosaroten Po2+-Ions. Po2+-Ionen in wässrigen Lösungen werden langsam zu gelben Po4+-Ionen oxidiert, da durch die Alphastrahlung des Poloniums im Wasser oxidierende Verbindungen gebildet werden.[13]
Isotope
[Bearbeiten | Quelltext bearbeiten]Bekannt sind von den Polonium-Isotopen, die alle radioaktiv sind, die Isotope 190Po bis 218Po.[14] Die Halbwertszeiten sind recht unterschiedlich und reichen von etwa 3·10−7 Sekunden für 212Po bis zu 103 Jahren für das künstlich hergestellte 209Po. Trotz der längeren Halbwertszeit von Polonium-209 ist es seltener als Polonium-210, da es nicht Bestandteil einer Zerfallsreihe ist, da der beta-stabile Isobar mit Massezahl 209 Bismut ist. Auch die künstlichen Routen zur Erzeugung von Polonium in Kernreaktoren erzeugen zumeist Polonium-210, da dieses relativ einfach durch Neutroneneinfang in Bismut-209 darstellbar ist und die leichteren Isotope bedeutend schwieriger zu erzeugen sind.
Das häufigste, natürlich vorkommende Isotop 210Po hat eine Halbwertszeit von 138 Tagen und zerfällt unter Aussendung von Alphastrahlung in das Blei-Isotop 206Pb. Wegen dieser geringen Halbwertszeit erfolgt die Gewinnung des industriell genutzten 210Po überwiegend künstlich in Kernreaktoren. Das für schnelle Kernreaktoren vorgeschlagene Kühlmittel Blei-Bismut, ein Eutektikum mit niedrigem Schmelz- und hohem Siedepunkt, erzeugt, wenn es Neutronenstrahlung, ausgesetzt ist, unweigerlich Polonium-210. Dies wird wahlweise als Nachteil oder als mögliches gewinnbringendes Koppelprodukt angesehen. Sollten mit Blei-Bismut gekühlte Kernkraftwerke in größerem Umfang zum Einsatz kommen, gäbe es mit an Sicherheit grenzender Wahrscheinlichkeit ein Angebot an Polonium-210, welches die derzeitige Nachfrage um Größenordnungen überschreitet. Eine Abtrennung ist – wie oben skizziert – durch Destillation möglich (mit 1740 °C ist der Siedepunkt des Bleis sogar noch oberhalb jenes von Bismut).
Radiotoxikologische Bedeutung
[Bearbeiten | Quelltext bearbeiten]Die größte Gefährdung stellt Polonium als Zerfallsprodukt des radioaktiven Edelgases Radon dar. Radon in der Atemluft erhöht das Risiko, an Lungenkrebs zu erkranken. Die eigentliche Ursache ist nicht Radon, sondern die Inhalation der kurzlebigen Radonzerfallsprodukte, die sich im Gegensatz zum gasförmigen Radon im Atemtrakt anreichern. Die unter den Zerfallsprodukten befindlichen Poloniumisotope 210Po, 212Po, 214Po, 216Po und 218Po haben die größte radiologische Wirkung, weil sie Alphateilchen aussenden.
Während Alphastrahlung etwa bei äußerer Einwirkung bereits von der obersten Hautschicht aus abgestorbenen Zellen abgeschirmt wird, wirkt sie auf den Menschen stark schädigend, wenn Alpha-Strahler in den Körper gelangen. Über den Blutstrom verteilt sich das Polonium im Körpergewebe. Die zerstörerische Wirkung macht sich bei hohen Akutdosen (500 mSv und mehr) als Strahlenkrankheit zunächst an Zellen bemerkbar, die sich häufig teilen (z. B. Darmepithelien, Knochenmark). Zu den typischen Symptomen gehören neben Haarausfall und allgemeiner Schwäche auch Diarrhö, Anämie sowie Blutungen aus Nase, Mund, Zahnfleisch und Rektum.
Polonium wird vom menschlichen Körper mit einer biologischen Halbwertszeit von ca. 50 Tagen ausgeschieden. Reste und Zerfallsprodukte finden sich größtenteils im Kot sowie zu rund 10 % im Urin.[15] Darüber hinaus sind Inkorporationen von außen nur schwer zu entdecken und eine Diagnose schwierig, da kaum Gammastrahlung emittiert wird. Bei einer Obduktion ist Polonium nur so lange detektierbar, wie nennenswerte Mengen im Körper vorhanden sind. Da nach 10 Halbwertszeiten (bei Polonium-210 also etwas weniger als vier Jahre) nur noch 1/210=1/1024 des Ausgangswertes vorhanden ist, lässt sich ein erst Jahre nach dem Tod aufkommender Verdacht einer Polonium-Vergiftung nicht mehr erhärten oder widerlegen. Da die LD50 sehr gering ist, kann aus dem Blei-Isotopen-Verhältnis nicht sicher auf 210Po-Exposition geschlossen werden. Die LD50 wird auf 50 Nanogramm geschätzt. Im Falle Litwinenko (siehe unten) geht man von 10 Mikrogramm (also dem 200-fachen) aus. Je nach örtlicher Exposition und Lebenswandel enthält ein gesunder erwachsener menschlicher Körper im Bereich von hunderten Milligramm Blei.[16]
Einer speziellen Polonium-Exposition sind Raucher ausgesetzt.[17] Als mögliche Quellen kommen sowohl die im Tabakanbau eingesetzten Phosphatdüngemittel[18] als auch eine Adsorption atmosphärischer Einträge durch die Tabakpflanzen in Frage. Die Anteile der Teer-Kanzerogene und der radioaktiven Exposition am Prozess der Krebsentstehung werden kontrovers diskutiert.[19][20] Schätzungen gehen davon aus, dass bei Rauchern 9 bis 14 % der Bronchialkarzinome durch über Tabakrauch aufgenommene Radioaktivität verursacht werden.[21]
Verwendung
[Bearbeiten | Quelltext bearbeiten]In manchen industriellen Ionisatoren wird 210Po eingesetzt, z. B. in Anlagen, in denen Papier, Textil oder synthetische Materialien gerollt werden, oder wenn optische Linsen von statischen Aufladungen befreit werden sollen.
Die Zündstifte von Firestone-Zündkerzen enthielten um 1940 in den USA das radioaktive Schwermetall. Es sollte die Luft ionisieren und damit die Dauer des Zündfunkens verlängern.
210Po entwickelt 140 Watt Wärme pro Gramm, daher wurde es in kurzlebigen Radionuklidbatterien, etwa für die sowjetischen Mondfahrzeuge Lunochod 1 und Lunochod 2 eingesetzt.[22] Die Wärmeleistung genügt, um einen Poloniumkörper zum Schmelzen zu bringen.[23] Heute kommen im Allgemeinen nur noch langlebigere Isotope anderer Elemente zum Einsatz. Gängigstes Element zur Verwendung in Radionuklidbatterien ist heute Plutonium-238 mit einer Halbwertszeit über 80 Jahren. Gerade für Raumsonden, welche ins äußere Sonnensystem unterwegs sind, ist diese Langlebigkeit essentiell um entsprechende Flugzeiten zu überdauern.
Der Alpha-Strahler Polonium wird in Verbindung mit Beryllium in transportablen Neutronenquellen benutzt. Dabei wird folgende Kernreaktion zur Erzeugung freier Neutronen genutzt:
Auch in Kernwaffen diente Polonium als Neutronenquelle. So wurden zum Beispiel in den amerikanischen Atombomben Little Boy und Fat Man, die auf Hiroshima und Nagasaki abgeworfen wurden, Initiatoren aus Polonium und Beryllium zum Start der Kettenreaktion verwendet.
Polonium als Gift
[Bearbeiten | Quelltext bearbeiten]Wie bei allen Alphastrahlern hinreichender Aktivität ist die allfällige chemische Giftigkeit für die Giftwirkung nicht relevant. Da jedoch bereits die äußere Epidermis in der Lage ist, Alphateilchen abzufangen, ist die Radiotoxizität erst bei Inkorporation (Essen, Trinken, Einatmen, o. ä.) relevant. Aufgrund der geringen Gammastrahlung, welche beim Zerfall von 210Po entsteht, ist ein Nachweis in vivo schwierig, was Poloniumvergiftungen schwer nachweisbar macht. Auch postmortem ist aufgrund der geringen Halbwertszeit der Nachweis nur für einen begrenzten Zeitraum möglich. Da Polonium jedoch (siehe oben) heutzutage fast ausschließlich in entsprechend gesicherten kerntechnischen Anlagen erzeugt und verarbeitet wird, ist der Nachweis von Polonium ein starker Hinweis auf einen entsprechend „ausgestatteten“ Täter oder Auftraggeber.
Alexander Litwinenko
[Bearbeiten | Quelltext bearbeiten]2006 starb der zum britischen Geheimdienst MI6 übergelaufene, ehemalige Agent des Inlandsgeheimdienstes der Russischen Föderation FSB und spätere Putin-Kritiker Alexander Litwinenko an den Folgen einer durch 210Po verursachten Strahlenkrankheit. Das Polonium war ihm vermutlich über kontaminierten Tee verabreicht worden.[24]
Jassir Arafat
[Bearbeiten | Quelltext bearbeiten]Ab Juli 2012 wurden mehrere Studien veröffentlicht, die sich mit einer möglichen Vergiftung des 2004 verstorbenen Palästinenser-Präsidenten Jassir Arafat mit 210Po befassten. Da seit der etwaigen Vergiftung etliche Halbwertszeiten vergingen, gestaltete sich ein Nachweis im Leichnam schwer.
Eine Untersuchung von Radiophysikern der Universität Lausanne im November 2013 bekräftigte jedoch die These der Polonium-Vergiftung.[25][26][27]
Verbindungen
[Bearbeiten | Quelltext bearbeiten]Aufgrund der hohen Radioaktivität des am leichtesten verfügbaren Isotops 210Po behindern Hitzeentwicklung und Radiolyse die Analyse des chemischen Verhaltens. Da nur geringe Mengen verfügbar sind, finden darüber hinaus nur wenige Studien im Gebiet der Poloniumchemie statt.
Polonide
[Bearbeiten | Quelltext bearbeiten]Die Polonide sind salzartige Verbindungen, in welchen das Polonid-Anion Po2− vorliegt und gelten als die stabilsten Verbindungen des Poloniums. Bekannte Polonide sind Natriumpolonid, Magnesiumpolonid und Bleipolonid.
Sauerstoffverbindungen
[Bearbeiten | Quelltext bearbeiten]Polonium(IV)-oxid (PoO2)x ist wie das Oxid des Gruppennachbarn Tellur (Tellurdioxid, (TeO2)x) eine ionische Verbindung, die in einer gelben und einer roten Modifikation auftritt. Weiterhin kennt man das schwarze Polonium(II)-oxid (PoO) und Polonium(VI)-oxid (PoO3).
Sulfide
[Bearbeiten | Quelltext bearbeiten]Schwarzes Poloniummonosulfid (PoS) erhält man durch Fällung von in Säure gelöstem Polonium mit Schwefelwasserstoff.
Wasserstoffverbindungen
[Bearbeiten | Quelltext bearbeiten]Poloniumwasserstoff (H2Po) ist eine bei Raumtemperatur flüssige Wasserstoff-Verbindung, von der sich zahlreiche Polonide ableiten lassen.
Halogenide
[Bearbeiten | Quelltext bearbeiten]Poloniumhalogenide kennt man mit den Summenformeln PoX2, PoX4 und PoX6. Zu nennen sind Poloniumdifluorid, Poloniumdichlorid (rubinrot), Poloniumdibromid (purpurbraun) und Poloniumtetrafluorid, hellgelbes Poloniumtetrachlorid, rotes Poloniumtetrabromid sowie das schwarze Poloniumtetraiodid. Die Synthese von Poloniumhexafluorid (PoF6) wurde 1945 versucht, führte aber zu keinen eindeutigen Ergebnissen, der Siedepunkt wurde auf −40 °C geschätzt.[28]
Weblinks
[Bearbeiten | Quelltext bearbeiten]Einzelnachweise
[Bearbeiten | Quelltext bearbeiten]- ↑ Harry H. Binder: Lexikon der chemischen Elemente, S. Hirzel Verlag, Stuttgart 1999, ISBN 3-7776-0736-3.
- ↑ Die Werte für die Eigenschaften (Infobox) sind, wenn nicht anders angegeben, aus www.webelements.com (Polonium) entnommen.
- ↑ Manjeera Mantina, Adam C. Chamberlin, Rosendo Valero, Christopher J. Cramer, Donald G. Truhlar: Consistent van der Waals Radii for the Whole Main Group. In: J. Phys. Chem. A. 2009, 113, S. 5806–5812, doi:10.1021/jp8111556.
- ↑ a b c d e f Eintrag zu polonium in Kramida, A., Ralchenko, Yu., Reader, J. und NIST ASD Team (2019): NIST Atomic Spectra Database (ver. 5.7.1). Hrsg.: NIST, Gaithersburg, MD. doi:10.18434/T4W30F (physics.nist.gov/asd). Abgerufen am 13. Juni 2020.
- ↑ a b c d e f Eintrag zu polonium bei WebElements, www.webelements.com, abgerufen am 13. Juni 2020.
- ↑ Die von der Radioaktivität ausgehenden Gefahren gehören nicht zu den einzustufenden Eigenschaften nach der GHS-Kennzeichnung. In Bezug auf weitere Gefahren wurde dieses Element entweder noch nicht eingestuft oder eine verlässliche und zitierfähige Quelle hierzu wurde noch nicht gefunden.
- ↑ Sieghard Neufeldt: Chronologie Chemie. John Wiley & Sons, 2012, ISBN 3-527-66284-7, S. 115 (eingeschränkte Vorschau in der Google-Buchsuche).
- ↑ Die 14. Hauptversammlung der Bunsengesellschaft. In: Polytechnisches Journal. 322, 1907, Miszelle 1, S. 364.: „3 mg Poloniumsalz aus 5.000 kg Uranerz“.
- ↑ A. F. Holleman, E. Wiberg, N. Wiberg: Lehrbuch der Anorganischen Chemie. 102. Auflage. Walter de Gruyter, Berlin 2007, ISBN 978-3-11-017770-1, S. 617.
- ↑ osti.gov: Energy Citations Database (ECD).
- ↑ Patent US4018561A: Apparatus for extraction of polonium - 210 from irradiated bismuth using molten caustic. Angemeldet am 26. Februar 1975, veröffentlicht am 19. April 1977, Anmelder: Minnesota Mining & Mfg, Erfinder: Dan H. Siemens Jr, Earl J. Wheelwright.
- ↑ John Emsley: Q&A: Polonium 210. In: Chemistry World. 27. November 2006, abgerufen am 7. Januar 2024 (englisch).
- ↑ A. F. Holleman, E. Wiberg, N. Wiberg: Lehrbuch der Anorganischen Chemie. 102. Auflage. Walter de Gruyter, Berlin 2007, ISBN 978-3-11-017770-1, S. 620.
- ↑ Daten zu Polonium bei KAERI (einem koreanischen Kernforschungsinstitut)
- ↑ Gefahrenhinweise zu Polonium 210 (PDF; 83 kB).
- ↑ Lead Toxicity and Human Health | Bone Lead Testing Facility. 21. August 2018, abgerufen am 27. März 2023 (amerikanisches Englisch).
- ↑ Bernhard Ludewig, Dirk Eidemüller: Der nukleare Traum: Die Geschichte der deutschen Atomkraft. 1. Auflage. DOM publishers, 2020, ISBN 978-3-86922-088-8, S. 29.
- ↑ V. Zagà, C. Lygidakis u. a.: Polonium and lung cancer. In: Journal of oncology. Band 2011, 2011, S. 860103, doi:10.1155/2011/860103, PMID 21772848, PMC 3136189 (freier Volltext).
- ↑ sueddeutsche.de: Warum Tabak radioaktiv ist Ein Rauch wie 250 Röntgenaufnahmen — pro Jahr, 17. Mai 2010, abgerufen am 27. Mai 2013.
- ↑ qualm-nix.de: Rauchen und Umwelt ( vom 15. März 2007 im Internet Archive)
- ↑ M. J. Tidd: The big idea: polonium, radon and cigarettes. In: Journal of the Royal Society of Medicine. Band 101, Nummer 3, März 2008, S. 156–157, doi:10.1258/jrsm.2007.070021, PMID 18344474, PMC 2270238 (freier Volltext) (Review).
- ↑ Cornelius Keller, Walter Wolf, Jashovam Shani: Radionuclides, 2. Radioactive Elements and Artificial Radionuclides. In: Ullmann’s Encyclopedia of Industrial Chemistry. 7. Auflage, Wiley-VCH, Weinheim 2012, doi:10.1002/14356007.o22_o15.
- ↑ Petrjanow-Sokolow (Hrsg.): Bausteine der Erde, Bd. 4, Verlag Mir Moskau, Urania Verlag Leipzig, 1977, S. 15.
- ↑ Polonium-210 – In tödlicher Mission
- ↑ Das Gift-Rätsel - Polonium-Fund in Arafats Leichnam. In: spiegel.de. 6. November 2016, abgerufen am 16. August 2023.
- ↑ Mangin, Bochud, Augsburger et al: Expert forensics report concerning the late President Yasser Arafat. In: aljazeera.com via documentcloud.org. 5. November 2016, abgerufen am 16. August 2023.
- ↑ Doch Polonium in Arafats Körper. In: taz.de. Abgerufen am 16. August 2023.
- ↑ Summary of work to date on volatile neutron source, Monsanto Chemical Company, Unit 3 abstracts of progress reports, August 16–31, 1945; Abstract; PDF.