„NF-κB“ – Versionsunterschied
[ungesichtete Version] | [gesichtete Version] |
K Verweis zu Adhäsionsmolekül und Zelle eingefügt |
S3r0 (Diskussion | Beiträge) →Regulation und Einordnung in zelluläre Signalwege: "freisetzen" mE potentiell irritierend → so vllt doch etwas plastischer, ohne völligen Verzicht. hopefully ^^ Markierungen: Mobile Bearbeitung Bearbeitung von einer mobilen Anwendung Bearbeitung mit Android-App App-Bearbeitung eines Abschnitts im Quelltextmodus |
||
(121 dazwischenliegende Versionen von 71 Benutzern werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
'''NF-κB''' (nuclear factor 'kappa-light-chain-enhancer' of activated B-cells) ist ein spezifischer [[Transkriptionsfaktor]], der in praktisch allen tierischen Zelltypen und Geweben vorkommt. Über die Bindung an bestimmte regulatorische Abschnitte der [[Desoxyribonukleinsäure|DNA]] kann er die [[Transkription (Biologie)|Transkription]] abhängiger [[Gen]]e beeinflussen. |
|||
'''NF-κB''' (Nukleärer Faktor κB) ist einer der wichtigsten spezifischen [[Transkriptionsfaktor]]en. |
|||
==Bedeutung== |
== Bedeutung == |
||
NF-κB<ref> |
NF-κB<ref>Aussprache: En-ef-kappa-be. Die Bezeichnung ist darauf zurückzuführen, dass NF-κB zuerst beschrieben wurde als ein im Zellkern (Nucleus) reifer [[B-Lymphozyt]]en vorhandenes [[Protein]], das an ein [[Sequenzmotiv|DNA-Motiv]] im [[Enhancer (Genetik)|Transkriptionsverstärker]] des Gens für die κ-Kette der Immunglobuline bindet (Sen und Baltimore 1986). Nach und nach wurde jedoch gezeigt, dass NF-κB in allen Zellen des Organismus vorhanden ist; der Name wurde jedoch beibehalten.</ref> ist von großer Bedeutung für die Regulation der [[Immunantwort]], der [[Zellproliferation]] und des [[Programmierter Zelltod|Zelltodes]]. Die Aktivierung von NF-κB gilt als kritisch für die Entstehung von [[Entzündung]]en. Schließlich erfüllt NF-κB wichtige Funktionen im Bereich der Entwicklung des [[Immunsystem]]s und der lymphatischen Organe. |
||
Die Rolle von NF-κB in anderen Zusammenhängen (z. B. im [[Nervensystem]]) ist Gegenstand gegenwärtiger Forschung. |
|||
Aufgrund seiner vielfältigen Funktionen wird NF-κB auch mit zahlreichen Erkrankungen in Zusammenhang gebracht. Dabei ist vielfach unklar, inwieweit die Aktivierung von NF-κB tatsächlich kausal in den Krankheitsprozess eingreift. Bei einigen Arten von [[Krebs (Medizin)|Krebserkrankungen]] wird eine solche Rolle zunehmend als wahrscheinlich angesehen, so dass Bestandteile des NF-κB-Signalweges inzwischen wichtige Zielstrukturen für die Entwicklung neuer Medikamente geworden sind. |
|||
==Struktur== |
|||
⚫ | Es handelt sich bei NF-κB nicht um ein einzelnes [[Protein]], sondern um fünf bzw. sieben verschiedene Proteine, deren gemeinsames Kennzeichen eine Domäne von etwa 300 [[Aminosäure]]n ist, die sogenannte Rel-Homologie-Domäne |
||
⚫ | |||
⚫ | |||
# RelA (p65) |
|||
# RelB |
|||
# c-Rel |
|||
⚫ | Aus den [[Gen]]en für NF-κB1 und NF-κB2 können jeweils zwei Proteine hergestellt werden, die sich in ihrer Länge unterscheiden und entsprechend |
||
== |
== Struktur == |
||
⚫ | Es handelt sich bei NF-κB nicht um ein einzelnes [[Protein]], sondern um fünf bzw. sieben verschiedene Proteine, deren gemeinsames Kennzeichen eine [[Proteindomäne|Domäne]] von etwa 300 [[Aminosäure]]n ist, die sogenannte Rel-Homologie-Domäne. Jeweils zwei Untereinheiten können in unterschiedlichen Kombinationen aneinanderbinden und auf diese Weise [[Dimer]]e bilden. Die fünf bzw. sieben bei [[Säugetiere]]n<ref>NF-κB ist auch bei der Fruchtfliege ''[[Drosophila melanogaster]]'' bekannt. Dort existieren drei Mitglieder der Proteinfamilie, die ''Dif'', ''Dorsal'' und ''Relish'' heißen.</ref> derzeit bekannten Untereinheiten von NF-κB sind (Alternativbezeichnung in Klammern): |
||
⚫ | NF-κB kann an ein spezifisches [[Sequenzmotiv| |
||
⚫ | |||
⚫ | |||
# RelA (p65): {{UniProt|Q04206}} |
|||
# RelB: {{UniProt|Q01201}} |
|||
# c-Rel: {{UniProt|Q04864}} |
|||
⚫ | Aus den [[Gen]]en für NF-κB1 und NF-κB2 können jeweils zwei Proteine hergestellt werden, die sich in ihrer Länge unterscheiden und entsprechend ihrer [[Molekülmasse]] benannt werden. RelA, RelB und c-Rel werden auch als Rel-Proteine bezeichnet und enthalten – im Gegensatz zu NF-κB1 und NF-κB2 – neben der Rel-Homologie-Domäne auch noch mindestens eine [[Transaktivierungsdomäne]]. Obwohl viele verschiedene Dimere möglich sind, beobachtet man sehr häufig eine Kombination aus einem Nicht-Rel-Protein (NF-κB1 oder NF-κB2) und einem Rel-Protein; klassisches Beispiel ist das p50/RelA-Heterodimer. Derartige [[Heterodimer]]e wirken aufgrund der Transaktivierungsdomäne der Rel-Proteine aktivierend, während für Dimere ohne Beteiligung von Rel-Proteinen eine hemmende Funktion beschrieben ist (v. a. für p50/p50). |
||
== Funktionsweise == |
|||
⚫ | |||
⚫ | NF-κB kann an ein spezifisches [[Sequenzmotiv|DNA-Motiv]] von etwa zehn [[Basenpaare]]n, das sogenannte κB-Motiv, binden. Das κB-Motiv wurde an zahlreichen regulatorischen Bereichen in der DNA nachgewiesen und unterliegt einer gewissen Variabilität, die eine Feinregulation hinsichtlich der unterschiedlichen NF-κB-Dimere erlaubt. Die Bindung von NF-κB an das DNA-Motiv führt in den allermeisten Fällen zu einer verstärkten [[Transkription (Biologie)|Transkription]] der davon abhängigen Gene; je nach Dimerzusammensetzung beobachtet man auch seltener eine Repression der Transkription. Man geht derzeit davon aus, dass – größenordnungsmäßig – in etwa 500<ref>Denise Faustman, Miriam Davis: ''TNF receptor 2 pathway: drug target for autoimmune diseases.'' In: ''[[Nature Reviews Drug Discovery]].'' 9, 2010, S. 482–493, [[doi:10.1038/nrd3030]].</ref> verschiedene Gene von NF-κB reguliert werden. Darunter fallen viele [[Zytokine]] und [[Adhäsionsmolekül]]e, die eine bedeutende Rolle bei der Regulation des [[Immunsystem]]s spielen. |
||
⚫ | In einigen wenigen Zelltypen ist NF-κB immer im [[Zellkern]] vorhanden und damit konstitutiv (d.h. ohne Einwirkung von äußeren Stimuli) aktiv. Dies betrifft beispielsweise [[B-Lymphozyt]]en und [[dendritische Zellen]]. In den meisten anderen Zelltypen dagegen liegt NF-κB inaktiv im [[Zytoplasma]] vor und hat deswegen keinen Zugang zu der im Zellkern befindlichen [[ |
||
⚫ | |||
⚫ | |||
⚫ | In einigen wenigen Zelltypen ist NF-κB immer im [[Zellkern]] vorhanden und damit konstitutiv (d. h. ohne Einwirkung von äußeren Stimuli) aktiv. Dies betrifft beispielsweise [[B-Lymphozyt]]en und [[dendritische Zellen]]. In den meisten anderen Zelltypen dagegen liegt NF-κB inaktiv im [[Zytoplasma]] vor und hat deswegen keinen Zugang zu der im Zellkern befindlichen [[Desoxyribonukleinsäure|DNA]]. Diese Retention im Zytoplasma wird erreicht durch inhibitorische κB-Proteine (IκBα), die an NF-κB binden und es so deaktivieren. |
||
Zu den Stimuli, die eine Aktivierung von NF-κB auslösen können, zählen [[Wachstumsfaktor (Protein)|Wachstumsfaktoren]], [[Zytokine]] (z. B. [[Tumornekrosefaktor|TNF-α]] und [[Interleukin#Interleukin-1β|IL-1β]]), aber auch bakterielle und virale Antigene (z. B. [[Lipopolysaccharid]]e oder doppelsträngige [[Ribonukleinsäure|RNA]]) und chemisch-physikalische Noxen (Bsp.: [[UV-Strahlung]], [[freie Radikale]]). Eine derartige Stimulation bewirkt eine Änderung der Aktivität zellulärer Signalwege, die häufig durch [[Phosphorylierung]] vermittelt werden. Unter den für NF-κB bedeutsamen Signalwegen ist auch der [[MAP-Kinase-Weg]] wichtig. |
|||
Die gemeinsame Endstrecke der Aktivierung von NF-κB besteht in der Aktivierung des IκBα-Kinase-Komplexes (IKK), der die IκBα-Proteine phosphoryliert und damit deren [[Ubiquitin|Ubiquitinierung]] und Abbau durch das [[Proteasom]] einleitet. NF-κB-Moleküle werden somit von ihren Inhibitoren freigesetzt und können nun in den Zellkern gelangen, wo sie ihre spezifischen Funktionen ausüben. IκBα wird schnell resynthetisiert um erneut seine inhibitorische Kontrolle von NF-κB aufzunehmen. |
|||
Charakteristisch für NF-κB ist die schnelle Aktivierung, die schon wenige Minuten nach der Stimulation einsetzt. Dies ist darauf zurückzuführen, dass keine zeitaufwendige Synthese neuer Proteine für die Aktivierung notwendig ist, liegt NF-κB doch bereits funktionsbereit-inhibiert im Zytoplasma vor, sodass nur noch der spezifische Inhibitor proteolytisch abgebaut werden muss. Ein weiteres Kennzeichen von NF-κB ist seine geringe Spezifität, denn die Gene unter seiner Kontrolle sind überaus zahlreich. Diese Charakteristika prädestinieren NF-κB für den Einsatz bei Prozessen, die eine schnelle und umfassende Änderung der Gentranskription erforderlich machen. |
|||
Außer NF-κB werden weitere Transkriptionsfaktoren über ihre subzelluläre Lokalisation (inaktiv im Zytoplasma, aktiv im Zellkern) reguliert und deswegen auch als ''latente zytoplasmatische Faktoren'' bezeichnet. |
|||
=== Beispiele für durch NF-κB regulierte Gene === |
|||
==== Cyclooxygenase-2 (COX-2) ==== |
|||
Die [[Cyclooxygenase-2]] wird durch NF-κB verstärkt transkribiert. NF-κB ist damit ein intrazellulärer Weg, über den [[Tumornekrosefaktor|TNF-α]] und [[Interleukin#Interleukin-1β|IL-1β]] zur vermehrten Bildung von [[Prostaglandin-E2]] führt.<ref name="Rivest">S. Rivest, S. Lacroix, L. Vallières, S. Nadeau, J. Zhang, N. Laflamme: ''How the blood talks to the brain parenchyma and the paraventricular nucleus of the hypothalamus during systemic inflammatory and infectious stimuli.'' In: ''Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.'' Band 223, Nummer 1, Januar 2000, S. 22–38, {{ISSN|0037-9727}}. PMID 10632958. (Review).</ref> |
|||
Ähnlich wird das [[Interleukin-6]] durch NF-κB verstärkt transkribiert. |
|||
=== Beispiele für natürliche Inhibitoren von NF-κB === |
|||
Natürliche Inhibitoren von NF-κB sind<ref name="pmid16918500">N. H. Nam: ''Naturally occurring NF-kappaB inhibitors.'' In: ''[[Mini-Rev Med Chem]].'' 6(8), Aug 2006, S. 945–951. PMID 16918500.</ref> z. B.: [[Allicin]], [[Genistein]], [[Quercetin]], [[Curcumin]], [[Ginkgo]], [[Epigallocatechingallat|EGCG]] und [[Tocotrienole]]. Diese Stoffe sind die wirksamen Bestandteile von [[Knoblauch]], [[Soja]], [[Zwiebeln]], [[Kurkuma|Gelbwurz (Kurkuma)]], Ginkgo, [[Grüner Tee|grünem Tee]] und rotem [[Palmöl]]. |
|||
Für Extrakte aus [[Oregano]], [[Kaffee]], [[Thymian]], [[Gewürznelke]] und [[Echte Walnuss|Walnuss]] wurde sowohl in vitro als auch im Tierversuch eine deutliche Senkung überhöhter NF-κB-Werte nachgewiesen.<ref name="pmid20424131">{{Literatur |Autor=I. Paur, T. R. Balstad, M. Kolberg, M. K. Pedersen, L. M. Austenaa, D. R. Jacobs, R. Blomhoff |Titel=Extract of oregano, coffee, thyme, clove, and walnuts inhibits NF-kappaB in monocytes and in transgenic reporter mice |Sammelwerk=Cancer Prev Res (Phila) |Band=3 |Nummer=5 |Datum=2010-05 |Seiten=653–663 |DOI=10.1158/1940-6207.CAPR-09-0089 |PMID=20424131}}</ref> |
|||
⚫ | |||
<references /> |
<references /> |
||
==Literatur== |
== Literatur == |
||
* R. Sen, D. Baltimore: ''Inducibility of kappa immunoglobulin enhancer-binding protein Nf-kappa B by a posttranslational mechanism.'' In: ''[[Cell (Zeitschrift)|Cell]].'' Band 47, Nummer 6, Dezember 1986, S. 921–928, {{ISSN|0092-8674}}. PMID 3096580. |
|||
* M. Karin, Y. Ben-Neriah: ''Phosphorylation meets ubiquitination: the control of NF-κB activity.'' In: ''[[Annual Review of Immunology]].'' Band 18, 2000, S. 621–663, {{ISSN|0732-0582}}, [[doi:10.1146/annurev.immunol.18.1.621]]. PMID 10837071. (Review). |
|||
* A. H. Brivanlou, J. E. Darnell: ''Signal transduction and the control of gene expression.'' In: ''[[Science]].'' Band 295, Nummer 5556, Februar 2002, S. 813–818, {{ISSN|1095-9203}}, [[doi:10.1126/science.1066355]]. PMID 11823631. (Review). |
|||
== Weblinks == |
|||
* {{KyotoEncyclGenGenom |Name=NF-κB |Art=hsa |Nr=4790+4791+5970}} |
|||
{{SORTIERUNG:Nfkb}} |
|||
[[Kategorie:Proteinkomplex]] |
|||
[[Kategorie:Transkriptionsfaktor]] |
|||
[[Kategorie:Abkürzung]] |
Aktuelle Version vom 2. März 2025, 17:01 Uhr
NF-κB (nuclear factor 'kappa-light-chain-enhancer' of activated B-cells) ist ein spezifischer Transkriptionsfaktor, der in praktisch allen tierischen Zelltypen und Geweben vorkommt. Über die Bindung an bestimmte regulatorische Abschnitte der DNA kann er die Transkription abhängiger Gene beeinflussen.
Bedeutung
[Bearbeiten | Quelltext bearbeiten]NF-κB[1] ist von großer Bedeutung für die Regulation der Immunantwort, der Zellproliferation und des Zelltodes. Die Aktivierung von NF-κB gilt als kritisch für die Entstehung von Entzündungen. Schließlich erfüllt NF-κB wichtige Funktionen im Bereich der Entwicklung des Immunsystems und der lymphatischen Organe. Die Rolle von NF-κB in anderen Zusammenhängen (z. B. im Nervensystem) ist Gegenstand gegenwärtiger Forschung.
Aufgrund seiner vielfältigen Funktionen wird NF-κB auch mit zahlreichen Erkrankungen in Zusammenhang gebracht. Dabei ist vielfach unklar, inwieweit die Aktivierung von NF-κB tatsächlich kausal in den Krankheitsprozess eingreift. Bei einigen Arten von Krebserkrankungen wird eine solche Rolle zunehmend als wahrscheinlich angesehen, so dass Bestandteile des NF-κB-Signalweges inzwischen wichtige Zielstrukturen für die Entwicklung neuer Medikamente geworden sind.
Struktur
[Bearbeiten | Quelltext bearbeiten]Es handelt sich bei NF-κB nicht um ein einzelnes Protein, sondern um fünf bzw. sieben verschiedene Proteine, deren gemeinsames Kennzeichen eine Domäne von etwa 300 Aminosäuren ist, die sogenannte Rel-Homologie-Domäne. Jeweils zwei Untereinheiten können in unterschiedlichen Kombinationen aneinanderbinden und auf diese Weise Dimere bilden. Die fünf bzw. sieben bei Säugetieren[2] derzeit bekannten Untereinheiten von NF-κB sind (Alternativbezeichnung in Klammern):
- NF-κB1 (p50 bzw. p105): UniProt P19838
- NF-κB2 (p52 bzw. p100): UniProt Q00653
- RelA (p65): UniProt Q04206
- RelB: UniProt Q01201
- c-Rel: UniProt Q04864
Aus den Genen für NF-κB1 und NF-κB2 können jeweils zwei Proteine hergestellt werden, die sich in ihrer Länge unterscheiden und entsprechend ihrer Molekülmasse benannt werden. RelA, RelB und c-Rel werden auch als Rel-Proteine bezeichnet und enthalten – im Gegensatz zu NF-κB1 und NF-κB2 – neben der Rel-Homologie-Domäne auch noch mindestens eine Transaktivierungsdomäne. Obwohl viele verschiedene Dimere möglich sind, beobachtet man sehr häufig eine Kombination aus einem Nicht-Rel-Protein (NF-κB1 oder NF-κB2) und einem Rel-Protein; klassisches Beispiel ist das p50/RelA-Heterodimer. Derartige Heterodimere wirken aufgrund der Transaktivierungsdomäne der Rel-Proteine aktivierend, während für Dimere ohne Beteiligung von Rel-Proteinen eine hemmende Funktion beschrieben ist (v. a. für p50/p50).
Funktionsweise
[Bearbeiten | Quelltext bearbeiten]NF-κB kann an ein spezifisches DNA-Motiv von etwa zehn Basenpaaren, das sogenannte κB-Motiv, binden. Das κB-Motiv wurde an zahlreichen regulatorischen Bereichen in der DNA nachgewiesen und unterliegt einer gewissen Variabilität, die eine Feinregulation hinsichtlich der unterschiedlichen NF-κB-Dimere erlaubt. Die Bindung von NF-κB an das DNA-Motiv führt in den allermeisten Fällen zu einer verstärkten Transkription der davon abhängigen Gene; je nach Dimerzusammensetzung beobachtet man auch seltener eine Repression der Transkription. Man geht derzeit davon aus, dass – größenordnungsmäßig – in etwa 500[3] verschiedene Gene von NF-κB reguliert werden. Darunter fallen viele Zytokine und Adhäsionsmoleküle, die eine bedeutende Rolle bei der Regulation des Immunsystems spielen.
Regulation und Einordnung in zelluläre Signalwege
[Bearbeiten | Quelltext bearbeiten]In einigen wenigen Zelltypen ist NF-κB immer im Zellkern vorhanden und damit konstitutiv (d. h. ohne Einwirkung von äußeren Stimuli) aktiv. Dies betrifft beispielsweise B-Lymphozyten und dendritische Zellen. In den meisten anderen Zelltypen dagegen liegt NF-κB inaktiv im Zytoplasma vor und hat deswegen keinen Zugang zu der im Zellkern befindlichen DNA. Diese Retention im Zytoplasma wird erreicht durch inhibitorische κB-Proteine (IκBα), die an NF-κB binden und es so deaktivieren.
Zu den Stimuli, die eine Aktivierung von NF-κB auslösen können, zählen Wachstumsfaktoren, Zytokine (z. B. TNF-α und IL-1β), aber auch bakterielle und virale Antigene (z. B. Lipopolysaccharide oder doppelsträngige RNA) und chemisch-physikalische Noxen (Bsp.: UV-Strahlung, freie Radikale). Eine derartige Stimulation bewirkt eine Änderung der Aktivität zellulärer Signalwege, die häufig durch Phosphorylierung vermittelt werden. Unter den für NF-κB bedeutsamen Signalwegen ist auch der MAP-Kinase-Weg wichtig.
Die gemeinsame Endstrecke der Aktivierung von NF-κB besteht in der Aktivierung des IκBα-Kinase-Komplexes (IKK), der die IκBα-Proteine phosphoryliert und damit deren Ubiquitinierung und Abbau durch das Proteasom einleitet. NF-κB-Moleküle werden somit von ihren Inhibitoren freigesetzt und können nun in den Zellkern gelangen, wo sie ihre spezifischen Funktionen ausüben. IκBα wird schnell resynthetisiert um erneut seine inhibitorische Kontrolle von NF-κB aufzunehmen.
Charakteristisch für NF-κB ist die schnelle Aktivierung, die schon wenige Minuten nach der Stimulation einsetzt. Dies ist darauf zurückzuführen, dass keine zeitaufwendige Synthese neuer Proteine für die Aktivierung notwendig ist, liegt NF-κB doch bereits funktionsbereit-inhibiert im Zytoplasma vor, sodass nur noch der spezifische Inhibitor proteolytisch abgebaut werden muss. Ein weiteres Kennzeichen von NF-κB ist seine geringe Spezifität, denn die Gene unter seiner Kontrolle sind überaus zahlreich. Diese Charakteristika prädestinieren NF-κB für den Einsatz bei Prozessen, die eine schnelle und umfassende Änderung der Gentranskription erforderlich machen.
Außer NF-κB werden weitere Transkriptionsfaktoren über ihre subzelluläre Lokalisation (inaktiv im Zytoplasma, aktiv im Zellkern) reguliert und deswegen auch als latente zytoplasmatische Faktoren bezeichnet.
Beispiele für durch NF-κB regulierte Gene
[Bearbeiten | Quelltext bearbeiten]Cyclooxygenase-2 (COX-2)
[Bearbeiten | Quelltext bearbeiten]Die Cyclooxygenase-2 wird durch NF-κB verstärkt transkribiert. NF-κB ist damit ein intrazellulärer Weg, über den TNF-α und IL-1β zur vermehrten Bildung von Prostaglandin-E2 führt.[4]
Ähnlich wird das Interleukin-6 durch NF-κB verstärkt transkribiert.
Beispiele für natürliche Inhibitoren von NF-κB
[Bearbeiten | Quelltext bearbeiten]Natürliche Inhibitoren von NF-κB sind[5] z. B.: Allicin, Genistein, Quercetin, Curcumin, Ginkgo, EGCG und Tocotrienole. Diese Stoffe sind die wirksamen Bestandteile von Knoblauch, Soja, Zwiebeln, Gelbwurz (Kurkuma), Ginkgo, grünem Tee und rotem Palmöl.
Für Extrakte aus Oregano, Kaffee, Thymian, Gewürznelke und Walnuss wurde sowohl in vitro als auch im Tierversuch eine deutliche Senkung überhöhter NF-κB-Werte nachgewiesen.[6]
Anmerkungen und Einzelnachweise
[Bearbeiten | Quelltext bearbeiten]- ↑ Aussprache: En-ef-kappa-be. Die Bezeichnung ist darauf zurückzuführen, dass NF-κB zuerst beschrieben wurde als ein im Zellkern (Nucleus) reifer B-Lymphozyten vorhandenes Protein, das an ein DNA-Motiv im Transkriptionsverstärker des Gens für die κ-Kette der Immunglobuline bindet (Sen und Baltimore 1986). Nach und nach wurde jedoch gezeigt, dass NF-κB in allen Zellen des Organismus vorhanden ist; der Name wurde jedoch beibehalten.
- ↑ NF-κB ist auch bei der Fruchtfliege Drosophila melanogaster bekannt. Dort existieren drei Mitglieder der Proteinfamilie, die Dif, Dorsal und Relish heißen.
- ↑ Denise Faustman, Miriam Davis: TNF receptor 2 pathway: drug target for autoimmune diseases. In: Nature Reviews Drug Discovery. 9, 2010, S. 482–493, doi:10.1038/nrd3030.
- ↑ S. Rivest, S. Lacroix, L. Vallières, S. Nadeau, J. Zhang, N. Laflamme: How the blood talks to the brain parenchyma and the paraventricular nucleus of the hypothalamus during systemic inflammatory and infectious stimuli. In: Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine. Band 223, Nummer 1, Januar 2000, S. 22–38, ISSN 0037-9727. PMID 10632958. (Review).
- ↑ N. H. Nam: Naturally occurring NF-kappaB inhibitors. In: Mini-Rev Med Chem. 6(8), Aug 2006, S. 945–951. PMID 16918500.
- ↑ I. Paur, T. R. Balstad, M. Kolberg, M. K. Pedersen, L. M. Austenaa, D. R. Jacobs, R. Blomhoff: Extract of oregano, coffee, thyme, clove, and walnuts inhibits NF-kappaB in monocytes and in transgenic reporter mice. In: Cancer Prev Res (Phila). Band 3, Nr. 5, Mai 2010, S. 653–663, doi:10.1158/1940-6207.CAPR-09-0089, PMID 20424131.
Literatur
[Bearbeiten | Quelltext bearbeiten]- R. Sen, D. Baltimore: Inducibility of kappa immunoglobulin enhancer-binding protein Nf-kappa B by a posttranslational mechanism. In: Cell. Band 47, Nummer 6, Dezember 1986, S. 921–928, ISSN 0092-8674. PMID 3096580.
- M. Karin, Y. Ben-Neriah: Phosphorylation meets ubiquitination: the control of NF-κB activity. In: Annual Review of Immunology. Band 18, 2000, S. 621–663, ISSN 0732-0582, doi:10.1146/annurev.immunol.18.1.621. PMID 10837071. (Review).
- A. H. Brivanlou, J. E. Darnell: Signal transduction and the control of gene expression. In: Science. Band 295, Nummer 5556, Februar 2002, S. 813–818, ISSN 1095-9203, doi:10.1126/science.1066355. PMID 11823631. (Review).