„Gehirn“ – Versionsunterschied
[ungesichtete Version] | [gesichtete Version] |
K Änderungen von 78.104.38.50 (Diskussion) auf die letzte Version von Wahldresdner zurückgesetzt Markierung: Zurücksetzung |
|||
Zeile 1: | Zeile 1: | ||
{{Dieser Artikel|behandelt den im Kopf gelegenen Teil des Zentralnervensystems der Wirbeltiere. Weitere Bedeutungen sind unter [[Hirn]] aufgeführt.}} |
|||
[[Bild:Human brain NIH.jpg|thumb|300px|Ein menschliches Gehirn]] |
|||
[[Datei:Chimp Brain in a jar.jpg|mini|[[Schimpansen]]-Gehirn]] |
|||
[[Bild:labeledbrain.jpg|thumb|300px|[[fMRI]]-Bild eines menschlichen Gehirns. Schnitt sagittal, die Nase ist links. [[Commons:Image:brain_chrischan_300.gif|Hier klicken]] für eine animierte Abfolge von Schnitten.]] |
|||
Das '''Gehirn''' (auch '''Hirn'''; [[Griechische Sprache|griechisch]] '''Encephalon''', {{LaS}} '''Cerebrum''') ist ein [[Organ (Biologie)|Organ]] des [[Zentrales Nervensystem|zentralen Nervensystems]] aller [[Wirbeltiere]] und einiger [[Wirbellose]]r, das insbesondere aus [[Nervengewebe]] besteht und von [[Hirnhäute]]n umgeben wird. Seine Hauptfunktion besteht in der [[sensorisch]]en Informationsaufnahme, deren Verarbeitung und der [[Motorik]] (Steuerung der [[Muskulatur]] sowie des [[Hormonsystem]]s). Das Gehirn lässt sich [[Morphologie (Biologie)|morphologisch]] und nach weiteren [[Neuroanatomie|neuroanatomischen]] Kriterien unterschiedlich einteilen und geht auf der Höhe des ersten [[Spinalnerv]]enpaares vom [[Markhirn]] in das [[Rückenmark]] über. |
|||
Als '''Gehirn''' (Hirn, ''Cerebrum'') bezeichnet man den im Kopf gelegenen Teil des [[Zentralnervensystem]]s (ZNS) der [[Wirbeltiere]]. Es liegt geschützt in der [[Schädel|Schädelhöhle]] und wird umhüllt von der [[Hirnhaut]]. |
|||
== |
== Etymologie == |
||
Das Gehirn wird kurz auch als Hirn ({{gohS|hirni, hirne}};<ref>{{Deutsches Wörterbuch |Lemma=hirn n. |Band=10 |Sp= |lemid=GH09760}}</ref>) bezeichnet, griechisch ''Enzephalon''<ref>''[//www.gesundheit.de/lexika/medizin-lexikon/Enzephalon Enzephalon]'' – ''Gesundheit.de'', abgerufen am 8. Dezember 2020; dort auch noch<!-- eigentlich auch schon seit 1901 veraltet --> mit „''Encephalon''“ und zudem im „Englisch[en]: ''{{lang|en|encephalon}}''“ geschrieben …</ref><ref>''[//www.duden.de/rechtschreibung/Enzephalon Enzephalon]'' – ''Duden''/''Bibliographisches Institut'', 2020.</ref> bzw. '''Enkephalon''' ({{grcS|ἐγκέφαλος|engéphalos}} sowie {{lang|grc|ἐν|en|de=in}} und {{lang|grc|κεφαλή|kephalē|de=Kopf}}), Lateinisch ''Cerebrum''. |
|||
Das Wirbeltier-Gehirn verarbeitet hochzentralisiert [[Sinne]]seindrücke und koordiniert komplexe [[Verhalten]]sweisen. Es ist somit der Hauptintegrationsort für alle überlebenswichtigen [[Information]]en, die in einem [[Organismus]] verarbeitet werden. |
|||
== Gehirn der Wirbeltiere == |
|||
Allerdings gelangt nicht jede Information bis zur Hirnrinde und damit zum Bewusstsein. [[Peripher]] liegende Nervengeflechte ([[Plexus (Medizin)|Plexus]]) und vor allem Zentren im Hirnstamm dienen der unbewussten Vorverarbeitung von Signalen. [[Reflexbogen (Physiologie)|Reflexbögen]] übernehmen Aufgaben, die mit höchster Geschwindigkeit und ohne bewusste Verarbeitung und verzögernde Einflussnahme ablaufen müssen. Auch beim Menschen findet sich ein solches [[autonomes Nervensystem]]. Es dient der Koordination vegetativer Funktionen wie Atmung, Kreislauf [Herz], Nahrungsaufnahme, -verdauung und -abgabe, Flüssigkeitsaufnahme und -ausscheidung, sowie der Fortpflanzung. Die Regulation dieser Prozesse würde diejenigen Strukturen des Gehirns, die mit der bewussten Wahrnehmung beschäftigt sind, vollständig überfordern und damit blockieren. |
|||
=== Funktion === |
|||
Das Wirbeltier-Gehirn verarbeitet hochdifferenziert [[Sinn (Wahrnehmung)|Sinneswahrnehmungen]] und koordiniert komplexe [[Verhalten (Biologie)|Verhaltensweisen]]. Es ist somit der Speicher für die meisten komplexen [[Information]]en, die der [[Organismus]] verarbeitet. |
|||
Nicht jede Information gelangt bis zur Hirnrinde und führt zu [[Bewusstsein]]. [[Peripher]] liegende Nervengeflechte ([[Plexus (Medizin)|Plexus]]) und vor allem Zentren im Hirnstamm verarbeiten die meisten der von [[Rezeptor (Biochemie)|Rezeptoren]] ankommenden [[Erregung (Physiologie)|Erregungen]] unbewusst. [[Reflexbogen (Physiologie)|Reflexbögen]] übernehmen Aufgaben, die mit höchster Geschwindigkeit und ohne bewusste Verarbeitung und verzögernde Einflussnahme erledigt werden. Beim Menschen gibt es ebenfalls ein solches [[autonomes Nervensystem]]. Es koordiniert [[Vegetatives Nervensystem|vegetative]] Funktionen wie Atmung, Kreislauf, Nahrungsaufnahme, -verdauung und -abgabe, Flüssigkeitsaufnahme und -ausscheidung sowie Fortpflanzung. |
|||
Die Funktion des Gehirns basiert hauptsächlich auf der Interaktion von stark vernetzten [[Nervenzelle|Neuronen]] über elektrische Impulse (siehe [[Neuronales Netz]]). Ein Mittel zur Analyse von Gehirnaktivitäten stellt daher die Messung der [[Gehirnstrom|Gehirnströme]] mittels eines [[Elektroenzephalographie|EEG]] dar. Eine andere Methode der Messung ist das [[Magnetoenzephalographie|MEG]]. |
|||
Im Gehirn [[Interaktion|interagieren]] stark vernetzte [[Nervenzelle|Neuronen]] (siehe [[Neuronales Netz]] und [[Erregungsleitung]]). Seine Tätigkeit wird [[in vivo]] durch die Messung der Gehirnströme per [[Elektroenzephalografie]] (EEG) und der vom Gehirn produzierten [[Elektrisches Feld|elektrischen Felder]] per [[Magnetoenzephalographie]] (MEG) untersucht. |
|||
Die [[Struktur]] und – in geringerem Maß – die Größe des Gehirns können als Anhaltspunkt für die [[Lernfähigkeit]] und [[Intelligenz]] eines Tieres herangezogen werden. Wiederum ist nicht das Gehirn alleine zu Lernleistungen in der Lage, [[neuronale Plastizität]] findet sich auf so gut wie allen Hierarchiestufen des Nervensystems. |
|||
=== Evolution === |
|||
Neben den Wirbeltieren besitzen auch [[Tintenfische]] hochkomplexe Gehirne, die sie zu gezielten Tätigkeiten befähigen. Im weiteren Sinne bezeichnet man daher auch die Zentralstelle des Nervensystems verschiedener [[Wirbellose|wirbelloser Tiere]], etwa der [[Ringelwürmer]] oder [[Insekten]], als '''Gehirn'''. Je nach Gehirn-Typ spricht man hier von [[Cerebralganglion]], [[Oberschlundganglion]] etc. |
|||
Im Lauf der [[Evolution]] hat das Gehirn „höherer“ Tiere ein beachtliches Maß an [[Differenzierung (Biologie)|Differenzierung]] und innerer Organisation erreicht ([[Zerebralisation]]). Das spiegelt sich in der psychischen und körperlichen [[Ontogenese|Entwicklung des Einzelnen]] wider (siehe [[Embryologie]]). Die Struktur und – in geringerem Maß – das Volumen des Gehirns [[Korrelation|korrelieren]] mit [[Lernfähigkeit]] und [[Intelligenz]]. Erst in der Hierarchie des Nervensystems ist die Leistung des Gehirns verständlich. |
|||
Neben den Wirbeltieren besitzen [[Tintenfische]] hochkomplexe Gehirne, die sie zu gezielten Tätigkeiten befähigen. Im weiteren Sinne ist es die Zentralstelle des Nervensystems verschiedener [[Wirbellose|wirbelloser Tiere]], etwa [[Ringelwürmer]]n oder [[Insekten]]. Je nach Gehirntyp handelt es sich um ein [[Cerebralganglion]] oder ein [[Oberschlundganglion]]. Zwei Gruppen wirbelloser Tiere haben besonders komplizierte Gehirne: Gliederfüßer (Insekten, [[Krebstiere]] und andere) und [[Kopffüßer]] ([[Kraken]], Tintenfische und ähnliche Weichtiere).<ref name="Butler">{{Literatur |Autor=A. B. Butler |Titel=Chordate Evolution and the Origin of Craniates: An Old Brain in a New Head |Sammelwerk=Anatomical Record |Band=261 |Nummer=3 |Datum=2000 |Seiten=111–125 |DOI=10.1002/1097-0185(20000615)261:3<111::AID-AR6>3.0.CO;2-F |PMID=10867629}}</ref> Die Gehirne der Gliederfüßer und der Kopffüßer gehen aus zwei nebeneinander liegenden Nervensträngen hervor. Kopffüßer wie der Krake und der Tintenfisch haben die größten Gehirne aller wirbellosen Tiere.<ref name="Bulloch1995">{{Literatur |Autor=T. H. Bulloch, W. Kutch |Hrsg=O. Breidbach |Titel=The nervous systems of invertebrates: an evolutionary and comparative approach |Verlag=Birkhäuser |Datum=1995 |ISBN=3-7643-5076-8 |Kapitel=Are the main grades of brains different principally in numbers of connections or also in quality? |Seiten=439 |Online=http://books.google.com/books?id=dW5e6FHOH-4C&pg=PA439}}</ref> |
|||
==Aufbau des Wirbeltiergehirns== |
|||
[[Datei:Gehirn eines Rehbocks - brain of a roebuck.jpg|alt=Frisch entnommenes Gehirn eines Rehs|mini|Gehirn eines Rehbocks ca. zwei Stunden nach Erlegung]] |
|||
[[Bild:User-FastFission-brain.gif|right|[[Magnetresonanztomografie]]aufnahmen eines menschlichen Gehirns]] |
|||
Das hochentwickelte Gehirn von Wirbeltieren unterscheidet sich deutlich vom [[Strickleiternervensystem]] der [[Gliederfüßer]]. Bei Insekten zieht sich der Verdauungstrakt direkt durch das vordere Nervensystem (zwischen Tritocerebrum und subösophagealem Ganglion), sodass die Bauchganglien ventral (bauchseitig) des Darmrohrs liegen, während bei Wirbeltieren das Rückenmark dorsal (rückenseitig) des Darms liegt. |
|||
* [[Prosencephalon]] (Vorderhirn) |
|||
** [[Telencephalon]] (Endhirn) |
|||
*** [[Großhirnrinde|Cortex]] |
|||
*** [[Basalganglien]] |
|||
*** [[Limbisches System]] |
|||
** [[Diencephalon]] (Zwischenhirn) |
|||
*** [[Thalamus]] |
|||
*** [[Epithalamus]] |
|||
*** [[Subthalamus]] |
|||
*** [[Hypothalamus]] (mit dem Hypothalamus verbunden ist die [[Hypophyse]]) |
|||
*** [[Metathalamus]] |
|||
* [[Mesencephalon]] (Mittelhirn) |
|||
** [[Tectum]] |
|||
** [[Tegmentum]] |
|||
** [[Crura cerebri]] |
|||
* [[Rhombencephalon]] (Rautenhirn) |
|||
** [[Metencephalon]] (Hinterhirn) |
|||
*** [[Cerebellum]] (Kleinhirn) |
|||
*** [[Pons]] |
|||
** [[Myelencephalon]] (Nachhirn) |
|||
*** [[Medulla oblongata]] |
|||
* ([[Rückenmark]]) |
|||
=== Gliederung === |
|||
== Das menschliche Gehirn == |
|||
Für eine Gliederung des Gehirns können unterschiedliche Kriterien maßgeblich sein, sodass verschiedene Einteilungen in Hirnbereiche möglich sind, die sich nicht gegenseitig ausschließen müssen. Für eine Gliederung des ausgewachsenen menschlichen Gehirns kann es auch durchaus sinnvoll sein, die aus der Untersuchung seiner Entwicklungsschritte gewonnenen Erkenntnisse zu berücksichtigen. |
|||
Das [[Mensch|menschliche]] Gehirn ist (neben einfachen Nervensystemen einiger [[Wurm|Würmer]]) das am besten untersuchte Gehirn im Tierreich, trotzdem sind noch viele Fragen ungeklärt. |
|||
Beispielsweise zeigen sich in der [[ontogenetisch]]en [[Gehirnentwicklung beim Menschen]] nach der [[Neurulation]] der zentralen Anteile der Neuralplatte zum [[Neuralrohr]] als der frühen embryonalen Anlage des [[Zentralnervensystem]]s im weiteren Verlauf aufeinander folgende Stadien bei der Ausbildung des Gehirns. So bilden sich nach Schluss der vorderen Neuralrohröffnung Ende der vierten Entwicklungswoche zunächst drei sogenannte primäre [[Hirnbläschen]] aus dem vorderen Neuralrohrdrittel, die Anlagen von [[Prosencephalon]], [[Mesencephalon]] und [[Rhombencephalon]].<ref>{{Internetquelle |url=https://my-ms.org/anatomy_brain.htm |titel=Anatomy of the Brain |abruf=2023-10-19}}</ref><ref>{{Internetquelle |url=https://www.ninds.nih.gov/health-information/public-education/brain-basics/brain-basics-know-your-brain |titel=Brain Basics: Know Your Brain |sprache=en |abruf=2023-10-19}}</ref> Sie entwickeln sich verschieden, sodass sich beim über fünf Wochen alten Embryo fünf sekundäre Hirnbläschen unterscheiden lassen – diese führen zur Gliederung des Gehirns in fünf Hauptabschnitte: [[Telencephalon]] (Endhirn), [[Diencephalon]] (Zwischenhirn), Mesencephalon (Mittelhirn), [[Metencephalon]] (Hinterhirn) und [[Myelencephalon]] (Markhirn).<ref>{{Internetquelle |url=https://www.mpg.de/gehirn |titel=Das Gehirn |sprache=de |abruf=2023-10-19}}</ref> |
|||
===Zusammenfassung des Aufbaus des menschlichen Gehirns=== |
|||
{| class="wikitable" |
|||
'''Man unterscheidet vereinfacht 4 Hauptbereiche:''' |
|||
|- |
|||
| |
|||
| 4. Woche |
|||
| 5. Woche |
|||
| 6. Woche – Lebensende |
|||
| Ventrikelsystem |
|||
| |
|||
|- |
|||
|rowspan="5"| '''Gehirn''' |
|||
|rowspan="5"| vorderes<br /> [[Neuralrohr]] |
|||
|rowspan="2"| [[Prosencephalon]]<br /> Vorderhirn || [[Telencephalon]]<br /> Endhirn || [[Seitenventrikel]] ||colspan="2"| |
|||
[[Rhinencephalon]], |
|||
[[Amygdala]], |
|||
[[Hippocampus]], |
|||
[[Neocortex]], |
|||
[[Basalganglien]] |
|||
|- |
|||
|[[Diencephalon]]<br />Zwischenhirn || [[Dritter Ventrikel]] || colspan="2"| |
|||
[[Thalamus]] dorsalis,<br /> |
|||
Thalamus ventralis ([[Subthalamus]]),<br /> |
|||
[[Metathalamus]] (mit [[Corpus geniculatum laterale|Kniehöckern]]), |
|||
[[Hypothalamus]] mit [[Neurohypophyse]], |
|||
[[Epithalamus]] mit [[Zirbeldrüse|Epiphyse]] |
|||
|- |
|||
| [[Mesencephalon]]<br />Mittelhirn || [[Mesencephalon]]<br />Mittelhirn|| [[Aquaeductus mesencephali]] ||colspan="2"| |
|||
[[Mittelhirndach|Tectum]] (Dach),<br /> |
|||
[[Mittelhirnhaube|Tegmentum]] (Haube) |
|||
|- |
|||
|rowspan="2"| [[Rhombencephalon]]<br />Rautenhirn||[[Metencephalon]]<br />Hinterhirn|| [[Vierter Ventrikel]] || [[Pons]] (Brücke),<br />[[Cerebellum]] (Kleinhirn) |
|||
|- |
|||
|[[Myelencephalon]]<br />Nachhirn || [[Zentralkanal]] || [[Medulla oblongata]]<br />Verlängertes Mark |
|||
|} |
|||
Die hier dargestellte Grobgliederung folgt dem Werk von Pinel.<ref>John P. J. Pinel, [[Paul Pauli]]: ''Biopsychologie.'' 6., aktualisierte Auflage. Pearson Studium, München u. a. 2007, ISBN 978-3-8273-7217-8, S. 95.</ref> |
|||
== Menschliches Gehirn == |
|||
a) Das '''[[Großhirn]]''' ist in der Mitte durch einen Einschnitt in zwei Halbkugeln (=[[Gro%C3%9Fhirn#Hemisph.C3.A4ren|Hemisphären]]) geteilt. Diese sind stark gefaltet oder auch gefurcht. Es besteht eine Verbindung zwischen den Hemisphären, welcher auch [[Corpus_callosum|Balken]] genannt wird - es handelt sich dabei um einen dicken Nervenstrang. |
|||
<div style="float:right"> |
|||
Die 2-4mm dicke Oberfläche wird [[Großhirnrinde]] genannt. Sie enthält ca. 14 Mrd. Nervenzellen[[Soma (Neuron)|soma]]. Dadurch erscheint sie grau und wird demzufolge auch [[Graue Substanz|graue Substanz]] genannt. |
|||
[[Datei:Labeledbrain.jpg|mini|[[Magnetresonanztomographie|MRT]]-Bild eines menschlichen Gehirns. Schnitt [[Sagittalebene|sagittal]], die Nase ist links. [[:Datei:Brain chrischan 300.gif|Hier klicken]] für eine animierte Abfolge von Schnitten.]]<br /> |
|||
<div class="tright">'''Grobe Unterteilung des menschlichen Gehirns:'''</div><br /> |
|||
[[Datei:Gehirn, lateral - Lobi + Stammhirn + Cerebellum deu.svg|mini|Seitenansicht]]<br /> |
|||
[[Datei:Gehirn, medial - Lobi deu.svg|mini|Sicht auf die Schnittfläche des halbierten Gehirns (Schnittflächen ocker)]]<br /> |
|||
[[Datei:Gehirn, basal - Lobi deu.svg|mini|Sicht von unten]]<br /> |
|||
</div> |
|||
Die Länge aller Nervenbahnen des Gehirns eines erwachsenen Menschen beträgt etwa 5,8 Millionen Kilometer, das entspricht dem 145-fachen Erdumfang. |
|||
Auf ihr lassen sich nach den verschiedenen Aufgaben des Gehirns, die so genannten Rindenfelder lokalisieren. Auf diesen entstehen z.B. die Sinneseindrücke. Man unterschiedet grob zwischen Empfindungsfeldern und Assoziationsfeldern. Letztere bearbeiten [[Reiz]]e der Umwelt und reagieren darauf. |
|||
Das Volumen eines menschlichen Gehirns liegt bei einem Mann bei durchschnittlich etwa 1,27 Liter, bei einer Frau bei etwa 1,13 L.<ref>{{Literatur |Autor=John S. Allen, Hanna Damasio, Thomas J. Grabowski |Titel=Normal neuroanatomical variation in the human brain: an MRI-volumetric study |Sammelwerk=American Journal of Physical Anthropology |Band=118 |Nummer=4 |Datum=2002-08-01 |Seiten=341–358 |DOI=10.1002/ajpa.10092 |PMID=12124914 }}</ref> |
|||
So findet man beispielsweise auf der hinteren Seite z.B. das [[Sehzentrum]]. |
|||
An den Seiten (Schläfenlappen) befindet sich das Hörzentren. Die verschiedenen Felder sind untereinander verbunden. |
|||
Dem vorderen Teil des Gehirns kommen Aufgaben wie [[Gedächtnis]], höhere Denkvorgänge sowie [[Wille]]nsbildung zu. |
|||
=== Aufbau === |
|||
Die Position der Rindenfelder wurde durch Ausfälle, wie z.B. nach [[Schlaganfall|Schlaganfällen]] bestimmt. |
|||
Es lassen sich vereinfacht vier Hauptbereiche unterscheiden.<ref>{{Internetquelle |autor=Visible Body |url=https://www.visiblebody.com/de/learn/nervous/brain |titel=Das menschliche Gehirn {{!}} Anatomie und Funktion |sprache=de |abruf=2023-10-19 }}</ref><ref>{{Internetquelle |url=https://content.byui.edu/file/a236934c-3c60-4fe9-90aa-d343b3e3a640/1/module11/readings/introduction_brain.html |titel=INTRODUCTION / REGIONS OF THE BRAIN |abruf=2023-10-19 }}</ref> |
|||
==== Großhirn ==== |
|||
b) Das '''[[Kleinhirn]]''', besteht auch aus zwei Hemisphären. Es ist z.B. für [[Gleichgewichtssinn|Gleichgewicht]], [[Motorik|Bewegungen und deren Koordination]] verantwortlich. Hier befindet sich auch der so genannte Orientierungssinn. Bei Tieren ist das Kleinhirn oft relativ zum Großhirn besser ausgeprägt, als beim Menschen, insbesondere bei Tieren mit [[Flugvermögen]] oder bei schnellen [[Raubtiere|Räubern]]. |
|||
Das [[Großhirn]] ist in der Mitte durch einen Einschnitt in zwei Halbkugeln (Hemisphären) geteilt. Zwischen diesen gibt es eine breite Verbindung aus einem dicken Nervenstrang, [[Corpus callosum]] oder Balken genannt, und weitere kleinere Verbindungen. |
|||
Neben den automatisierten Bewegungsabläufen wird dem Kleinhirn auch eine Funktion beim unbewussten Lernen zugeschrieben. Neuere Forschungen (2005) lassen darauf schließen, dass es auch einen Anteil am [[Spracherwerb]] und dem sozialen Lernen hat. |
|||
Seine 2–4 mm dicke Oberflächenschicht ([[Großhirnrinde]], ''Cortex'') ist stark gefaltet und fast einen Viertel Quadratmeter groß. Sie enthält etwa 16 Milliarden [[Soma (Zellbiologie)|Nervenzellen]], was etwa einem Fünftel der Nervenzellen des gesamten Gehirns entspricht.<ref name=":0">{{Literatur |Autor=Frederico A. C. Azevedo, Ludmila R. B. Carvalho, Lea T. Grinberg, José Marcelo Farfel, Renata E. L. Ferretti |Titel=Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain |Sammelwerk=The Journal of Comparative Neurology |Band=513 |Nummer=5 |Datum=2009-04-10 |ISSN=1096-9861 |Seiten=532–541 |Online=[http://www.suzanaherculanohouzel.com/azevedo-et-al-2009-j-comp-neur/ Online] |Abruf=2016-01-11 |DOI=10.1002/cne.21974 |PMID=19226510 }}</ref> Unter der Rinde verlaufen [[Nervenfaser]]n. Ansammlungen von [[Neuronen]] sind rosa, die [[myelin]]haltigen Fasern [[Weiße Substanz|weiß]]. Im toten Gehirn färben sich die Neuronen grau. Deshalb heißen sie, obwohl sie während des Lebens rosa sind, [[graue Substanz]]. |
|||
Auf der Rinde lassen sich die sogenannten ''Rindenfelder'' lokalisieren, unterschieden zwischen primären Feldern und Assoziationsfeldern. Die primären Felder verarbeiten nur Informationen einer bestimmten Qualität, solche über Wahrnehmungen (Empfindung, zum Beispiel Sehen, Riechen, Berührung) oder über einfache Bewegungen. Die Assoziationsfelder stimmen verschiedene Funktionen aufeinander ab. Die Zuweisung eines Rindenfeldes zu einer bestimmten Funktion wird immer wieder definiert und relativiert. Erst das korrekte Zusammenspiel verschiedener Felder ermöglicht eine Funktion. |
|||
c) Das '''[[Zwischenhirn]]''' ist die Schaltstelle zwischen [[Großhirn]] und [[Hirnstamm]] und besteht hauptsächlich aus dem [[Thalamus]] (oberer Teil) und dem kleineren unteren Teil, dem [[Hypothalamus]] und der mit ihr verbundenen [[Hypophyse]] (Hirnanhangdrüse). |
|||
Der [[Thalamus]] ist der Mittler von sensiblen und motorischen Signalen zum und vom [[Großhirn]] und besteht hauptsächlich aus grauer Substanz. Der [[Hypothalamus]] steuert zahlreiche körperliche und psychische Lebensvorgänge und wird selbst teils nerval über das [[Vegetatives_Nervensystem|vegetative Nervensystem]] und teils hormonell über den blutweg gesteuert. [[Hypothalamus]] und [[Hypophyse]] (wichtige Hormondrüse des Körpers, die über den Hypophysenstiel mit dem [[Hypothalamus]] verbunden ist) sind das zentrale Bindeglied zwischen dem [[Hormonsystem]] und dem [[Nervensystem]]. |
|||
Das Zwischenhirn ist unter anderem verantwortlich für die [[Schlaf]]-Wach-Steuerung, [[Schmerz]]empfindung und [[Temperaturregulation]]. |
|||
Zu den primären Feldern zählen zum Beispiel der [[Visueller Cortex|visuelle Cortex]], der am hinteren Pol des Gehirns liegt und auf dem die Projektionen der [[Sehbahn]] münden, und der [[Auditorischer Cortex|auditorische Cortex]], der der Verarbeitung akustischer Reize dient und seitlich im [[Schläfenlappen]] liegt. |
|||
Assoziative Felder finden sich unter anderem im vorderen Teil des Gehirns. Ihre Aufgaben sind zum Beispiel [[Gedächtnis]] und höhere Denkvorgänge. |
|||
d) Der '''[[Hirnstamm]]''' ist der [[Phylogenese|stammesgeschichtlich]] älteste Bereich des Gehirns. Er bildet den untersten Gehirnabschnitt und besteht aus auf- und absteigenden Nervenfasern ([[Weiße Substanz]]) und aus Ansammlungen von [[Nervenzelle|Neuronen]] bzw. von [[Soma (Neuron)|Somata]] ([[Graue Substanz]]). Es besteht aus dem [[Mittelhirn]], der [[Brücke (Pons)]] sowie dem [[Nachhirn]] (auch verlängertes Mark genannt, da es sich zwischen [[Pons|Brücke (Pons)]] und [[Rückenmark]] befindet). Der [[Hirnstamm]] verschaltet und verarbeitet eingehende Sinneseindrücke und ausgehende motorische Informationen und ist zudem für elementare und reflexartige Steuermechanismen zuständig. |
|||
Die Rindenfelder und ihre Funktionen können voneinander abgegrenzt werden, indem nach deren Ausfall (zum Beispiel durch [[Schlaganfall]]) die Tätigkeit des Patienten oder durch elektrische Stimulation, mikroskopische und andere Techniken das gesunde Gehirn untersucht wird. Neben der Großhirnrinde sind meist andere Hirnregionen an einer bestimmten Funktion beteiligt. |
|||
Im [[Nachhirn]] kreuzen sich die Nervenbahnen der beiden Körperhälften. Außerdem werden hier viele automatisch ablaufende Vorgänge wie [[Puls|Herzschlag]], [[Atmung]] oder [[Stoffwechsel]] gesteuert. Ebenso befinden sich hier wichtige Reflexzentren, so dass z.B. [[Lidschlussreflex|Lidschluss-]], [[Schluckreflex|Schluck-]], [[Husten]]- und andere Reflexe ausgelöst werden. Das untere Ende des [[Nachhirn]]s schließt an das [[Rückenmark]] an. |
|||
==== Zwischenhirn ==== |
|||
Zum [[Zwischenhirn]] gehören vier Teile: |
|||
Durchschnittlich wiegt das Gehirn einer erwachsenen Frau 1245 g, eines erwachsenen Mannes 1375 g. Zwischen Mann und Frau sind hinsichtlich der [[Intelligenz]] trotz dieser Gewichtsunterschiede keine signifikanten Schwankungen festzustellen. Dies verdeutlicht, dass das Gewicht im Grunde nicht als Maß für die Leistungsfähigkeit des Gehirns gelten kann, wie es historisch von Seiten der [[Misogynie]] immer wieder behauptet wurde. |
|||
Es gibt allerdings auch noch andere Unterschiede im Aufbau des Hirnes, z. B. ist der Bereich preoptica im [[Hypothalamus]] bei jungen Männern mehr als doppelt so groß wie bei jungen Frauen. Beim geistigen Drehen von Objekten im Raum arbeitet beim Mann eine Gehirnregion, bei einer Frau zwei. |
|||
Es ist allerdings noch nicht endgültig geklärt, ob die Unterschiede angeboren sind. |
|||
# [[Thalamus]] (oberer Teil) |
|||
Das Gehirn ist das aktivste Organ des Menschen und hat dementsprechend einen enormen [[Sauerstoff]]- und Energiebedarf, gleichzeitig besitzt es aber keine Speicherkapazitäten dafür: Etwa 20% des Bluts werden vom [[Herz]]en ins Gehirn gepumpt; schon der kurzzeitige Ausfall der Sauerstoffversorgung führt deshalb zu Hirnschäden und bereits nach wenigen Minuten ist der [[Gehirntod]] festzustellen. |
|||
# [[Hypothalamus]], der mit der [[Hypophyse]] (Hirnanhangdrüse) verbunden ist |
|||
# [[Subthalamus]] |
|||
# [[Epithalamus]] |
|||
Der ''Thalamus'' ist der Vermittler sensorischer und motorischer Signale zum und vom [[Telencephalon|Großhirn]]. Bei ihm laufen alle Informationen der [[Sinnesorgan]]e zusammen und werden weiter vermittelt. Er besteht hauptsächlich aus [[Graue Substanz|grauer Substanz]]. Der ''Hypothalamus'' steuert zahlreiche körperliche und psychische Lebensvorgänge und wird selbst teils neuronal über das [[Vegetatives Nervensystem|vegetative Nervensystem]], teils hormonell über den Blutweg gesteuert. [[Hypothalamus]] und [[Hypophyse]] (wichtige Hormondrüse des Körpers, die über den Hypophysenstiel mit dem Hypothalamus verbunden ist) sind das zentrale Bindeglied zwischen dem [[Hormonsystem|Hormon-]] und dem [[Nervensystem]]. Das Zwischenhirn ist beteiligt an der [[Schlaf]]-Wach-Steuerung (siehe [[Formatio reticularis#Funktion|ARAS]], [[Schmerz]]<nowiki />empfindung, [[Thermoregulation|Temperaturregulation]]). |
|||
Das Gehirn des Menschen ist allerdings auch ein sehr anpassungsfähiges Organ. So ist es beispielsweise möglich, dass eine Gehirnhälfte die Arbeit der anderen mitübernimmt, falls diese nicht mehr arbeitsfähig ist. |
|||
==== Kleinhirn ==== |
|||
Der historische Irrglaube, [[Genialität]] müsse am (nach dem Tode entnommenen) Gehirn ablesbar sein, ist so alt wie die [[Gehirnforschung|Hirnerforschung]] und wird selbst heute noch gelegentlich fortgeführt. Der Sachbuchautor Michael Hagner lieferte u. a. anhand der Hirnbesonderheiten vieler Persönlichkeiten wie [[Immanuel Kant]], [[Lenin|Vladimir Iljitsch Lenin]] oder [[Albert Einstein]] nebenher eine Geschichte der Hirnforschung sowie themenbezogene Einblicke in die Kultur- und Sozialgeschichte der vergangenen drei Jahrhunderte. Nicht wenige Hirnforscher gerieten dabei auch ins Fahrwasser nationalistischen und [[Rasse|völkisch-rassistischen]] Denkens. |
|||
Am [[Kleinhirn]] lassen sich ebenfalls zwei Hemisphären unterscheiden. Zusätzlich werden weitere Teile abgegrenzt. Es ist zum Beispiel für [[Gleichgewichtssinn|Gleichgewicht]] und [[Motorik|Bewegungen und deren Koordination]] verantwortlich. Bei Tieren ist es – im Vergleich zum Großhirn – oft stärker entwickelt als beim Menschen, insbesondere bei Arten mit [[Fliegen (Fortbewegung)|Flugvermögen]] oder bei schnellen [[Raubtiere|Räubern]]. |
|||
Oft werden Vergleiche zwischen der Leistungsfähigkeit eines [[Computer]]s und der des menschlichen Gehirns angestellt. Früher versuchte man auch, aus der Funktionsweise von Computern auf die Funktionsweise des Gehirns zu schließen. Heute dagegen versucht man in der [[Neuroinformatik]], die Funktionsweise des Gehirns teilweise auf Computern nachzubilden bzw. durch diese auf neue Ideen zur "intelligenten" Informationsverarbeitung zu kommen. Als Struktur für Denk- und Wissensproduktion liefert das Gehirn eine Architektur, die sich zur Nachahmung empfiehlt. [[Künstliches neuronales Netz|Künstliche neuronale Netzwerke]] haben sich bereits bei der Organisation [[Künstliche Intelligenz|künstlicher Intelligenz]]prozesse etabliert. |
|||
Außerdem wird dem Kleinhirn eine Funktion beim unbewussten [[Lernen]] zugeschrieben. Neuere Forschungen (2005) lassen darauf schließen, dass es am [[Spracherwerb]] und dem sozialen Lernen beteiligt ist. |
|||
===Konnektivität=== |
|||
Das menschliche Gehirn besitzt Schätzungen zu Folge ca. 100 Milliarden (10<sup>11</sup>) [[Nervenzelle]]n, welche durch ca. 100 Billionen (10<sup>14</sup>) [[Synapse]]n eng miteinander verbunden sind. Das heißt, dass jedes [[Nervenzelle|Neuron]] im Schnitt mit 1000 anderen Neuronen verbunden ist und somit im Prinzip jedes beliebige Neuron von jedem Startneuron aus in höchstens 4 Schritten erreichbar ist. Allerdings gibt es lokal deutliche Abweichungen von diesem Mittelwert [http://biology.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pbio.0030068]. Bekannt ist auch die [[retinotrop]]e Abbildungseigenschaft. |
|||
==== Hirnstamm ==== |
|||
===Die 12 Hauptnervenpaare des Gehirns=== |
|||
#Riechnerv |
|||
#Sehnerv |
|||
#Augenmuskelnerv |
|||
#Rollnerv |
|||
#Drillingsnerv (Trigeminus) mit Augennerv, Oberkiefernerv und Unterkiefernerv |
|||
#seitlicher Augenmuskelnerv |
|||
#Gesichtsnerv (Fazialis) |
|||
#Hör- und Gleichgewichtsnerv |
|||
#Zungen-Schlund-Nerv |
|||
#Eingeweidenerv (Vagus) |
|||
#Beinnerv (Akzessorius) |
|||
#Zungenmuskelnerv |
|||
Der [[Hirnstamm]] ist der [[Phylogenese|stammesgeschichtlich]] älteste Teil des Gehirns. Er bildet den untersten Gehirnabschnitt und besteht aus auf- und absteigenden Nervenfasern ([[Weiße Substanz]]) und Ansammlungen von Neuronen beziehungsweise von Somata (Graue Substanz), morphologisch aus dem [[Mittelhirn]], der [[Pons|Brücke (Pons)]] und dem [[Nachhirn]] (auch verlängertes Mark = Medulla oblongata genannt, da zwischen [[Rückenmark]] und Brücke gelegen). Der Hirnstamm verschaltet und verarbeitet eingehende Sinneseindrücke und ausgehende motorische Informationen und ist zudem für elementare und reflexartige Steuermechanismen zuständig. |
|||
==Siehe auch== |
|||
* [[Konnektivität]], [[Skalenfreiheit]], [[Netzwerktheorie]], [[Small World]], [[Neuromorphe Chips]], [[Valentin Braitenberg]] |
|||
*[[Geschichte der Hirnforschung]] |
|||
* [[Portal:Geist und Gehirn]] |
|||
*[[Liquor cerebrospinalis]] – [[Nucleus (ZNS)]] – [[Neurowissenschaften]] – [[Kognitionswissenschaft]] – [[Hirnforschung]] |
|||
* [[Neurobiologie]] - [[Neurophysiologie]] - [[Neuroanatomie]] |
|||
* [[Seele]] - [[Philosophie des Geistes]] – [[Bewusstsein]] – [[Selbstbewusstsein]] – [[Denken]] – [[Lernen]] – [[Gottesmodul]] |
|||
* [[Psychologie]] – [[Biopsychologie]] - [[Neuropsychologie]] |
|||
* [[Neurologie]] - [[Psychiatrie]] |
|||
* [[Kino im Kopf]] – [[Blutversorgung des Gehirns]] – [[Hirn]] – [[Bregen]] |
|||
Im ''Nachhirn'' kreuzen sich die Nervenbahnen der beiden Körperhälften. Außerdem werden hier viele [[Automatismus (Handlung)|automatisch]] ablaufende Vorgänge wie [[Puls|Herzschlag]], [[Atmung]] oder [[Stoffwechsel]] gesteuert. Ebenso befinden sich hier wichtige Reflexzentren, die zum Beispiel [[Lidschlussreflex|Lidschluss-]], [[Schluckreflex|Schluck-]], [[Husten]]- und andere [[Reflex]]e auslösen. Das untere Ende des Nachhirns schließt an das Rückenmark an. |
|||
==Literatur== |
|||
* Olaf Breidbach: ''Die Materialisierung des Ichs: Zur Geschichte der Hirnforschung im 19. und 20. Jahrhundert''. Frankfurt a.M.: Suhrkamp, 1997. (stw ; 1276). ISBN 3-518-28876-8 |
|||
* Günter Gassen, Sabine Minol: ''Unbekanntes Wesen Gehirn''. Darmstadt: Media Team Verlag, 2004. ISBN 3-932845-71-4 |
|||
* [[John Carew Eccles|Eccles, John C.]]: ''Wie das Selbst sein Gehirn steuert''. Berlin / Heidelberg: Springer, 1994 |
|||
* Michael Hagner: ''Geniale Gehirne. Zur Geschichte der Elitegehirnforschung''. Göttingen: Wallstein, 2004. ISBN 3-8924-4649-0 |
|||
* Sabine Perl, Verena Weimer, Hans Günter Gassen: ''Das Gehirn: Zwischen Perfektion und Katastrophe''. Biologie in unserer Zeit 33(1), S. 36–44 (2003), {{ISSN|0045-205X}} |
|||
* [[John von Neumann]]: ''Computer and the Brain''. Yale University Press, 2000. ISBN 0300084730 |
|||
* Richard F. Thompson: ''Das Gehirn : von der Nervenzelle zur Verhaltenssteuerung''. Heidelberg: Spektrum Akademischer Verlag, 2001 (3. Aufl.) ISBN 3-8274-1080-0 |
|||
=== Evolutionäre Entwicklung beim Menschen === |
|||
==Weblinks== |
|||
{{Wiktionary|Gehirn}} |
|||
{{wikiquote1|Gehirn}} |
|||
[[Datei:Human and chimp brain.png|mini|hochkant|Größenvergleich: Gehirn des Homo Sapiens und eines Schimpansen]] |
|||
* [http://www.hirnforschung.de Hirnforschung.de] Täglich aktualisierter und allgemeinverständlicher Newsletter zum Gehirn |
|||
* [http://www.biokurs.de/skripten/12/bs12-42.htm Einfache Einführung in Bau und Funktion des Gehirnes mit vielen Bildern] |
|||
* [http://de.brainexplorer.org/ Brain Explorer] - Beschreibung des Gehirns, seiner Teile, Krankheiten und Funktionsstörungen mit vielen Abbildungen |
|||
* [http://arbeitsblaetter.stangl-taller.at/GEDAECHTNIS/GehirnAufbau.shtml Das Gehirn aus psychologischer Perspektive] aus [[Werner Stangl]]s Arbeitsblättern |
|||
* [http://www.gehirnundgeist.de/blatt/det_gg_manifest Über Gegenwart und Zukunft der Hirnforschung (Zeitschrift Gehirn&Geist)] |
|||
* [http://psydok.sulb.uni-saarland.de/volltexte/2004/102/ Der Mensch und die "Künstliche Intelligenz"] - Philosophische Dissertation, die u. a. auf die Gehirn/Geist-Probleme eingeht |
|||
* [http://www.wissenschaft.de/wissen/news/247836.html Wissenschaft.de: Extrem mutationsfreudige Gene ermöglichten nur beim Menschen eine extrem schnelle Entwicklung des Gehirns] |
|||
* [http://www.brainatlas.org/ Allen Brain Atlas (engl.)] Online Resource unterstützt durch eine 100 Millionen [[$]] [[Stiftung]] des [[Philanthroph|Philanthrophen]] [[Paul Allen]] |
|||
* [http://www.med.harvard.edu/AANLIB/home.html The whole Brain Atlas] Gehirnatlas mit [[Computertomografie|CT]]-, [[Magnetresonanztomografie|MRT]]- und [[Single Photon Emission Computed Tomography|SPECT]]/[[Positronen-Emissions-Tomographie|PET]]-Aufnahmen von Patienten mit verschiedenen Gehirnerkrankungen |
|||
* [http://www.univie.ac.at/anatomie2/plastinatedbrain/main.html The Plastinated Brain] - Gehirnatlas der [[Universität Wien]]; gute Erläuterungen des anatomischen Aufbaus |
|||
Nach der Trennung der beiden [[Evolution]]slinien, welche einerseits zum modernen Menschen, dem [[Neandertaler]] und dem [[Denisova-Mensch]]en und andererseits zu den [[Schimpansen]] geführt hatten, entstand vor etwa fünf Millionen Jahren das menschenspezifische [[Gen]] [[ARHGAP11B]] durch eine teilweise Verdopplung (Duplikation) des in der Tierwelt weit verbreiteten Gens [[ARHGAP11A]]. Das vom ARHGAP11B-Gen [[Genexpression|exprimierte]] Protein ([[Rho-GTPase-aktivierendes Protein 11B]]) enthält bei insgesamt 267 [[ Aminosäure]]n eine Abfolge von 47 Aminosäuren am [[C-Terminus|''C''-Terminus]], die ebenfalls für den Menschen spezifisch ist, im ARHGAP11'''A'''-Protein nicht vorkommt, und für die Fähigkeit von ARHGAP11'''B''' zur Vermehrung von [[basal]]en Vorläuferzellen im [[Neokortex]] von essentieller Bedeutung ist.<ref name="PMID34063381">M. Heide, W. B. Huttner: ''Human-Specific Genes, Cortical Progenitor Cells, and Microcephaly.'' In: ''Cells.'' Band 10, Nummer 5, 05 2021, S. , {{DOI|10.3390/cells10051209}}, PMID 34063381, {{PMC|8156310}} (Review).</ref><ref>[[Max-Planck-Institut für molekulare Zellbiologie und Genetik]], Dresden: [https://www.mpg.de/10849060/gehirngroesse-punktmutation ''Gehirngröße: Mini-Mutation mit riesigen Folgen. Der Expansion des menschlichen Großhirns während der Evolution liegt wahrscheinlich eine winzige Veränderung in einem Gen zugrunde.''] Auf: ''mpg.de'' vom 8. Dezember 2016, zuletzt abgerufen am 17. Januar 2022.</ref> |
|||
{{Gesundheitshinweis}} |
|||
[[Kategorie:Gehirn]] |
|||
Dies wird als Teil der Erklärung dafür angesehen, warum der menschliche Neokortex als der [[Evolution|evolutionär]] jüngste Teil der [[Großhirnrinde]] etwa dreimal so groß ist wie der Neokortex der Schimpansen.<ref name="PMID32610533">Samir Vaid, [[Wieland B. Huttner]]: ''Transcriptional Regulators and Human-Specific/Primate-Specific Genes in Neocortical Neurogenesis.'' In: ''[[International Journal of Molecular Sciences]].'' Band 21, Nummer 13, Juni 2020, {{DOI|10.3390/ijms21134614}}, PMID 32610533, {{PMC|7369782}} (Review).</ref> Der entscheidende Effekt einer rasanten Zunahme der Gehirngröße setzte nach Ansicht der Forschenden jedoch erst später – aber schon vor mehr als 500.000 Jahren – mit einer zusätzlichen [[Punktmutation]] ein.<ref name="PMID27957544">M. Florio, T. Namba, S. Pääbo, M. Hiller, W. B. Huttner: ''A single splice site mutation in human-specific causes basal progenitor amplification.'' In: ''[[Science Advances]].'' Band 2, Nummer 12, Dezember 2016, S. e1601941, {{DOI|10.1126/sciadv.1601941}}, PMID 27957544, {{PMC|5142801}}.</ref><ref name="PMID34063381">M. Heide, W. B. Huttner: ''Human-Specific Genes, Cortical Progenitor Cells, and Microcephaly.'' In: ''Cells.'' Band 10, Nummer 5, 05 2021, S. , {{DOI|10.3390/cells10051209}}, PMID 34063381, {{PMC|8156310}} (Review).</ref> |
|||
=== Gehirne von Männern und Frauen === |
|||
[[Datei:User-FastFission-brain.gif|mini|[[Magnetresonanztomographie]]-Aufnahmen eines menschlichen Gehirns]] |
|||
Zwischen Männern und Frauen unterscheidet sich die relative Größe verschiedener [[Hirnareal|Gehirnareale]].<ref name="cahil2006">Larry Cahil: [http://www.nature.com/nrn/journal/v7/n6/abs/nrn1909.html ''Why sex matters for neuroscience.''] In: ''[[Nature Reviews Neuroscience]].'' Band 7, 2006, S. 477–484.</ref> Am besten erforscht sind hierbei der Hippocampus und die Amygdala. |
|||
: Der [[Hippocampus]], in Form und Größe einem [[Seepferdchen]] ähnlich, ist für das Lernen und die Erinnerungen zuständig und hat bei Männern und Frauen unterschiedliche anatomische Strukturen und neurochemische Zusammensetzungen. Im Verhältnis zum Gesamthirn ist der Hippocampus bei der Frau größer. Beim Mann ist jedoch die CA1-Region größer und die Anzahl der [[Pyramidenzelle]]n erhöht.<ref name="cahil2006" /> Des Weiteren bestehen eine unterschiedliche Rezeptor-Affinität für verschiedene Neurotransmitter und Unterschiede in der [[Langzeitpotenzierung]].<ref name="cahil2006" /> |
|||
: Die Amygdala spielt eine Rolle beim Reproduktionsverhalten und stellt das Gedächtnis für emotionale Ereignisse dar.<ref name="cahil2006" /> Studien zeigten, dass es eine geschlechtsspezifische hemisphärische [[Lateralisation des Gehirns|Lateralisation]] der Amygdalafunktionen in Beziehung auf die Erinnerung an emotionale Momente, bei der Reaktion auf glückliche Gesichter, bei der Verschaltung der Amygdala mit dem restlichen Gehirn sowie bei bestimmten Krankheiten, wie etwa der Depression, gibt.<ref name="cahil2006" /> Bei Frauen ist die linke Gehirnhälfte involviert, bei Männern die rechte.<ref name="cahil2006" /> |
|||
: Auch sind die beiden Hirnhemisphären im Bezug auf Sprache und Raumvorstellung bei Männern tendenziell asymmetrischer organisiert, d. h. die [[Lateralisation des Gehirns]] ist ausgeprägter als bei Frauen,<ref>Onur Güntürkün, Markus Hausmann: ''Funktionelle Hirnorganisation und Geschlecht.'' In: S. Lautenbacher, O. Güntürkün, O. M. Hausmann (Hrsg.): ''Gehirn und Geschlecht: Neurowissenschaft des kleinen Unterschieds zwischen Mann und Frau.'' Springer, Heidelberg 2007, ISBN 978-3-540-71627-3, S. 97.</ref> die wiederum größere Frontallappen haben.<ref>Birger Dulz, Peer Briken, Otto F. Kernberg, Udo Rauchfleisch: ''Handbuch der Antisozialen Persönlichkeitsstörung.'' Schattauer, Stuttgart 2017, ISBN 978-3-7945-3063-2, S. 18.</ref> |
|||
Zur Entstehung dieses [[Dimorphismus]] gibt es verschiedene Theorien. Zum einen kommt [[alternatives Spleißen]] von [[mRNA]] in Frage. Zum Beispiel das Spleißen von Kanalproteinen, sodass deren Durchlässigkeit für Ionen verändert ist.<ref name="cahil2006" /> Zum anderen sind epigenetische Kontrollmechanismen relevant. Hierzu zählen unter anderem die genomische Prägung und die Histonmodifikation.<ref name="cahil2006" /> Zudem wird immer wieder die Frage gestellt, inwiefern die [[Umwelt]] Einfluss auf den Dimorphismus hat. |
|||
Ein anderer Erklärungsansatz ist folgender: [[Geschlechtshormone]], wie [[Testosteron]] und die [[Östrogene]], wirken nicht nur auf die Keimdrüsen, sondern in vielfältiger Weise auf das gesamte [[Nervensystem]]: auf [[Nervenzelle]]n, [[Synapsen]], [[Genexpression]]. Dies gilt für die Zeit der [[Embryogenese|Embryonalentwicklung]] und während der Kindheit, der [[Pubertät]] und im Erwachsenenalter.<ref>Elena Jazin, Larry Cahill: [http://www.nature.com/nrn/journal/v11/n1/abs/nrn2754.html ''Sex differences in molecular neuroscience: from fruit flies to humans.''] In: ''Nature Reviews Neuroscience.'' Band 11, 2010, S. 9–17.</ref> So bewirken die Geschlechtshormone eine typische männliche beziehungsweise weibliche Entwicklung des Nervensystems. Dies wird zum Beispiel in der ''Regio praeoptica'' im Hypothalamus sichtbar, die bei jungen Männern im Vergleich zu Frauen vergrößert ist. |
|||
Ein entscheidender Faktor sind vermutlich die Barr-Körperchen, da viele X-chromosomale Gene in den neuronalen Prozessen der Gehirnentwicklung involviert sind. Die Barr-Körperchen entstehen durch zufällige Inaktivierung eines [[X-Chromosom]]s bei der Frau. Dies hat zur Folge, dass das weibliche Gewebe und die Organe, inklusive des Gehirns, ein Mosaik darstellen, da in jeder Zelle ein anderes Gen des polymorphen X-Gens exprimiert wird.<ref>Arthur P. Arnold: [http://www.nature.com/nrn/journal/v5/n9/abs/nrn1494.html ''Sex chromosomes and brain gender.''] In: ''Nature Reviews Neuroscience.'' Band 5, 2004, S. 701–708.</ref> Auch Ian W. Craig und andere Wissenschaftler vermuten, dass die Differenzen zum großen Teil auf die [[X-Inaktivierung]] zurückgehen.<ref>Ian W. Craig, Emma Harper, Caroline S. Loat: ''The Genetic Basis for Sex Differences in Human Behaviour: Role of the Sex Chromosomes.'' In: ''Annals of Human Genetics.'' Band 68, Nr. 3, 2004, S. 269–284, [[doi:10.1046/j.1529-8817.2004.00098.x]].</ref> So wird heute meist angenommen, dass die unterschiedlichen Geschlechtschromosomen der wichtigste Grund für den Dimorphismus sind. Diese können auf zwei Arten die Entwicklung beeinflussen. Zum einen können die Genprodukte der Chromosomen direkt in den Zellen wirken, in denen sie exprimiert werden. Zum anderen bedingen die [[Gonosom]]en die Entwicklung der [[Gonade]]n, die die Geschlechtshormone bilden. |
|||
{{Überarbeiten|[[Diskussion:Gehirn#Ein Studienergebnis]]}} |
|||
Im Rahmen mehrerer Studien zeigten sich Unterschiede zwischen männlichen, weiblichen, sowie [[Cisgender|cis]]- und [[Transgeschlechtlich|transgeschlechtlichen]] Studienteilnehmern im Hinblick auf die Mikrostruktur der weißen Hirnsubstanz. Die Faserverläufe und damit die Struktur der Nervenverbindungen wiesen deutliche Unterschiede auf, bei denen die Ergebnisse der [[Transmensch|Transpersonen]] zwischen denen von Männern und Frauen lagen.<ref>G. S. Kranz u. a.: [http://www.jneurosci.org/content/34/46/15466.short?sid=878b10bd-9ae0-467c-a9a5-02cc144d6ce4 ''White matter microstructure in transsexuals and controls investigated by diffusion tensor imaging''.] In: ''Journal of Neuroscience.'' Band 34, Nr. 46, 12. November 2014, S. 15466–15475, [[doi:10.1523/JNEUROSCI.2488-14.2014]], PMID 25392513.</ref> Dieselbe Studie lieferte Hinweise auf einen engen Zusammenhang zwischen den Faserverläufen und den Blutwerten von Geschlechtshormonen. Diese Befunde stützen die Annahme eines Einflusses der Geschlechtshormone auf die Hirnentwicklung<ref>{{Literatur |Autor=Giancarlo Spizzirri, Fábio Luis Souza Duran, Tiffany Moukbel Chaim-Avancini, Mauricio Henriques Serpa, Mikael Cavallet, Carla Maria Abreu Pereira, Pedro Paim Santos, Paula Squarzoni, Naomi Antunes da Costa, Geraldo F. Busatto, Carmita Helena Najjar Abdo |Titel=Grey and white matter volumes either in treatment-naïve or hormone-treated transgender women: a voxel-based morphometry study |Sammelwerk=Scientific Reports |Band=8 |Nummer=1 |Datum=2018-01-15 |ISSN=2045-2322 |DOI=10.1038/s41598-017-17563-z |PMC=5768734 |PMID=29335438 |Seiten=736 |Online=https://www.nature.com/articles/s41598-017-17563-z |Abruf=2023-07-31 }}</ref>, allerdings kommen andere Analysen zu dem Schluss, dass die Datenlage insbesondere im Bezug auf [[Transgeschlechtlichkeit]] unklar ist.<ref>{{Literatur |Autor=Elke Stefanie Smith, Jessica Junger, Birgit Derntl, Ute Habel |Titel=The transsexual brain – A review of findings on the neural basis of transsexualism |Sammelwerk=Neuroscience & Biobehavioral Reviews |Band=59 |Datum=2015-12-01 |ISSN=0149-7634 |DOI=10.1016/j.neubiorev.2015.09.008 |Seiten=251–266 |Online=https://www.sciencedirect.com/science/article/pii/S0149763415002432 |Abruf=2023-07-31 }}</ref> |
|||
=== Leistung des Gehirns === |
|||
[[Datei:Intelligente Vögel.webm|mini|Video: Vergleich vom Gehirn bei Vögeln ([[Goffinkakadu]]) vs. Menschen]] |
|||
Das Gehirn ist ein sehr aktives Organ mit einem besonders hohen Energiebedarf. Es macht beim Erwachsenen etwa 2 % der Körpermasse aus, verbraucht mit etwa 20 Watt etwa 20 % des [[Grundumsatz]]es,<ref>Herbert Lochs: {{Webarchiv |url=http://www.dgem.de/termine/berlin2003/lochs.pdf |wayback=20121021020342 |text=''Hungerstoffwechsel''.}} (PDF; 1,5 MB). 2003, S. 23.</ref> beim Neugeborenen 50 %. Energie gewinnt es aus der [[aerob]]en Verbrennung von [[Glucose]], aus [[Laktat]]<ref>Avital Schurr: ''Lactate: the ultimate cerebral oxidative energy substrate?'' In: ''[[Journal of Cerebral Blood Flow and Metabolism]].'' Band 26, 2006, S. 142–152.</ref> und [[Ketonkörper]]n. Glucose kann nicht vollständig durch die anderen Energieträger ersetzt werden.<ref name="BiochemiePathobiochemie.1054">Georg Löffler, Petro E. Petrides (Hrsg.): ''Biochemie und Pathobiochemie'' (= ''Springer-Lehrbuch.''). 7., völlig neu bearbeitete Auflage. Springer Medizin-Verlag, Heidelberg 2003, ISBN 978-3-540-42295-2, S. 1054.</ref> Säuglingsgehirne können unmittelbar nach der Geburt zu einem ganz erheblichen Anteil Ketonkörper zur Energiegewinnung nutzen.<ref name="BiochemiePathobiochemie.1054" /> Einige Zeit nach Umstellung der Ernährung des Kleinkindes auf kohlenhydratreiche Nahrung wird die dafür erforderliche Enzymproduktion wieder reduziert oder ganz abgebaut und die Fähigkeit zur Ketolyse (zur Nutzung von Ketonkörpern für die Energiegewinnung) geht wieder verloren.<ref name="BiochemiePathobiochemie.1054" /> Das Verhalten des Blutglucosespiegels im Hungerstoffwechsel lässt vermuten, dass ein vollständig ketolysefähiges Gehirn priorisiert Ketonkörper (vorrangig vor der Glucose, selbst bei ausreichender Glucosezufuhr über das Blut) verarbeitet.<ref>Herbert Lochs: {{Webarchiv |url=http://www.dgem.de/termine/berlin2003/lochs.pdf |wayback=20121021020342 |text=''Hungerstoffwechsel''.}} (PDF; 1,5 MB). 2003, S. 19.</ref> |
|||
[[Datei:Comparison of mass and energy consumption of the human brain.png|alternativtext=Zwei Tortendiagrammen stellen dar, dass das Hirn ein sehr geringen Anteil an der menschlichen Gesamtmasse hat (1,9 %), aber in Ruhe fast ein Viertel (21,0 %) des Energiebedarfs ausmacht.|mini|Masse und Energiebedarf des menschlichen Gehirns im Vergleich mit anderen Organen<ref>{{Literatur |Autor=Zahid Padamsey, Nathalie L. Rochefort |Titel=Paying the brain's energy bill |Sammelwerk=Current Opinion in Neurobiology |Band=78 |Datum=2023-02 |DOI=10.1016/j.conb.2022.102668 |Seiten=102668 |Online=https://linkinghub.elsevier.com/retrieve/pii/S0959438822001623 |Abruf=2023-12-01 }}</ref><ref>{{Literatur |Autor=ZiMian Wang, Zhiliang Ying, Anja Bosy-Westphal, Junyi Zhang, Britta Schautz, Wiebke Later, Steven B Heymsfield, Manfred J Müller |Titel=Specific metabolic rates of major organs and tissues across adulthood: evaluation by mechanistic model of resting energy expenditure |Sammelwerk=The American Journal of Clinical Nutrition |Band=92 |Nummer=6 |Datum=2010-12 |DOI=10.3945/ajcn.2010.29885 |PMC=2980962 |PMID=20962155 |Seiten=1369–1377 |Online=https://linkinghub.elsevier.com/retrieve/pii/S0002916523021421 |Abruf=2023-12-01 }}</ref>]] |
|||
90 % der Leistung benötigt die [[Natriumpumpe]], größtenteils im Zusammenhang mit [[Aktionspotential]]en. Da das Gehirn nur geringe, arealabhängige Speicherkapazitäten für Energie besitzt, führt ein Ausfall der [[Sauerstoff]]- oder Glucoseversorgung bereits nach zehn Sekunden zu einem Funktionsausfall ([[Synkope (Medizin)|Synkope]], Ohnmacht) und nach wenigen Minuten zu spezifischen Hirnschäden. Die geringen, auf den ersten Blick evolutionär unverständlichen Reservoirs werden manchmal durch Platzmangel erklärt. Gemäß einer anderen – evolutionären – Erklärung wich die Ernährungsweise der Menschen in der Altsteinzeit sehr stark von der heutigen Zivilisationskost ab, wodurch die Ketolysefähigkeit der damaligen Gehirne zu jedem Zeitpunkt auf natürliche Weise erhalten blieb. Dies wird so erklärt, dass der menschliche Organismus zwar zu viel aus [[Lebensmittel]]n aufgenommene Energie letztlich in den Körperfettdepots speichert – bei einer 70 kg schweren, gesunden, schlanken Person liegen 85 % der verwertbaren Körperenergien als Körperfett vor, 14,5 % als Proteine und nur 0,5 % als Kohlenhydrate<ref name="Hungerstoffwechsel.5">Herbert Lochs: {{Webarchiv |url=http://www.dgem.de/termine/berlin2003/lochs.pdf |wayback=20121021020342 |text=''Hungerstoffwechsel''.}} (PDF; 1,5 MB). 2003, S. 5.</ref> – aus Fett jedoch kaum noch Glukose herstellen kann: Anteilig nur noch 6 % aus dem Glycerin der Triglyceride, in deren Form Fett im Organismus gespeichert wird.<ref>Philip A. Wood: ''How Fat Works''. Harvard University Press, Cambridge MA 2006.</ref> Einige Wissenschaftler nehmen an, dass die fettreichere Ernährung in der Altsteinzeit zum Wachstum des Gehirns des Menschen beitrug.<ref>Leslie C. Aiello, Peter Wheeler: ''The Expensive-Tissue Hypothesis. The Brain and the Digestive System in Human and Primate Evolution.'' In: ''[[Current Anthropology]].'' Band 36, Nr. 2, 1995, S. 199–221.</ref> |
|||
Mit der natürlichen Fähigkeit von menschlichen Gehirnen zur Ketolyse begründet sich die Wirksamkeit der [[Ketogene Diät|ketogenen Diät]] bei [[Epilepsie]], [[GLUT1-Defizit-Syndrom]] und anderen zerebralen Erkrankungen und der [[Hungerstoffwechsel]].<ref>Herbert Lochs: {{Webarchiv |url=http://www.dgem.de/termine/berlin2003/lochs.pdf |wayback=20121021020342 |text=''Hungerstoffwechsel''.}} (PDF; 1,5 MB). 2003.</ref> |
|||
Seit 1994 ist bekannt, dass die Nervenzellen über die [[Astrozyten]] bei Bedarf eine genau bemessene Energiemenge aus dem Blut erhalten, es ist der aktive Vorgang „Energy on Demand“.<ref>L. Pellerin, P. J. Magistretti: ''Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization.'' In: ''[[Proceedings of the National Academy of Sciences of the United States of America]].'' Band 91, 1994, S. 10625–10629.</ref> Die bedarfsabhängige Regulierung der Blutversorgung von Hirnarealen wird als ''[[Neurovaskuläre Kopplung]]'' bezeichnet. |
|||
=== Abfallentsorgung des Gehirns === |
|||
{{Hauptartikel|Glymphatisches System}} |
|||
Durch den ungewöhnlich hohen durchschnittlichen Stoffwechsel im Gehirn besteht auch ein ungewöhnlich hoher Bedarf an biochemischer Abfallbeseitigung. Diese ist hier noch zusätzlich deshalb von erhöhter Bedeutung, da manche Stoffe, insbesondere [[Proteinfaltung|fehlgefaltete Proteine]], typische [[Proteinfehlfaltungserkrankung|Gefährdungen des Gehirns]] beinhalten. |
|||
Erschwert wird die Abfallentsorgung im Gehirn durch die Filtersysteme der [[Blut-Hirn-Schranke]] und der [[Blut-Liquor-Schranke]] sowie die Aussperrung des [[Lymphatisches System|lymphatischen Systems]]. Letzteres reicht von außen nur bis in die [[Hirnhaut]]. |
|||
[[Datei:Blood Brain Barriere.jpg|mini|350px|[[Astrozyt]]en (Sternzellen) der ''Glia'' und Anlagerung ihrer Fortsätze an einer Ader. Der Raum zwischen Ader und diesen Anlagerungen ist Teil des ''glymphatischen'' Transportweges.]] |
|||
Obwohl es schon seit den 1980er Jahren konkrete Anzeichen für die Existenz eines speziellen Ausschwemmungssystems im Gehirn gab, wurde es erst 2012 mit Hilfe neuartiger Nachweismethoden als eigenständiges internes Kreislaufsystem entdeckt. In Anlehnung an das lymphatische System und wegen der entscheidenden Rolle der [[Glia]] (Stützzellen) wurde es „Glymphatisches System“ genannt. |
|||
Durch sehr enge Gefäßräume rund um die Außenwand von Adern, den so genannten ''perivaskulären Raum'' ''(Spatium perivasculare)'', gelangt ein kleiner Teil der Gehirn-Rückenmarks-Flüssigkeit ([[Liquor cerebrospinalis]]) aus dem Zwischenraum zwischen [[Schädel]]decke und Gehirn ([[Subarachnoidalraum]] oder ''äußerer Liquorraum'') in alle Bereiche des Gehirns, wird mit Hilfe der Glia dort verteilt und fließt am Ende – unter Mitnahme von Abfallstoffen – wieder ab zur Gehirnhaut und zum lymphatischen System außerhalb des Gehirns.<ref name="PMID25947369">N. A. Jessen, A. S. Munk, I. Lundgaard, M. Nedergaard: ''The Glymphatic System: A Beginner’s Guide.'' In: ''Neurochemical research.'' Band 40, Nummer 12, Dezember 2015, S. 2583–2599, [[doi:10.1007/s11064-015-1581-6]], PMID 25947369, {{PMC|4636982}} (Review).</ref><ref name="PMID27460561">D. Raper, A. Louveau, J. Kipnis: ''How Do Meningeal Lymphatic Vessels Drain the CNS?'' In: ''Trends in neurosciences.'' Band 39, Nummer 9, September 2016, S. 581–586, [[doi:10.1016/j.tins.2016.07.001]], PMID 27460561, {{PMC|5002390}} (Review).</ref> |
|||
=== Vergleich mit Computern === |
|||
Oft werden Vergleiche zwischen der Leistungsfähigkeit eines [[Computer]]s und der des menschlichen Gehirns angestellt. Seit das Gehirn als Sitz kognitiver Leistung erkannt wurde, wurde es in der Literatur immer mit dem komplexesten verfügbaren technischen Apparat verglichen (Dampfmaschine, Telegraph). So wurde versucht, aus der Funktionsweise von Computern auf die des Gehirns zu schließen. Mittlerweile besteht das Bemühen in der [[Computational Neuroscience]] und der [[Bionik|bionischen]] [[Neuroinformatik]], die Funktionsweise des Gehirns teilweise auf Computern nachzubilden oder dadurch auf neue Ideen zur „intelligenten“ Informationsverarbeitung zu kommen (siehe [[Blue Brain]]). Es ergibt sich die Perspektive, dass das Gehirn als Struktur für Denk- und Wissensproduktion eine Architektur liefert, die sich zur Nachahmung empfiehlt. [[Künstliches neuronales Netz|Künstliche neuronale Netzwerke]] haben sich bereits bei der Organisation [[Künstliche Intelligenz|künstlicher Intelligenzprozesse]] etabliert. |
|||
==== Rechenleistung und Leistungsaufnahme ==== |
|||
Bei Vergleichen mit modernen Computern zeigt sich die Leistungsfähigkeit des menschlichen Gehirns. Während das Gehirn etwa 10<sup>13</sup> [[Analogrechner|analoge Rechenoperationen]] pro Sekunde schafft und dabei etwa 15 bis 20 Watt Leistung benötigt, schafft der Supercomputer [[BlueGene/L]] von [[IBM]] bis zu 3,6·10<sup>14</sup> [[Gleitkommaoperation]]en pro Sekunde mit [[Doppelte Genauigkeit|doppelter Genauigkeit]], wozu jedoch etwa 1,2 Megawatt benötigt werden. [[Intel]]s erster Teraflop-Chip Prototyp „[[Terascale-Prozessor|Terascale]]“ mit 80 Prozessorkernen schafft hingegen etwa 10<sup>12</sup> Gleitkommaoperationen mit [[Einfache Genauigkeit|einfacher Genauigkeit]] bei 85 Watt (oder 2·10<sup>12</sup> Gleitkommaoperationen bei 190 Watt und 6,26 [[Gigahertz|GHz]]), was immer noch dem 50- bis 5000-fachen Energiebedarf entspricht. Zwar erreichen moderne 3D-[[Grafikkarte]]n vergleichbare Werte bei geringerem elektrischen Leistungsbedarf, Grafikchips sind jedoch stärker auf bestimmte Rechenvorgänge spezialisiert. |
|||
Es ist allerdings zu beachten, dass die hohe Rechenleistung des Gehirns vor allem durch seine vielen parallelen Verbindungen (Konnektivität) und nicht durch eine hohe Geschwindigkeit bei den einzelnen Rechenvorgängen ([[Taktsignal|Taktfrequenz]]) erzielt wird. Künstliche Neuronen arbeiten 100.000-mal schneller als Neuronen des menschlichen Gehirns. |
|||
==== Speicher ==== |
|||
Zusätzlich zur Parallelisierung stellt ein neuronales Netzwerk gleichzeitig eine Speicher- und eine Verarbeitungslogik dar, während diese bei Computern, die auf der [[Von-Neumann-Architektur]] basieren, getrennt sind. Dies bewirkt, dass in einem einfachen neuronalen Netzwerk mit jedem Taktzyklus der gesamte Speicher aktualisiert wird, während ein Computer den Inhalt des Speichers schrittweise aktualisieren muss. |
|||
==== Effizienz ==== |
|||
Rechenvorgänge, die auf einem Computer effizient ablaufen, sind meistens nicht effizient in einem neuronalen Netzwerk abbildbar und umgekehrt. Aufgrund der Ineffizienz bestehender [[Computerarchitektur]]en für bestimmte Aufgaben, wie beim Sehen, werden neuronale Netzwerke, wie dasjenige des [[Neocortex]], durch [[Neuromorphing]] nachgebildet.<ref>Andrew Nere, Mikko Lipasti: ''Cortical architectures on a GPGPU.'' In: ''Proceedings of the 3rd Workshop on General-Purpose Computation on Graphics Processing Units.'' 2010, ISBN 978-1-60558-935-0, S. 12–18, [[doi:10.1145/1735688.1735693]].</ref><ref>[https://www.heise.de/newsticker/meldung/Gehirnchip-macht-bei-IBM-Fortschritte-1326868.html ''Gehirnchip macht bei IBM Fortschritte.''] auf ''heise.de'', 20. August 2011.</ref> |
|||
Im März 2009 bildeten künstliche neuronale Netzwerke im Rahmen des [[FACETS-Projekt]]s 200.000 künstliche Neuronen mit 50 Millionen künstlichen Synapsen auf einem einzelnen 8 [[Zoll (Einheit)|Zoll]] (20,32 cm Diagonale) großen Computerchip ab. Im Juli 2014 stellte IBM [[TrueNorth]] vor, welcher 1 Million Neuronen und 256 Millionen Synapsen auf einem Chip mit einer [[Thermal Design Power|TDP]] von 70 mW, oder 16 Millionen Neuronen mit 4 Milliarden Synapsen in einem einzelnen [[Rack]] integriert.<ref>{{Internetquelle |autor=[[Dharmendra Modha|Dharmendra S. Modha]] |url=http://www.research.ibm.com/articles/brain-chip.shtml |titel=Introducing a Brain-inspired Computer: TrueNorth’s neurons to revolutionize system architecture |hrsg=IBM Research |sprache=en |abruf=2014-08-07 }}</ref> |
|||
==== Das Modell des Hypothesengenies ==== |
|||
Die Ansicht, das Gehirn als ein „Hypothesengenie“ oder eine „Vorhersagemaschine“ zu sehen, hatte bereits [[Hermann von Helmholtz]], da andere Ansätze, das Gehirn künstlich nachzuempfinden, zu bisher unlösbaren Problemen führten und scheiterten. Der Ansatz geht davon aus, dass das Gehirn [[Hypothese]]n bildet und alle Eindrücke und Wahrnehmungen in die gespeicherten Muster einbaut und vergleicht. Wenn das Wahrgenommene nicht mehr auf die einzelne Hypothese passt, wird diese verworfen und nach Bedarf eine neue erstellt. Dies zeige sich klassisch bei der Interpretation von [[Kippfigur]]en.<ref>Martin Hubert: [http://www.deutschlandfunk.de/hirnforschung-manuskript-das-hypothesengenie.740.de.html?dram:article_id=274983 ''Hirnforschung – Das Hypothesengenie – Das Gehirn als Vorhersagemaschine''] [[Deutschlandradio]], „[[Wissenschaft im Brennpunkt]]“ ([http://www.deutschlandfunk.de/hirnforschung-das-hypothesengenie.740.de.html?dram:article_id=274367 Audio]) 19. Januar 2014.</ref> |
|||
=== Anzahl und Vernetzung der Nervenzellen === |
|||
Während das Gehirn einer Ratte etwa 200 [[Million]]en Neuronen enthält,<ref name="pmid15758160">{{Literatur |Autor=[[Suzana Herculano-Houzel]], R. Lent |Titel=Isotropic fractionator: a simple, rapid method for the quantification of total cell and neuron numbers in the brain |Sammelwerk=Journal of Neuroscience |Band=25 |Nummer=10 |Datum=2005-03 |Seiten=2518–2521 |Online=[http://www.jneurosci.org/content/25/10/2518.full Online] |DOI=10.1523/JNEUROSCI.4526-04.2005 |PMID=15758160 }}</ref> besitzt das eines [[Mensch]]en neueren Untersuchungen zufolge durchschnittlich etwa 86 [[Milliarde]]n<ref name="PMID 19915731">{{Literatur |Autor=Suzana Herculano-Houzel |Titel=The Human Brain in Numbers: A Linearly Scaled-up Primate Brain |Sammelwerk=Frontiers in Human Neuroscience |Band=3 |Nummer=31 |Datum=2009-11 |Seiten=1-11 |DOI=10.3389/neuro.09.031.2009 |PMC=2776484 |PMID=19915731 }}</ref> Nervenzellen. Davon liegen etwa 16 Milliarden Neuronen in der [[Großhirnrinde]] ''(Cortex cerebri)'', etwa 69 Milliarden im [[Kleinhirn]] ''(Cerebellum)'' und rund 1 Milliarde in den restlichen Hirnregionen (von [[Hirnstamm]], [[Zwischenhirn]] und [[Basalganglien]]).<ref name="PMID 19915731" /> |
|||
Miteinander verbunden sind Neuronen über [[Synapse]]n, im menschlichen Hirn geschätzt rund 100 [[Billion]]en, sodass durchschnittlich eine Nervenzelle mit über 1000 anderen verbunden ist. Doch gibt es lokal deutliche Abweichungen von diesem Mittelwert,<ref>S. Song, P. J. Sjöström, M. Reigl, S. Nelson, D. B. Chklovskii: ''Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits.'' In: ''[[PLoS Biology]].'' Band 3, Nr. 3, S. e68, [[doi:10.1371/journal.pbio.0030068]].</ref> denn nicht die Dichte, sondern das Muster von neuronalen Verknüpfungen ist für neurale Funktionen entscheidend. Ein häufiges Organisationsprinzip des Gehirns ist die Abbildung von Nachbarschaftsverhältnissen: was nebeneinander im Körper liegt, wird in Hirnarealen oft nebeneinander repräsentiert ([[Somatotopik|Somatotopie]]). |
|||
Obwohl ausschließlich die Nervenzellen Erregungen als neuronale Impulse leiten und an Synapsen über [[Neurotransmitter]] als Signal weitergeben, spielen die sie umgebenden [[Gliazelle]]n dabei keine unwesentliche Rolle. Die insgesamt etwa ebenso häufigen, meist kleineren Gliazellen ermöglichen Nervenzellen eine rasche [[Erregungsleitung]] und störungsfreie [[Erregungsübertragung|Signalübertragung]], nehmen ausgeschüttete Botenstoffe auf, sorgen für die Bereitstellung von Nährstoffen und sind an den physiologischen Barrieren der [[Blut-Hirn-Schranke|Blut-Hirn-]] und der [[Blut-Liquor-Schranke]] beteiligt. Im sich entwickelnden Gehirn, und in sich weiterentwickelnden Hirnregionen, nehmen sie Einfluss auf die Ausbildung, Stabilität und Gewichtung der synaptischen Verbindungen zwischen Neuronen; bei Schädigungen peripherer Nerven bilden sie eine zur Wiederherstellung nötige Leitstruktur.<ref>Jörg Auf dem Hövel: [https://www.heise.de/tp/features/Brieftraeger-Botenstoffe-und-der-unterschaetzte-Klebstoff-3413742.html ''Briefträger, Botenstoffe und der unterschätzte Klebstoff.''] In: ''[[Telepolis]].'' 2. Juni 2007.</ref> |
|||
Die [[Konnektom]]-Forschung hat das Ziel, alle Verbindungen zwischen den Neuronen zu kartieren. |
|||
=== Die zwölf Hauptnervenpaare des Gehirns === |
|||
{{Hauptartikel|Hirnnerv}} |
|||
# [[Nervus olfactorius]] – ermöglicht das Riechen |
|||
# [[Nervus opticus]] – leitet optische Impulse |
|||
# [[Nervus oculomotorius]] – innerviert vier von sechs Muskeln, die das Auge bewegen und andere Funktionen bedienen |
|||
# [[Nervus trochlearis]] – versorgt den oberen schrägen Augenmuskel |
|||
# [[Nervus trigeminus]] – leitet unter anderem Informationen über Berührungen aus dem Gesichtsbereich, ermöglicht das Kauen |
|||
# [[Nervus abducens]] – versorgt den seitlichen Augenmuskel |
|||
# [[Nervus facialis]] – ermöglicht unter anderem mimische Bewegungen und Geschmackswahrnehmung |
|||
# [[Nervus vestibulocochlearis]] ''(N. statoacusticus)'' – leitet Informationen aus dem Hör- und dem Gleichgewichtsorgan |
|||
# [[Nervus glossopharyngeus]] – leitet unter anderem Informationen (wie den Geschmack) aus dem Schlundbereich und ermöglicht Bewegungen in diesem Bereich |
|||
# [[Nervus vagus]] – im Wesentlichen für die Wahrnehmung, Bewegung und vegetative Funktionen – inklusive Drüsentätigkeit und Hormonausschüttung |
|||
# [[Nervus accessorius]] – ermöglicht Bewegungen durch zwei große Muskeln des Halses und des Kopfes |
|||
# [[Nervus hypoglossus]] – ermöglicht Bewegungen der Zunge |
|||
=== Forschungsprojekte === |
|||
Der ehemalige US-Präsident [[Barack Obama]] hat zu Beginn seiner zweiten Amtszeit Planungen für ein sehr großes Forschungsprojekt namens [[Brain Activity Map Project]] bekanntgegeben, im Zuge dessen das menschliche Gehirn komplett kartiert werden soll. Dies wäre das größte wissenschaftliche Vorhaben seit vielen Jahren (das letzte war das [[Human Genome Project]]). Experten hoffen auf Therapien gegen [[Alzheimer-Krankheit]] und [[Parkinson-Krankheit|Parkinson]] sowie auf Erkenntnisse über menschliches Denken und Fühlen.<ref name="sp1">[http://www.spiegel.de/wissenschaft/medizin/brain-activity-map-obama-will-gehirn-des-menschen-kartieren-a-884147.html ''Milliardenschwerer Forschungsplan''.] [[Spiegel Online]], 18. Februar 2013.</ref> Erste Ansätze wurden im Juli 2012 in der Fachzeitschrift ''[[Neuron (Zeitschrift)|Neuron]]'' veröffentlicht.<ref name="DOI10.1016/j.neuron.2012.06.006">A. Paul Alivisatos, Miyoung Chun, George M. Church, Ralph J. Greenspan, Michael L. Roukes, Rafael Yuste: ''The Brain Activity Map Project and the Challenge of Functional Connectomics.'' In: ''Neuron.'' Band 74, 2012, S. 970–974, [[doi:10.1016/j.neuron.2012.06.006]].</ref> |
|||
Das US-Projekt ist nicht mit dem [[Human Brain Project]] zu verwechseln, das im Februar 2013 durch die EU gestartet wurde. Eine Jury hatte die Erforschung des Gehirns ebenfalls als ein Schlüsselprojekt der Zukunft ausgewählt; gefördert wird es mit einer Milliarde Euro.<ref name="sp1" /><ref name="sp2">[http://www.spiegel.de/wissenschaft/mensch/human-brain-project-forscher-basteln-an-der-hirnmaschine-a-761995.html ''Human Brain Project: Forscher basteln an der Hirnmaschine''.] Spiegel Online, 12. Mai 2011.</ref> |
|||
== Sonstiges == |
|||
2008 wurden auf dem Gelände der [[University of York]] (England) die Überreste eines 2500 Jahre alten menschlichen Schädels gefunden, dessen Gehirn überwiegend erhalten ist. Forscher vermuten, dass das Gehirn des wahrscheinlich 26–45 Jahre alten Mannes unter anderem deswegen bis heute so gut erhalten blieb, weil der Kopf – ein Körper wurde nicht gefunden – seinerzeit unmittelbar nach dem Tod in nasser Lehmerde begraben wurde. Eine vollständige Klärung, warum das Gehirn nicht schon längst zerfallen ist, konnte bislang nicht gefunden werden.<ref>{{Internetquelle |url=http://news.nationalgeographic.com/news/2011/04/110406-oldest-brain-britain-archaeology-science-world/ |titel=Ancient „Pickled“ Brain Mystery Explained? |werk=news.nationalgeographic.com |abruf=2011-06-25}}</ref> |
|||
[[Hirn (Lebensmittel)|Hirn]] als Rohstoff findet Verwendung bei der [[Fettgerbung]]. |
|||
Die [[Neurolinguistik]] untersucht, wie Sprache durch das Gehirn dargestellt, aufgearbeitet und erlernt wird. |
|||
Zu Gehirnerkrankungen siehe etwa [[Zentralnervensystem#Erkrankungen]]. |
|||
== Siehe auch == |
|||
{{Portal|Geist und Gehirn}} |
|||
* [[Gehirnentwicklung beim Menschen]] |
|||
* [[Blutversorgung des Gehirns]] |
|||
* [[Geschichte der Hirnforschung]] |
|||
* [[Sekundäre Altrizialität]] |
|||
* [[Kortikalisierung]] |
|||
== Literatur == |
|||
* [[Olaf Breidbach]]: ''Die Materialisierung des Ichs: Zur Geschichte der Hirnforschung im 19. und 20. Jahrhundert''. Suhrkamp, Frankfurt am Main 1997, ISBN 3-518-28876-8 (stw; 1276). |
|||
* Olaf Breidbach: ''Hirn, Hirnforschung.'' In: [[Werner E. Gerabek]], Bernhard D. Haage, [[Gundolf Keil]], Wolfgang Wegner (Hrsg.): ''Enzyklopädie Medizingeschichte''. De Gruyter, Berlin 2005, ISBN 3-11-015714-4, S. 600 f. |
|||
* [[Chris Frith|Christopher Donald Frith]]: ''Wie unser Gehirn die Welt erschafft'' (= ''Spektrum-Akademischer-Verlag-Sachbuch.''). Spektrum Akademischer Verlag, Heidelberg 2010, ISBN 978-3-8274-2343-6. |
|||
* Günter Gassen, Sabine Minol: ''Unbekanntes Wesen Gehirn.'' Media Team, Darmstadt 2004, ISBN 3-932845-71-4. |
|||
* [[John Carew Eccles]]: ''Wie das Selbst sein Gehirn steuert''. Springer, Berlin / Heidelberg 1994, ISBN 3-492-03669-4. |
|||
* [[Brigitte Falkenburg]]: ''Mythos Determinismus. Wieviel erklärt uns die Hirnforschung?'' Springer, Heidelberg 2012, ISBN 978-3-642-25097-2. |
|||
* [[Michael Hagner]]: ''Geniale Gehirne. Zur Geschichte der Elitegehirnforschung.'' Wallstein, Göttingen 2004, ISBN 3-89244-649-0. |
|||
* Sabine Perl, Verena Weimer, Hans Günter Gassen: ''Das Gehirn: Zwischen Perfektion und Katastrophe.'' In: ''[[Biologie in unserer Zeit]].'' Band 33, Nr. 1, 2003, {{ISSN|0045-205X}}, S. 36–44. |
|||
* [[John von Neumann]]: ''Computer and the Brain''. Yale University Press, New Haven (Conn.) 2000, ISBN 0-300-08473-0. |
|||
* [[Oliver Sacks]]: ''[[Musicophilia]]: Tales of Music and the Brain.'' Knopf, Toronto 2007, ISBN 978-0-676-97978-7. |
|||
* Richard F. Thompson: ''Das Gehirn: von der Nervenzelle zur Verhaltenssteuerung.'' Spektrum Akademischer Verlag, Heidelberg 1992; 3. Auflage ebenda 2001, ISBN 3-8274-1080-0. |
|||
* [[Gerhard Roth (Biologe)|Gerhard Roth]]: ''Aus Sicht des Gehirns.'' Suhrkamp, Frankfurt am Main 2003, ISBN 3-518-58383-2. |
|||
* Ann B. Butler, William Hodos: ''Comparative Vertebrate Neuroanatomy. Evolution and Adaptation.'' 2. Ausgabe, Wiley-Interscience, Hoboken (NJ) 2005, ISBN 0-471-21005-6. |
|||
* [[Michael Madeja]]: ''Das kleine Buch vom Gehirn. Reiseführer in ein unbekanntes Land.'' Beck, München 2010, ISBN 978-3-406-60097-5. |
|||
* Mark F. Bear, Barry W. Connors, Michael A. Paradiso: ''Neuroscience: Exploring the Brain.'' Lippincott Williams & Wilkins, Baltimore 2006, ISBN 0-7817-6003-8. |
|||
* Ariel Hauptmeier, Johanna Adam, John-Dylan Haynes, Henriette Pleiger, Kunst- und Ausstellungshalle der Bundesrepublik Deutschland GmbH (Hrsg.): ''Das Gehirn. In Kunst und Wissenschaft.'' Hirmer, München 2022, ISBN 978-3-7774-3936-5. |
|||
=== DVDs === |
|||
* [[Lennart Heimer]], Gary W. van Hoesen, Michael Trimble, Daniel S. Zahm: ''Anatomy of Neuropsychiatry: The New Anatomy of the Basal Forebrain and Its Implications for Neuropsychiatric Illness''. Academic Press, Amsterdam 2008, ISBN 978-0-12-374239-1. |
|||
* Lennart Heimer: ''Dissection of the Human Brain''. Sinauer Associates, 2008, ISBN 978-0-87893-327-3. |
|||
== Weblinks == |
|||
{{Commons|Brain|Gehirn}} |
|||
{{Wikibooks|Neuroanatomie}} |
|||
{{Wiktionary}} |
|||
{{Wikiquote}} |
|||
* {{DNB-Portal|4019752-9}} |
|||
* [http://www.dasgehirn.info/ dasGehirn.info] Informationsportal rund um das Gehirn |
|||
=== Englisch === |
|||
* [http://www.med.harvard.edu/AANLIB/ The whole Brain Atlas] Gehirnatlas mit [[Computertomografie|CT]]-, [[Magnetresonanztomografie|MRT]]- und [[Single-Photon-Emissionscomputertomographie|SPECT]]/[[Positronen-Emissions-Tomographie|PET]]-Aufnahmen von Patienten mit verschiedenen Gehirnerkrankungen |
|||
* [http://www.brainmuseum.org/ Brain Museum – Comparative Mammalian Brain Collections] Gehirne und Hirnschnitte vieler Säugetierarten mit weiterführenden Informationen |
|||
* [http://www.brainatlas.org/ Allen Brain Atlas] Online-Atlas mit Schwerpunkt Mäusegehirn, das Projekt wurde von [[Paul Allen]] finanziert |
|||
* [http://brainarchitecture.org/ Human Brain Architecture Project] |
|||
=== Videos === |
|||
* Tübinger Internet Multimedia Server der [[Eberhard Karls Universität Tübingen]]: [http://timms2005.uni-tuebingen.de/Browser/Browser01.aspx?path=%2fUniversit%C3%A4t+T%C3%BCbingen%2fInterfakult%C3%A4re+Einrichtungen%2fStudium+Generale%2f2001+SoSe%2fDas+Gehirn%2f Universität Tübingen/Interfakultäre Einrichtungen/Studium Generale/2001 SoSe/Das Gehirn (8 Dokumente)] Videos einer Vortragsreihe zum Thema Gehirn. |
|||
== Einzelnachweise == |
|||
<references /> |
|||
{{Normdaten|TYP=s|GND=4019752-9|LCCN=sh85016319|NDL=00568735}} |
|||
[[Kategorie:Gehirn| ]] |
|||
[[Kategorie:Allgemeine Psychologie]] |
|||
[[Kategorie:Neurobiologie]] |
[[Kategorie:Neurobiologie]] |
||
[[Kategorie: |
[[Kategorie:Neuropsychologie]] |
||
[[Kategorie:Didaktik]] |
|||
[[Kategorie:Philosophie des Geistes]] |
[[Kategorie:Philosophie des Geistes]] |
||
[[Kategorie:Zentralnervensystem]] |
[[Kategorie:Zentralnervensystem]] |
||
[[Kategorie:Wikipedia:Artikel mit Video]] |
|||
[[af:Brein]] |
|||
[[ar:دماغ]] |
|||
[[bg:Главен мозък]] |
|||
[[bm:Kunkolosɛmɛ]] |
|||
[[bn:মস্তিষ্ক]] |
|||
[[ca:Cervell]] |
|||
[[cs:Mozek]] |
|||
[[cy:Ymennydd]] |
|||
[[da:Hjerne]] |
|||
[[en:Brain]] |
|||
[[eo:Cerbo]] |
|||
[[es:Cerebro]] |
|||
[[fa:مغز]] |
|||
[[fi:Aivot]] |
|||
[[fr:Cerveau]] |
|||
[[he:מוח]] |
|||
[[id:Otak]] |
|||
[[io:Cerebro]] |
|||
[[is:Heili]] |
|||
[[it:Cervello]] |
|||
[[ja:脳]] |
|||
[[ko:뇌]] |
|||
[[lt:Galvos smegenys]] |
|||
[[mk:Черепен мозок]] |
|||
[[nl:Hersenen]] |
|||
[[no:Hjerne]] |
|||
[[pl:Mózg]] |
|||
[[pt:Cérebro]] |
|||
[[ru:Мозг]] |
|||
[[scn:Ciriveddu]] |
|||
[[simple:Brain]] |
|||
[[sk:Mozog]] |
|||
[[sl:Možgani]] |
|||
[[sv:Hjärna]] |
|||
[[ta:மனித மூளை]] |
|||
[[th:สมอง]] |
|||
[[tr:Beyin]] |
|||
[[uk:Головний мозок]] |
|||
[[zh:脑]] |
Aktuelle Version vom 19. Mai 2025, 11:22 Uhr

Das Gehirn (auch Hirn; griechisch Encephalon, lateinisch Cerebrum) ist ein Organ des zentralen Nervensystems aller Wirbeltiere und einiger Wirbelloser, das insbesondere aus Nervengewebe besteht und von Hirnhäuten umgeben wird. Seine Hauptfunktion besteht in der sensorischen Informationsaufnahme, deren Verarbeitung und der Motorik (Steuerung der Muskulatur sowie des Hormonsystems). Das Gehirn lässt sich morphologisch und nach weiteren neuroanatomischen Kriterien unterschiedlich einteilen und geht auf der Höhe des ersten Spinalnervenpaares vom Markhirn in das Rückenmark über.
Etymologie
[Bearbeiten | Quelltext bearbeiten]Das Gehirn wird kurz auch als Hirn (althochdeutsch hirni, hirne;[1]) bezeichnet, griechisch Enzephalon[2][3] bzw. Enkephalon (altgriechisch ἐγκέφαλος engéphalos sowie ἐν en, deutsch ‚in‘ und κεφαλή kephalē, deutsch ‚Kopf‘), Lateinisch Cerebrum.
Gehirn der Wirbeltiere
[Bearbeiten | Quelltext bearbeiten]Funktion
[Bearbeiten | Quelltext bearbeiten]Das Wirbeltier-Gehirn verarbeitet hochdifferenziert Sinneswahrnehmungen und koordiniert komplexe Verhaltensweisen. Es ist somit der Speicher für die meisten komplexen Informationen, die der Organismus verarbeitet.
Nicht jede Information gelangt bis zur Hirnrinde und führt zu Bewusstsein. Peripher liegende Nervengeflechte (Plexus) und vor allem Zentren im Hirnstamm verarbeiten die meisten der von Rezeptoren ankommenden Erregungen unbewusst. Reflexbögen übernehmen Aufgaben, die mit höchster Geschwindigkeit und ohne bewusste Verarbeitung und verzögernde Einflussnahme erledigt werden. Beim Menschen gibt es ebenfalls ein solches autonomes Nervensystem. Es koordiniert vegetative Funktionen wie Atmung, Kreislauf, Nahrungsaufnahme, -verdauung und -abgabe, Flüssigkeitsaufnahme und -ausscheidung sowie Fortpflanzung.
Im Gehirn interagieren stark vernetzte Neuronen (siehe Neuronales Netz und Erregungsleitung). Seine Tätigkeit wird in vivo durch die Messung der Gehirnströme per Elektroenzephalografie (EEG) und der vom Gehirn produzierten elektrischen Felder per Magnetoenzephalographie (MEG) untersucht.
Evolution
[Bearbeiten | Quelltext bearbeiten]Im Lauf der Evolution hat das Gehirn „höherer“ Tiere ein beachtliches Maß an Differenzierung und innerer Organisation erreicht (Zerebralisation). Das spiegelt sich in der psychischen und körperlichen Entwicklung des Einzelnen wider (siehe Embryologie). Die Struktur und – in geringerem Maß – das Volumen des Gehirns korrelieren mit Lernfähigkeit und Intelligenz. Erst in der Hierarchie des Nervensystems ist die Leistung des Gehirns verständlich.
Neben den Wirbeltieren besitzen Tintenfische hochkomplexe Gehirne, die sie zu gezielten Tätigkeiten befähigen. Im weiteren Sinne ist es die Zentralstelle des Nervensystems verschiedener wirbelloser Tiere, etwa Ringelwürmern oder Insekten. Je nach Gehirntyp handelt es sich um ein Cerebralganglion oder ein Oberschlundganglion. Zwei Gruppen wirbelloser Tiere haben besonders komplizierte Gehirne: Gliederfüßer (Insekten, Krebstiere und andere) und Kopffüßer (Kraken, Tintenfische und ähnliche Weichtiere).[4] Die Gehirne der Gliederfüßer und der Kopffüßer gehen aus zwei nebeneinander liegenden Nervensträngen hervor. Kopffüßer wie der Krake und der Tintenfisch haben die größten Gehirne aller wirbellosen Tiere.[5]

Das hochentwickelte Gehirn von Wirbeltieren unterscheidet sich deutlich vom Strickleiternervensystem der Gliederfüßer. Bei Insekten zieht sich der Verdauungstrakt direkt durch das vordere Nervensystem (zwischen Tritocerebrum und subösophagealem Ganglion), sodass die Bauchganglien ventral (bauchseitig) des Darmrohrs liegen, während bei Wirbeltieren das Rückenmark dorsal (rückenseitig) des Darms liegt.
Gliederung
[Bearbeiten | Quelltext bearbeiten]Für eine Gliederung des Gehirns können unterschiedliche Kriterien maßgeblich sein, sodass verschiedene Einteilungen in Hirnbereiche möglich sind, die sich nicht gegenseitig ausschließen müssen. Für eine Gliederung des ausgewachsenen menschlichen Gehirns kann es auch durchaus sinnvoll sein, die aus der Untersuchung seiner Entwicklungsschritte gewonnenen Erkenntnisse zu berücksichtigen.
Beispielsweise zeigen sich in der ontogenetischen Gehirnentwicklung beim Menschen nach der Neurulation der zentralen Anteile der Neuralplatte zum Neuralrohr als der frühen embryonalen Anlage des Zentralnervensystems im weiteren Verlauf aufeinander folgende Stadien bei der Ausbildung des Gehirns. So bilden sich nach Schluss der vorderen Neuralrohröffnung Ende der vierten Entwicklungswoche zunächst drei sogenannte primäre Hirnbläschen aus dem vorderen Neuralrohrdrittel, die Anlagen von Prosencephalon, Mesencephalon und Rhombencephalon.[6][7] Sie entwickeln sich verschieden, sodass sich beim über fünf Wochen alten Embryo fünf sekundäre Hirnbläschen unterscheiden lassen – diese führen zur Gliederung des Gehirns in fünf Hauptabschnitte: Telencephalon (Endhirn), Diencephalon (Zwischenhirn), Mesencephalon (Mittelhirn), Metencephalon (Hinterhirn) und Myelencephalon (Markhirn).[8]
4. Woche | 5. Woche | 6. Woche – Lebensende | Ventrikelsystem | |||
Gehirn | vorderes Neuralrohr |
Prosencephalon Vorderhirn |
Telencephalon Endhirn |
Seitenventrikel |
Rhinencephalon, Amygdala, Hippocampus, Neocortex, Basalganglien | |
Diencephalon Zwischenhirn |
Dritter Ventrikel |
Thalamus dorsalis, | ||||
Mesencephalon Mittelhirn |
Mesencephalon Mittelhirn |
Aquaeductus mesencephali | ||||
Rhombencephalon Rautenhirn |
Metencephalon Hinterhirn |
Vierter Ventrikel | Pons (Brücke), Cerebellum (Kleinhirn) | |||
Myelencephalon Nachhirn |
Zentralkanal | Medulla oblongata Verlängertes Mark |
Die hier dargestellte Grobgliederung folgt dem Werk von Pinel.[9]
Menschliches Gehirn
[Bearbeiten | Quelltext bearbeiten]



Die Länge aller Nervenbahnen des Gehirns eines erwachsenen Menschen beträgt etwa 5,8 Millionen Kilometer, das entspricht dem 145-fachen Erdumfang.
Das Volumen eines menschlichen Gehirns liegt bei einem Mann bei durchschnittlich etwa 1,27 Liter, bei einer Frau bei etwa 1,13 L.[10]
Aufbau
[Bearbeiten | Quelltext bearbeiten]Es lassen sich vereinfacht vier Hauptbereiche unterscheiden.[11][12]
Großhirn
[Bearbeiten | Quelltext bearbeiten]Das Großhirn ist in der Mitte durch einen Einschnitt in zwei Halbkugeln (Hemisphären) geteilt. Zwischen diesen gibt es eine breite Verbindung aus einem dicken Nervenstrang, Corpus callosum oder Balken genannt, und weitere kleinere Verbindungen.
Seine 2–4 mm dicke Oberflächenschicht (Großhirnrinde, Cortex) ist stark gefaltet und fast einen Viertel Quadratmeter groß. Sie enthält etwa 16 Milliarden Nervenzellen, was etwa einem Fünftel der Nervenzellen des gesamten Gehirns entspricht.[13] Unter der Rinde verlaufen Nervenfasern. Ansammlungen von Neuronen sind rosa, die myelinhaltigen Fasern weiß. Im toten Gehirn färben sich die Neuronen grau. Deshalb heißen sie, obwohl sie während des Lebens rosa sind, graue Substanz.
Auf der Rinde lassen sich die sogenannten Rindenfelder lokalisieren, unterschieden zwischen primären Feldern und Assoziationsfeldern. Die primären Felder verarbeiten nur Informationen einer bestimmten Qualität, solche über Wahrnehmungen (Empfindung, zum Beispiel Sehen, Riechen, Berührung) oder über einfache Bewegungen. Die Assoziationsfelder stimmen verschiedene Funktionen aufeinander ab. Die Zuweisung eines Rindenfeldes zu einer bestimmten Funktion wird immer wieder definiert und relativiert. Erst das korrekte Zusammenspiel verschiedener Felder ermöglicht eine Funktion.
Zu den primären Feldern zählen zum Beispiel der visuelle Cortex, der am hinteren Pol des Gehirns liegt und auf dem die Projektionen der Sehbahn münden, und der auditorische Cortex, der der Verarbeitung akustischer Reize dient und seitlich im Schläfenlappen liegt.
Assoziative Felder finden sich unter anderem im vorderen Teil des Gehirns. Ihre Aufgaben sind zum Beispiel Gedächtnis und höhere Denkvorgänge.
Die Rindenfelder und ihre Funktionen können voneinander abgegrenzt werden, indem nach deren Ausfall (zum Beispiel durch Schlaganfall) die Tätigkeit des Patienten oder durch elektrische Stimulation, mikroskopische und andere Techniken das gesunde Gehirn untersucht wird. Neben der Großhirnrinde sind meist andere Hirnregionen an einer bestimmten Funktion beteiligt.
Zwischenhirn
[Bearbeiten | Quelltext bearbeiten]Zum Zwischenhirn gehören vier Teile:
- Thalamus (oberer Teil)
- Hypothalamus, der mit der Hypophyse (Hirnanhangdrüse) verbunden ist
- Subthalamus
- Epithalamus
Der Thalamus ist der Vermittler sensorischer und motorischer Signale zum und vom Großhirn. Bei ihm laufen alle Informationen der Sinnesorgane zusammen und werden weiter vermittelt. Er besteht hauptsächlich aus grauer Substanz. Der Hypothalamus steuert zahlreiche körperliche und psychische Lebensvorgänge und wird selbst teils neuronal über das vegetative Nervensystem, teils hormonell über den Blutweg gesteuert. Hypothalamus und Hypophyse (wichtige Hormondrüse des Körpers, die über den Hypophysenstiel mit dem Hypothalamus verbunden ist) sind das zentrale Bindeglied zwischen dem Hormon- und dem Nervensystem. Das Zwischenhirn ist beteiligt an der Schlaf-Wach-Steuerung (siehe ARAS, Schmerzempfindung, Temperaturregulation).
Kleinhirn
[Bearbeiten | Quelltext bearbeiten]Am Kleinhirn lassen sich ebenfalls zwei Hemisphären unterscheiden. Zusätzlich werden weitere Teile abgegrenzt. Es ist zum Beispiel für Gleichgewicht und Bewegungen und deren Koordination verantwortlich. Bei Tieren ist es – im Vergleich zum Großhirn – oft stärker entwickelt als beim Menschen, insbesondere bei Arten mit Flugvermögen oder bei schnellen Räubern.
Außerdem wird dem Kleinhirn eine Funktion beim unbewussten Lernen zugeschrieben. Neuere Forschungen (2005) lassen darauf schließen, dass es am Spracherwerb und dem sozialen Lernen beteiligt ist.
Hirnstamm
[Bearbeiten | Quelltext bearbeiten]Der Hirnstamm ist der stammesgeschichtlich älteste Teil des Gehirns. Er bildet den untersten Gehirnabschnitt und besteht aus auf- und absteigenden Nervenfasern (Weiße Substanz) und Ansammlungen von Neuronen beziehungsweise von Somata (Graue Substanz), morphologisch aus dem Mittelhirn, der Brücke (Pons) und dem Nachhirn (auch verlängertes Mark = Medulla oblongata genannt, da zwischen Rückenmark und Brücke gelegen). Der Hirnstamm verschaltet und verarbeitet eingehende Sinneseindrücke und ausgehende motorische Informationen und ist zudem für elementare und reflexartige Steuermechanismen zuständig.
Im Nachhirn kreuzen sich die Nervenbahnen der beiden Körperhälften. Außerdem werden hier viele automatisch ablaufende Vorgänge wie Herzschlag, Atmung oder Stoffwechsel gesteuert. Ebenso befinden sich hier wichtige Reflexzentren, die zum Beispiel Lidschluss-, Schluck-, Husten- und andere Reflexe auslösen. Das untere Ende des Nachhirns schließt an das Rückenmark an.
Evolutionäre Entwicklung beim Menschen
[Bearbeiten | Quelltext bearbeiten]
Nach der Trennung der beiden Evolutionslinien, welche einerseits zum modernen Menschen, dem Neandertaler und dem Denisova-Menschen und andererseits zu den Schimpansen geführt hatten, entstand vor etwa fünf Millionen Jahren das menschenspezifische Gen ARHGAP11B durch eine teilweise Verdopplung (Duplikation) des in der Tierwelt weit verbreiteten Gens ARHGAP11A. Das vom ARHGAP11B-Gen exprimierte Protein (Rho-GTPase-aktivierendes Protein 11B) enthält bei insgesamt 267 Aminosäuren eine Abfolge von 47 Aminosäuren am C-Terminus, die ebenfalls für den Menschen spezifisch ist, im ARHGAP11A-Protein nicht vorkommt, und für die Fähigkeit von ARHGAP11B zur Vermehrung von basalen Vorläuferzellen im Neokortex von essentieller Bedeutung ist.[14][15]
Dies wird als Teil der Erklärung dafür angesehen, warum der menschliche Neokortex als der evolutionär jüngste Teil der Großhirnrinde etwa dreimal so groß ist wie der Neokortex der Schimpansen.[16] Der entscheidende Effekt einer rasanten Zunahme der Gehirngröße setzte nach Ansicht der Forschenden jedoch erst später – aber schon vor mehr als 500.000 Jahren – mit einer zusätzlichen Punktmutation ein.[17][14]
Gehirne von Männern und Frauen
[Bearbeiten | Quelltext bearbeiten]
Zwischen Männern und Frauen unterscheidet sich die relative Größe verschiedener Gehirnareale.[18] Am besten erforscht sind hierbei der Hippocampus und die Amygdala.
- Der Hippocampus, in Form und Größe einem Seepferdchen ähnlich, ist für das Lernen und die Erinnerungen zuständig und hat bei Männern und Frauen unterschiedliche anatomische Strukturen und neurochemische Zusammensetzungen. Im Verhältnis zum Gesamthirn ist der Hippocampus bei der Frau größer. Beim Mann ist jedoch die CA1-Region größer und die Anzahl der Pyramidenzellen erhöht.[18] Des Weiteren bestehen eine unterschiedliche Rezeptor-Affinität für verschiedene Neurotransmitter und Unterschiede in der Langzeitpotenzierung.[18]
- Die Amygdala spielt eine Rolle beim Reproduktionsverhalten und stellt das Gedächtnis für emotionale Ereignisse dar.[18] Studien zeigten, dass es eine geschlechtsspezifische hemisphärische Lateralisation der Amygdalafunktionen in Beziehung auf die Erinnerung an emotionale Momente, bei der Reaktion auf glückliche Gesichter, bei der Verschaltung der Amygdala mit dem restlichen Gehirn sowie bei bestimmten Krankheiten, wie etwa der Depression, gibt.[18] Bei Frauen ist die linke Gehirnhälfte involviert, bei Männern die rechte.[18]
- Auch sind die beiden Hirnhemisphären im Bezug auf Sprache und Raumvorstellung bei Männern tendenziell asymmetrischer organisiert, d. h. die Lateralisation des Gehirns ist ausgeprägter als bei Frauen,[19] die wiederum größere Frontallappen haben.[20]
Zur Entstehung dieses Dimorphismus gibt es verschiedene Theorien. Zum einen kommt alternatives Spleißen von mRNA in Frage. Zum Beispiel das Spleißen von Kanalproteinen, sodass deren Durchlässigkeit für Ionen verändert ist.[18] Zum anderen sind epigenetische Kontrollmechanismen relevant. Hierzu zählen unter anderem die genomische Prägung und die Histonmodifikation.[18] Zudem wird immer wieder die Frage gestellt, inwiefern die Umwelt Einfluss auf den Dimorphismus hat.
Ein anderer Erklärungsansatz ist folgender: Geschlechtshormone, wie Testosteron und die Östrogene, wirken nicht nur auf die Keimdrüsen, sondern in vielfältiger Weise auf das gesamte Nervensystem: auf Nervenzellen, Synapsen, Genexpression. Dies gilt für die Zeit der Embryonalentwicklung und während der Kindheit, der Pubertät und im Erwachsenenalter.[21] So bewirken die Geschlechtshormone eine typische männliche beziehungsweise weibliche Entwicklung des Nervensystems. Dies wird zum Beispiel in der Regio praeoptica im Hypothalamus sichtbar, die bei jungen Männern im Vergleich zu Frauen vergrößert ist.
Ein entscheidender Faktor sind vermutlich die Barr-Körperchen, da viele X-chromosomale Gene in den neuronalen Prozessen der Gehirnentwicklung involviert sind. Die Barr-Körperchen entstehen durch zufällige Inaktivierung eines X-Chromosoms bei der Frau. Dies hat zur Folge, dass das weibliche Gewebe und die Organe, inklusive des Gehirns, ein Mosaik darstellen, da in jeder Zelle ein anderes Gen des polymorphen X-Gens exprimiert wird.[22] Auch Ian W. Craig und andere Wissenschaftler vermuten, dass die Differenzen zum großen Teil auf die X-Inaktivierung zurückgehen.[23] So wird heute meist angenommen, dass die unterschiedlichen Geschlechtschromosomen der wichtigste Grund für den Dimorphismus sind. Diese können auf zwei Arten die Entwicklung beeinflussen. Zum einen können die Genprodukte der Chromosomen direkt in den Zellen wirken, in denen sie exprimiert werden. Zum anderen bedingen die Gonosomen die Entwicklung der Gonaden, die die Geschlechtshormone bilden.
Im Rahmen mehrerer Studien zeigten sich Unterschiede zwischen männlichen, weiblichen, sowie cis- und transgeschlechtlichen Studienteilnehmern im Hinblick auf die Mikrostruktur der weißen Hirnsubstanz. Die Faserverläufe und damit die Struktur der Nervenverbindungen wiesen deutliche Unterschiede auf, bei denen die Ergebnisse der Transpersonen zwischen denen von Männern und Frauen lagen.[24] Dieselbe Studie lieferte Hinweise auf einen engen Zusammenhang zwischen den Faserverläufen und den Blutwerten von Geschlechtshormonen. Diese Befunde stützen die Annahme eines Einflusses der Geschlechtshormone auf die Hirnentwicklung[25], allerdings kommen andere Analysen zu dem Schluss, dass die Datenlage insbesondere im Bezug auf Transgeschlechtlichkeit unklar ist.[26]
Leistung des Gehirns
[Bearbeiten | Quelltext bearbeiten]Das Gehirn ist ein sehr aktives Organ mit einem besonders hohen Energiebedarf. Es macht beim Erwachsenen etwa 2 % der Körpermasse aus, verbraucht mit etwa 20 Watt etwa 20 % des Grundumsatzes,[27] beim Neugeborenen 50 %. Energie gewinnt es aus der aeroben Verbrennung von Glucose, aus Laktat[28] und Ketonkörpern. Glucose kann nicht vollständig durch die anderen Energieträger ersetzt werden.[29] Säuglingsgehirne können unmittelbar nach der Geburt zu einem ganz erheblichen Anteil Ketonkörper zur Energiegewinnung nutzen.[29] Einige Zeit nach Umstellung der Ernährung des Kleinkindes auf kohlenhydratreiche Nahrung wird die dafür erforderliche Enzymproduktion wieder reduziert oder ganz abgebaut und die Fähigkeit zur Ketolyse (zur Nutzung von Ketonkörpern für die Energiegewinnung) geht wieder verloren.[29] Das Verhalten des Blutglucosespiegels im Hungerstoffwechsel lässt vermuten, dass ein vollständig ketolysefähiges Gehirn priorisiert Ketonkörper (vorrangig vor der Glucose, selbst bei ausreichender Glucosezufuhr über das Blut) verarbeitet.[30]

90 % der Leistung benötigt die Natriumpumpe, größtenteils im Zusammenhang mit Aktionspotentialen. Da das Gehirn nur geringe, arealabhängige Speicherkapazitäten für Energie besitzt, führt ein Ausfall der Sauerstoff- oder Glucoseversorgung bereits nach zehn Sekunden zu einem Funktionsausfall (Synkope, Ohnmacht) und nach wenigen Minuten zu spezifischen Hirnschäden. Die geringen, auf den ersten Blick evolutionär unverständlichen Reservoirs werden manchmal durch Platzmangel erklärt. Gemäß einer anderen – evolutionären – Erklärung wich die Ernährungsweise der Menschen in der Altsteinzeit sehr stark von der heutigen Zivilisationskost ab, wodurch die Ketolysefähigkeit der damaligen Gehirne zu jedem Zeitpunkt auf natürliche Weise erhalten blieb. Dies wird so erklärt, dass der menschliche Organismus zwar zu viel aus Lebensmitteln aufgenommene Energie letztlich in den Körperfettdepots speichert – bei einer 70 kg schweren, gesunden, schlanken Person liegen 85 % der verwertbaren Körperenergien als Körperfett vor, 14,5 % als Proteine und nur 0,5 % als Kohlenhydrate[33] – aus Fett jedoch kaum noch Glukose herstellen kann: Anteilig nur noch 6 % aus dem Glycerin der Triglyceride, in deren Form Fett im Organismus gespeichert wird.[34] Einige Wissenschaftler nehmen an, dass die fettreichere Ernährung in der Altsteinzeit zum Wachstum des Gehirns des Menschen beitrug.[35]
Mit der natürlichen Fähigkeit von menschlichen Gehirnen zur Ketolyse begründet sich die Wirksamkeit der ketogenen Diät bei Epilepsie, GLUT1-Defizit-Syndrom und anderen zerebralen Erkrankungen und der Hungerstoffwechsel.[36]
Seit 1994 ist bekannt, dass die Nervenzellen über die Astrozyten bei Bedarf eine genau bemessene Energiemenge aus dem Blut erhalten, es ist der aktive Vorgang „Energy on Demand“.[37] Die bedarfsabhängige Regulierung der Blutversorgung von Hirnarealen wird als Neurovaskuläre Kopplung bezeichnet.
Abfallentsorgung des Gehirns
[Bearbeiten | Quelltext bearbeiten]Durch den ungewöhnlich hohen durchschnittlichen Stoffwechsel im Gehirn besteht auch ein ungewöhnlich hoher Bedarf an biochemischer Abfallbeseitigung. Diese ist hier noch zusätzlich deshalb von erhöhter Bedeutung, da manche Stoffe, insbesondere fehlgefaltete Proteine, typische Gefährdungen des Gehirns beinhalten.
Erschwert wird die Abfallentsorgung im Gehirn durch die Filtersysteme der Blut-Hirn-Schranke und der Blut-Liquor-Schranke sowie die Aussperrung des lymphatischen Systems. Letzteres reicht von außen nur bis in die Hirnhaut.

Obwohl es schon seit den 1980er Jahren konkrete Anzeichen für die Existenz eines speziellen Ausschwemmungssystems im Gehirn gab, wurde es erst 2012 mit Hilfe neuartiger Nachweismethoden als eigenständiges internes Kreislaufsystem entdeckt. In Anlehnung an das lymphatische System und wegen der entscheidenden Rolle der Glia (Stützzellen) wurde es „Glymphatisches System“ genannt.
Durch sehr enge Gefäßräume rund um die Außenwand von Adern, den so genannten perivaskulären Raum (Spatium perivasculare), gelangt ein kleiner Teil der Gehirn-Rückenmarks-Flüssigkeit (Liquor cerebrospinalis) aus dem Zwischenraum zwischen Schädeldecke und Gehirn (Subarachnoidalraum oder äußerer Liquorraum) in alle Bereiche des Gehirns, wird mit Hilfe der Glia dort verteilt und fließt am Ende – unter Mitnahme von Abfallstoffen – wieder ab zur Gehirnhaut und zum lymphatischen System außerhalb des Gehirns.[38][39]
Vergleich mit Computern
[Bearbeiten | Quelltext bearbeiten]Oft werden Vergleiche zwischen der Leistungsfähigkeit eines Computers und der des menschlichen Gehirns angestellt. Seit das Gehirn als Sitz kognitiver Leistung erkannt wurde, wurde es in der Literatur immer mit dem komplexesten verfügbaren technischen Apparat verglichen (Dampfmaschine, Telegraph). So wurde versucht, aus der Funktionsweise von Computern auf die des Gehirns zu schließen. Mittlerweile besteht das Bemühen in der Computational Neuroscience und der bionischen Neuroinformatik, die Funktionsweise des Gehirns teilweise auf Computern nachzubilden oder dadurch auf neue Ideen zur „intelligenten“ Informationsverarbeitung zu kommen (siehe Blue Brain). Es ergibt sich die Perspektive, dass das Gehirn als Struktur für Denk- und Wissensproduktion eine Architektur liefert, die sich zur Nachahmung empfiehlt. Künstliche neuronale Netzwerke haben sich bereits bei der Organisation künstlicher Intelligenzprozesse etabliert.
Rechenleistung und Leistungsaufnahme
[Bearbeiten | Quelltext bearbeiten]Bei Vergleichen mit modernen Computern zeigt sich die Leistungsfähigkeit des menschlichen Gehirns. Während das Gehirn etwa 1013 analoge Rechenoperationen pro Sekunde schafft und dabei etwa 15 bis 20 Watt Leistung benötigt, schafft der Supercomputer BlueGene/L von IBM bis zu 3,6·1014 Gleitkommaoperationen pro Sekunde mit doppelter Genauigkeit, wozu jedoch etwa 1,2 Megawatt benötigt werden. Intels erster Teraflop-Chip Prototyp „Terascale“ mit 80 Prozessorkernen schafft hingegen etwa 1012 Gleitkommaoperationen mit einfacher Genauigkeit bei 85 Watt (oder 2·1012 Gleitkommaoperationen bei 190 Watt und 6,26 GHz), was immer noch dem 50- bis 5000-fachen Energiebedarf entspricht. Zwar erreichen moderne 3D-Grafikkarten vergleichbare Werte bei geringerem elektrischen Leistungsbedarf, Grafikchips sind jedoch stärker auf bestimmte Rechenvorgänge spezialisiert.
Es ist allerdings zu beachten, dass die hohe Rechenleistung des Gehirns vor allem durch seine vielen parallelen Verbindungen (Konnektivität) und nicht durch eine hohe Geschwindigkeit bei den einzelnen Rechenvorgängen (Taktfrequenz) erzielt wird. Künstliche Neuronen arbeiten 100.000-mal schneller als Neuronen des menschlichen Gehirns.
Speicher
[Bearbeiten | Quelltext bearbeiten]Zusätzlich zur Parallelisierung stellt ein neuronales Netzwerk gleichzeitig eine Speicher- und eine Verarbeitungslogik dar, während diese bei Computern, die auf der Von-Neumann-Architektur basieren, getrennt sind. Dies bewirkt, dass in einem einfachen neuronalen Netzwerk mit jedem Taktzyklus der gesamte Speicher aktualisiert wird, während ein Computer den Inhalt des Speichers schrittweise aktualisieren muss.
Effizienz
[Bearbeiten | Quelltext bearbeiten]Rechenvorgänge, die auf einem Computer effizient ablaufen, sind meistens nicht effizient in einem neuronalen Netzwerk abbildbar und umgekehrt. Aufgrund der Ineffizienz bestehender Computerarchitekturen für bestimmte Aufgaben, wie beim Sehen, werden neuronale Netzwerke, wie dasjenige des Neocortex, durch Neuromorphing nachgebildet.[40][41]
Im März 2009 bildeten künstliche neuronale Netzwerke im Rahmen des FACETS-Projekts 200.000 künstliche Neuronen mit 50 Millionen künstlichen Synapsen auf einem einzelnen 8 Zoll (20,32 cm Diagonale) großen Computerchip ab. Im Juli 2014 stellte IBM TrueNorth vor, welcher 1 Million Neuronen und 256 Millionen Synapsen auf einem Chip mit einer TDP von 70 mW, oder 16 Millionen Neuronen mit 4 Milliarden Synapsen in einem einzelnen Rack integriert.[42]
Das Modell des Hypothesengenies
[Bearbeiten | Quelltext bearbeiten]Die Ansicht, das Gehirn als ein „Hypothesengenie“ oder eine „Vorhersagemaschine“ zu sehen, hatte bereits Hermann von Helmholtz, da andere Ansätze, das Gehirn künstlich nachzuempfinden, zu bisher unlösbaren Problemen führten und scheiterten. Der Ansatz geht davon aus, dass das Gehirn Hypothesen bildet und alle Eindrücke und Wahrnehmungen in die gespeicherten Muster einbaut und vergleicht. Wenn das Wahrgenommene nicht mehr auf die einzelne Hypothese passt, wird diese verworfen und nach Bedarf eine neue erstellt. Dies zeige sich klassisch bei der Interpretation von Kippfiguren.[43]
Anzahl und Vernetzung der Nervenzellen
[Bearbeiten | Quelltext bearbeiten]Während das Gehirn einer Ratte etwa 200 Millionen Neuronen enthält,[44] besitzt das eines Menschen neueren Untersuchungen zufolge durchschnittlich etwa 86 Milliarden[45] Nervenzellen. Davon liegen etwa 16 Milliarden Neuronen in der Großhirnrinde (Cortex cerebri), etwa 69 Milliarden im Kleinhirn (Cerebellum) und rund 1 Milliarde in den restlichen Hirnregionen (von Hirnstamm, Zwischenhirn und Basalganglien).[45]
Miteinander verbunden sind Neuronen über Synapsen, im menschlichen Hirn geschätzt rund 100 Billionen, sodass durchschnittlich eine Nervenzelle mit über 1000 anderen verbunden ist. Doch gibt es lokal deutliche Abweichungen von diesem Mittelwert,[46] denn nicht die Dichte, sondern das Muster von neuronalen Verknüpfungen ist für neurale Funktionen entscheidend. Ein häufiges Organisationsprinzip des Gehirns ist die Abbildung von Nachbarschaftsverhältnissen: was nebeneinander im Körper liegt, wird in Hirnarealen oft nebeneinander repräsentiert (Somatotopie).
Obwohl ausschließlich die Nervenzellen Erregungen als neuronale Impulse leiten und an Synapsen über Neurotransmitter als Signal weitergeben, spielen die sie umgebenden Gliazellen dabei keine unwesentliche Rolle. Die insgesamt etwa ebenso häufigen, meist kleineren Gliazellen ermöglichen Nervenzellen eine rasche Erregungsleitung und störungsfreie Signalübertragung, nehmen ausgeschüttete Botenstoffe auf, sorgen für die Bereitstellung von Nährstoffen und sind an den physiologischen Barrieren der Blut-Hirn- und der Blut-Liquor-Schranke beteiligt. Im sich entwickelnden Gehirn, und in sich weiterentwickelnden Hirnregionen, nehmen sie Einfluss auf die Ausbildung, Stabilität und Gewichtung der synaptischen Verbindungen zwischen Neuronen; bei Schädigungen peripherer Nerven bilden sie eine zur Wiederherstellung nötige Leitstruktur.[47]
Die Konnektom-Forschung hat das Ziel, alle Verbindungen zwischen den Neuronen zu kartieren.
Die zwölf Hauptnervenpaare des Gehirns
[Bearbeiten | Quelltext bearbeiten]- Nervus olfactorius – ermöglicht das Riechen
- Nervus opticus – leitet optische Impulse
- Nervus oculomotorius – innerviert vier von sechs Muskeln, die das Auge bewegen und andere Funktionen bedienen
- Nervus trochlearis – versorgt den oberen schrägen Augenmuskel
- Nervus trigeminus – leitet unter anderem Informationen über Berührungen aus dem Gesichtsbereich, ermöglicht das Kauen
- Nervus abducens – versorgt den seitlichen Augenmuskel
- Nervus facialis – ermöglicht unter anderem mimische Bewegungen und Geschmackswahrnehmung
- Nervus vestibulocochlearis (N. statoacusticus) – leitet Informationen aus dem Hör- und dem Gleichgewichtsorgan
- Nervus glossopharyngeus – leitet unter anderem Informationen (wie den Geschmack) aus dem Schlundbereich und ermöglicht Bewegungen in diesem Bereich
- Nervus vagus – im Wesentlichen für die Wahrnehmung, Bewegung und vegetative Funktionen – inklusive Drüsentätigkeit und Hormonausschüttung
- Nervus accessorius – ermöglicht Bewegungen durch zwei große Muskeln des Halses und des Kopfes
- Nervus hypoglossus – ermöglicht Bewegungen der Zunge
Forschungsprojekte
[Bearbeiten | Quelltext bearbeiten]Der ehemalige US-Präsident Barack Obama hat zu Beginn seiner zweiten Amtszeit Planungen für ein sehr großes Forschungsprojekt namens Brain Activity Map Project bekanntgegeben, im Zuge dessen das menschliche Gehirn komplett kartiert werden soll. Dies wäre das größte wissenschaftliche Vorhaben seit vielen Jahren (das letzte war das Human Genome Project). Experten hoffen auf Therapien gegen Alzheimer-Krankheit und Parkinson sowie auf Erkenntnisse über menschliches Denken und Fühlen.[48] Erste Ansätze wurden im Juli 2012 in der Fachzeitschrift Neuron veröffentlicht.[49]
Das US-Projekt ist nicht mit dem Human Brain Project zu verwechseln, das im Februar 2013 durch die EU gestartet wurde. Eine Jury hatte die Erforschung des Gehirns ebenfalls als ein Schlüsselprojekt der Zukunft ausgewählt; gefördert wird es mit einer Milliarde Euro.[48][50]
Sonstiges
[Bearbeiten | Quelltext bearbeiten]2008 wurden auf dem Gelände der University of York (England) die Überreste eines 2500 Jahre alten menschlichen Schädels gefunden, dessen Gehirn überwiegend erhalten ist. Forscher vermuten, dass das Gehirn des wahrscheinlich 26–45 Jahre alten Mannes unter anderem deswegen bis heute so gut erhalten blieb, weil der Kopf – ein Körper wurde nicht gefunden – seinerzeit unmittelbar nach dem Tod in nasser Lehmerde begraben wurde. Eine vollständige Klärung, warum das Gehirn nicht schon längst zerfallen ist, konnte bislang nicht gefunden werden.[51]
Hirn als Rohstoff findet Verwendung bei der Fettgerbung.
Die Neurolinguistik untersucht, wie Sprache durch das Gehirn dargestellt, aufgearbeitet und erlernt wird.
Zu Gehirnerkrankungen siehe etwa Zentralnervensystem#Erkrankungen.
Siehe auch
[Bearbeiten | Quelltext bearbeiten]- Gehirnentwicklung beim Menschen
- Blutversorgung des Gehirns
- Geschichte der Hirnforschung
- Sekundäre Altrizialität
- Kortikalisierung
Literatur
[Bearbeiten | Quelltext bearbeiten]- Olaf Breidbach: Die Materialisierung des Ichs: Zur Geschichte der Hirnforschung im 19. und 20. Jahrhundert. Suhrkamp, Frankfurt am Main 1997, ISBN 3-518-28876-8 (stw; 1276).
- Olaf Breidbach: Hirn, Hirnforschung. In: Werner E. Gerabek, Bernhard D. Haage, Gundolf Keil, Wolfgang Wegner (Hrsg.): Enzyklopädie Medizingeschichte. De Gruyter, Berlin 2005, ISBN 3-11-015714-4, S. 600 f.
- Christopher Donald Frith: Wie unser Gehirn die Welt erschafft (= Spektrum-Akademischer-Verlag-Sachbuch.). Spektrum Akademischer Verlag, Heidelberg 2010, ISBN 978-3-8274-2343-6.
- Günter Gassen, Sabine Minol: Unbekanntes Wesen Gehirn. Media Team, Darmstadt 2004, ISBN 3-932845-71-4.
- John Carew Eccles: Wie das Selbst sein Gehirn steuert. Springer, Berlin / Heidelberg 1994, ISBN 3-492-03669-4.
- Brigitte Falkenburg: Mythos Determinismus. Wieviel erklärt uns die Hirnforschung? Springer, Heidelberg 2012, ISBN 978-3-642-25097-2.
- Michael Hagner: Geniale Gehirne. Zur Geschichte der Elitegehirnforschung. Wallstein, Göttingen 2004, ISBN 3-89244-649-0.
- Sabine Perl, Verena Weimer, Hans Günter Gassen: Das Gehirn: Zwischen Perfektion und Katastrophe. In: Biologie in unserer Zeit. Band 33, Nr. 1, 2003, ISSN 0045-205X, S. 36–44.
- John von Neumann: Computer and the Brain. Yale University Press, New Haven (Conn.) 2000, ISBN 0-300-08473-0.
- Oliver Sacks: Musicophilia: Tales of Music and the Brain. Knopf, Toronto 2007, ISBN 978-0-676-97978-7.
- Richard F. Thompson: Das Gehirn: von der Nervenzelle zur Verhaltenssteuerung. Spektrum Akademischer Verlag, Heidelberg 1992; 3. Auflage ebenda 2001, ISBN 3-8274-1080-0.
- Gerhard Roth: Aus Sicht des Gehirns. Suhrkamp, Frankfurt am Main 2003, ISBN 3-518-58383-2.
- Ann B. Butler, William Hodos: Comparative Vertebrate Neuroanatomy. Evolution and Adaptation. 2. Ausgabe, Wiley-Interscience, Hoboken (NJ) 2005, ISBN 0-471-21005-6.
- Michael Madeja: Das kleine Buch vom Gehirn. Reiseführer in ein unbekanntes Land. Beck, München 2010, ISBN 978-3-406-60097-5.
- Mark F. Bear, Barry W. Connors, Michael A. Paradiso: Neuroscience: Exploring the Brain. Lippincott Williams & Wilkins, Baltimore 2006, ISBN 0-7817-6003-8.
- Ariel Hauptmeier, Johanna Adam, John-Dylan Haynes, Henriette Pleiger, Kunst- und Ausstellungshalle der Bundesrepublik Deutschland GmbH (Hrsg.): Das Gehirn. In Kunst und Wissenschaft. Hirmer, München 2022, ISBN 978-3-7774-3936-5.
DVDs
[Bearbeiten | Quelltext bearbeiten]- Lennart Heimer, Gary W. van Hoesen, Michael Trimble, Daniel S. Zahm: Anatomy of Neuropsychiatry: The New Anatomy of the Basal Forebrain and Its Implications for Neuropsychiatric Illness. Academic Press, Amsterdam 2008, ISBN 978-0-12-374239-1.
- Lennart Heimer: Dissection of the Human Brain. Sinauer Associates, 2008, ISBN 978-0-87893-327-3.
Weblinks
[Bearbeiten | Quelltext bearbeiten]- Literatur von und über Gehirn im Katalog der Deutschen Nationalbibliothek
- dasGehirn.info Informationsportal rund um das Gehirn
Englisch
[Bearbeiten | Quelltext bearbeiten]- The whole Brain Atlas Gehirnatlas mit CT-, MRT- und SPECT/PET-Aufnahmen von Patienten mit verschiedenen Gehirnerkrankungen
- Brain Museum – Comparative Mammalian Brain Collections Gehirne und Hirnschnitte vieler Säugetierarten mit weiterführenden Informationen
- Allen Brain Atlas Online-Atlas mit Schwerpunkt Mäusegehirn, das Projekt wurde von Paul Allen finanziert
- Human Brain Architecture Project
Videos
[Bearbeiten | Quelltext bearbeiten]- Tübinger Internet Multimedia Server der Eberhard Karls Universität Tübingen: Universität Tübingen/Interfakultäre Einrichtungen/Studium Generale/2001 SoSe/Das Gehirn (8 Dokumente) Videos einer Vortragsreihe zum Thema Gehirn.
Einzelnachweise
[Bearbeiten | Quelltext bearbeiten]- ↑ hirn n.. In: Jacob Grimm, Wilhelm Grimm (Hrsg.): Deutsches Wörterbuch. Band 10: H, I, J – (IV, 2. Abteilung). S. Hirzel, Leipzig 1877 (woerterbuchnetz.de).
- ↑ Enzephalon – Gesundheit.de, abgerufen am 8. Dezember 2020; dort auch noch mit „Encephalon“ und zudem im „Englisch[en]: encephalon“ geschrieben …
- ↑ Enzephalon – Duden/Bibliographisches Institut, 2020.
- ↑ A. B. Butler: Chordate Evolution and the Origin of Craniates: An Old Brain in a New Head. In: Anatomical Record. Band 261, Nr. 3, 2000, S. 111–125, doi:10.1002/1097-0185(20000615)261:3<111::AID-AR6>3.0.CO;2-F, PMID 10867629.
- ↑ T. H. Bulloch, W. Kutch: The nervous systems of invertebrates: an evolutionary and comparative approach. Hrsg.: O. Breidbach. Birkhäuser, 1995, ISBN 3-7643-5076-8, Are the main grades of brains different principally in numbers of connections or also in quality?, S. 439 (google.com).
- ↑ Anatomy of the Brain. Abgerufen am 19. Oktober 2023.
- ↑ Brain Basics: Know Your Brain. Abgerufen am 19. Oktober 2023 (englisch).
- ↑ Das Gehirn. Abgerufen am 19. Oktober 2023.
- ↑ John P. J. Pinel, Paul Pauli: Biopsychologie. 6., aktualisierte Auflage. Pearson Studium, München u. a. 2007, ISBN 978-3-8273-7217-8, S. 95.
- ↑ John S. Allen, Hanna Damasio, Thomas J. Grabowski: Normal neuroanatomical variation in the human brain: an MRI-volumetric study. In: American Journal of Physical Anthropology. Band 118, Nr. 4, 1. August 2002, S. 341–358, doi:10.1002/ajpa.10092, PMID 12124914.
- ↑ Visible Body: Das menschliche Gehirn | Anatomie und Funktion. Abgerufen am 19. Oktober 2023.
- ↑ INTRODUCTION / REGIONS OF THE BRAIN. Abgerufen am 19. Oktober 2023.
- ↑ Frederico A. C. Azevedo, Ludmila R. B. Carvalho, Lea T. Grinberg, José Marcelo Farfel, Renata E. L. Ferretti: Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. In: The Journal of Comparative Neurology. Band 513, Nr. 5, 10. April 2009, ISSN 1096-9861, S. 532–541, doi:10.1002/cne.21974, PMID 19226510 (Online [abgerufen am 11. Januar 2016]).
- ↑ a b M. Heide, W. B. Huttner: Human-Specific Genes, Cortical Progenitor Cells, and Microcephaly. In: Cells. Band 10, Nummer 5, 05 2021, S. , doi:10.3390/cells10051209, PMID 34063381, PMC 8156310 (freier Volltext) (Review).
- ↑ Max-Planck-Institut für molekulare Zellbiologie und Genetik, Dresden: Gehirngröße: Mini-Mutation mit riesigen Folgen. Der Expansion des menschlichen Großhirns während der Evolution liegt wahrscheinlich eine winzige Veränderung in einem Gen zugrunde. Auf: mpg.de vom 8. Dezember 2016, zuletzt abgerufen am 17. Januar 2022.
- ↑ Samir Vaid, Wieland B. Huttner: Transcriptional Regulators and Human-Specific/Primate-Specific Genes in Neocortical Neurogenesis. In: International Journal of Molecular Sciences. Band 21, Nummer 13, Juni 2020, doi:10.3390/ijms21134614, PMID 32610533, PMC 7369782 (freier Volltext) (Review).
- ↑ M. Florio, T. Namba, S. Pääbo, M. Hiller, W. B. Huttner: A single splice site mutation in human-specific causes basal progenitor amplification. In: Science Advances. Band 2, Nummer 12, Dezember 2016, S. e1601941, doi:10.1126/sciadv.1601941, PMID 27957544, PMC 5142801 (freier Volltext).
- ↑ a b c d e f g h Larry Cahil: Why sex matters for neuroscience. In: Nature Reviews Neuroscience. Band 7, 2006, S. 477–484.
- ↑ Onur Güntürkün, Markus Hausmann: Funktionelle Hirnorganisation und Geschlecht. In: S. Lautenbacher, O. Güntürkün, O. M. Hausmann (Hrsg.): Gehirn und Geschlecht: Neurowissenschaft des kleinen Unterschieds zwischen Mann und Frau. Springer, Heidelberg 2007, ISBN 978-3-540-71627-3, S. 97.
- ↑ Birger Dulz, Peer Briken, Otto F. Kernberg, Udo Rauchfleisch: Handbuch der Antisozialen Persönlichkeitsstörung. Schattauer, Stuttgart 2017, ISBN 978-3-7945-3063-2, S. 18.
- ↑ Elena Jazin, Larry Cahill: Sex differences in molecular neuroscience: from fruit flies to humans. In: Nature Reviews Neuroscience. Band 11, 2010, S. 9–17.
- ↑ Arthur P. Arnold: Sex chromosomes and brain gender. In: Nature Reviews Neuroscience. Band 5, 2004, S. 701–708.
- ↑ Ian W. Craig, Emma Harper, Caroline S. Loat: The Genetic Basis for Sex Differences in Human Behaviour: Role of the Sex Chromosomes. In: Annals of Human Genetics. Band 68, Nr. 3, 2004, S. 269–284, doi:10.1046/j.1529-8817.2004.00098.x.
- ↑ G. S. Kranz u. a.: White matter microstructure in transsexuals and controls investigated by diffusion tensor imaging. In: Journal of Neuroscience. Band 34, Nr. 46, 12. November 2014, S. 15466–15475, doi:10.1523/JNEUROSCI.2488-14.2014, PMID 25392513.
- ↑ Giancarlo Spizzirri, Fábio Luis Souza Duran, Tiffany Moukbel Chaim-Avancini, Mauricio Henriques Serpa, Mikael Cavallet, Carla Maria Abreu Pereira, Pedro Paim Santos, Paula Squarzoni, Naomi Antunes da Costa, Geraldo F. Busatto, Carmita Helena Najjar Abdo: Grey and white matter volumes either in treatment-naïve or hormone-treated transgender women: a voxel-based morphometry study. In: Scientific Reports. Band 8, Nr. 1, 15. Januar 2018, ISSN 2045-2322, S. 736, doi:10.1038/s41598-017-17563-z, PMID 29335438, PMC 5768734 (freier Volltext) – (nature.com [abgerufen am 31. Juli 2023]).
- ↑ Elke Stefanie Smith, Jessica Junger, Birgit Derntl, Ute Habel: The transsexual brain – A review of findings on the neural basis of transsexualism. In: Neuroscience & Biobehavioral Reviews. Band 59, 1. Dezember 2015, ISSN 0149-7634, S. 251–266, doi:10.1016/j.neubiorev.2015.09.008 (sciencedirect.com [abgerufen am 31. Juli 2023]).
- ↑ Herbert Lochs: Hungerstoffwechsel. ( vom 21. Oktober 2012 im Internet Archive) (PDF; 1,5 MB). 2003, S. 23.
- ↑ Avital Schurr: Lactate: the ultimate cerebral oxidative energy substrate? In: Journal of Cerebral Blood Flow and Metabolism. Band 26, 2006, S. 142–152.
- ↑ a b c Georg Löffler, Petro E. Petrides (Hrsg.): Biochemie und Pathobiochemie (= Springer-Lehrbuch.). 7., völlig neu bearbeitete Auflage. Springer Medizin-Verlag, Heidelberg 2003, ISBN 978-3-540-42295-2, S. 1054.
- ↑ Herbert Lochs: Hungerstoffwechsel. ( vom 21. Oktober 2012 im Internet Archive) (PDF; 1,5 MB). 2003, S. 19.
- ↑ Zahid Padamsey, Nathalie L. Rochefort: Paying the brain's energy bill. In: Current Opinion in Neurobiology. Band 78, Februar 2023, S. 102668, doi:10.1016/j.conb.2022.102668 (elsevier.com [abgerufen am 1. Dezember 2023]).
- ↑ ZiMian Wang, Zhiliang Ying, Anja Bosy-Westphal, Junyi Zhang, Britta Schautz, Wiebke Later, Steven B Heymsfield, Manfred J Müller: Specific metabolic rates of major organs and tissues across adulthood: evaluation by mechanistic model of resting energy expenditure. In: The American Journal of Clinical Nutrition. Band 92, Nr. 6, Dezember 2010, S. 1369–1377, doi:10.3945/ajcn.2010.29885, PMID 20962155, PMC 2980962 (freier Volltext) – (elsevier.com [abgerufen am 1. Dezember 2023]).
- ↑ Herbert Lochs: Hungerstoffwechsel. ( vom 21. Oktober 2012 im Internet Archive) (PDF; 1,5 MB). 2003, S. 5.
- ↑ Philip A. Wood: How Fat Works. Harvard University Press, Cambridge MA 2006.
- ↑ Leslie C. Aiello, Peter Wheeler: The Expensive-Tissue Hypothesis. The Brain and the Digestive System in Human and Primate Evolution. In: Current Anthropology. Band 36, Nr. 2, 1995, S. 199–221.
- ↑ Herbert Lochs: Hungerstoffwechsel. ( vom 21. Oktober 2012 im Internet Archive) (PDF; 1,5 MB). 2003.
- ↑ L. Pellerin, P. J. Magistretti: Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. In: Proceedings of the National Academy of Sciences of the United States of America. Band 91, 1994, S. 10625–10629.
- ↑ N. A. Jessen, A. S. Munk, I. Lundgaard, M. Nedergaard: The Glymphatic System: A Beginner’s Guide. In: Neurochemical research. Band 40, Nummer 12, Dezember 2015, S. 2583–2599, doi:10.1007/s11064-015-1581-6, PMID 25947369, PMC 4636982 (freier Volltext) (Review).
- ↑ D. Raper, A. Louveau, J. Kipnis: How Do Meningeal Lymphatic Vessels Drain the CNS? In: Trends in neurosciences. Band 39, Nummer 9, September 2016, S. 581–586, doi:10.1016/j.tins.2016.07.001, PMID 27460561, PMC 5002390 (freier Volltext) (Review).
- ↑ Andrew Nere, Mikko Lipasti: Cortical architectures on a GPGPU. In: Proceedings of the 3rd Workshop on General-Purpose Computation on Graphics Processing Units. 2010, ISBN 978-1-60558-935-0, S. 12–18, doi:10.1145/1735688.1735693.
- ↑ Gehirnchip macht bei IBM Fortschritte. auf heise.de, 20. August 2011.
- ↑ Dharmendra S. Modha: Introducing a Brain-inspired Computer: TrueNorth’s neurons to revolutionize system architecture. IBM Research, abgerufen am 7. August 2014 (englisch).
- ↑ Martin Hubert: Hirnforschung – Das Hypothesengenie – Das Gehirn als Vorhersagemaschine Deutschlandradio, „Wissenschaft im Brennpunkt“ (Audio) 19. Januar 2014.
- ↑ Suzana Herculano-Houzel, R. Lent: Isotropic fractionator: a simple, rapid method for the quantification of total cell and neuron numbers in the brain. In: Journal of Neuroscience. Band 25, Nr. 10, März 2005, S. 2518–2521, doi:10.1523/JNEUROSCI.4526-04.2005, PMID 15758160 (Online).
- ↑ a b Suzana Herculano-Houzel: The Human Brain in Numbers: A Linearly Scaled-up Primate Brain. In: Frontiers in Human Neuroscience. Band 3, Nr. 31, November 2009, S. 1–11, doi:10.3389/neuro.09.031.2009, PMID 19915731, PMC 2776484 (freier Volltext).
- ↑ S. Song, P. J. Sjöström, M. Reigl, S. Nelson, D. B. Chklovskii: Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits. In: PLoS Biology. Band 3, Nr. 3, S. e68, doi:10.1371/journal.pbio.0030068.
- ↑ Jörg Auf dem Hövel: Briefträger, Botenstoffe und der unterschätzte Klebstoff. In: Telepolis. 2. Juni 2007.
- ↑ a b Milliardenschwerer Forschungsplan. Spiegel Online, 18. Februar 2013.
- ↑ A. Paul Alivisatos, Miyoung Chun, George M. Church, Ralph J. Greenspan, Michael L. Roukes, Rafael Yuste: The Brain Activity Map Project and the Challenge of Functional Connectomics. In: Neuron. Band 74, 2012, S. 970–974, doi:10.1016/j.neuron.2012.06.006.
- ↑ Human Brain Project: Forscher basteln an der Hirnmaschine. Spiegel Online, 12. Mai 2011.
- ↑ Ancient „Pickled“ Brain Mystery Explained? In: news.nationalgeographic.com. Abgerufen am 25. Juni 2011.