„ITER“ – Versionsunterschied
[ungesichtete Version] | [gesichtete Version] |
Plehn (Diskussion | Beiträge) |
K form |
||
Zeile 1: | Zeile 1: | ||
{{Begriffsklärungshinweis|Zum Bischof von Chur siehe [[Lucius Iter]].}} |
|||
[[Image:Tokmak - ITER cut.jpg|thumb|Schematische Darstellung von ITER. Links unten ist eine Person zum Größenvergleich abgebildet.]] |
|||
{{Infobox |
|||
| Stil = 1 |
|||
| Titel = International Thermonuclear Experimental Reactor |
|||
| Titelfarbe = <!--red--> |
|||
| Farbe = #f5f5f5 |
|||
| Abschnittsfarbe = navy |
|||
| Bildname = <!--ITER Logo NoonYellow.svg--> |
|||
| Bildtext = <!--iter logo--> |
|||
| Bildbreite = 300px |
|||
| Style = width: 300px |
|||
| Feldname1 = - |
|||
| Daten1 = [[Datei:ITER Logo NoonYellow.svg|260px|ITER-Logo]] |
|||
| Feldname2 = - |
|||
| Daten2 = [[Datei:ITER participants.svg|300px|ITER-Teilnehmer]] |
|||
| Feldname3 = |
|||
| Daten3 = <span style="font-style: italic;">Die 35 an ITER teilnehmenden Staaten</span> |
|||
| Feldname4 = Motto |
|||
| Daten4 = The way to new energy |
|||
| Feldname5 = Sitz |
|||
| Daten5 = 13115 [[Saint-Paul-lès-Durance]], [[Frankreich]] |
|||
| Feldname6 = Generaldirektor |
|||
| Daten6 = [[Pietro Barabaschi]] |
|||
| Feldname7 = Gründung |
|||
| Daten7 = 24. Oktober 2007 |
|||
| Feldname8 = Website |
|||
| Daten8 = [https://www.iter.org/ iter.org] |
|||
}} |
|||
[[Datei:ITER site 2018 aerial view (41809720041).jpg|mini|Luftbild des ITER-Geländes zur Bauphase (2018)]] |
|||
[[Datei:ITER Tokamak and Plant Systems (2016) (41783636452).jpg|mini|Visualisierung des ITER-Gebäudes im Querschnitt]] |
|||
[[Datei:ITER Exhibit (01810402) (12219071813) (cropped).jpg|mini|Plastisches Modell des Kernstücks der Anlage]] |
|||
'''ITER''' ({{enS}} für {{lang|en|'''''I'''nternational '''T'''hermonuclear '''E'''xperimental '''R'''eactor''}}; [[latein]]isch bedeutet das Wort ‚Weg‘, ‚Marsch‘ oder ‚Reise‘) ist ein Versuchs-[[Kernfusionsreaktor]] und internationales Forschungsprojekt mit dem Fernziel der Stromerzeugung aus [[Fusionsenergie]]. Der Reaktor beruht auf dem [[Tokamak]]-Prinzip und ist seit 2007 beim südfranzösischen Kernforschungszentrum [[Cadarache]] im Bau.<ref name="projektplan">[https://www.iter.org/construction/timeline Projektplan ITER], abgerufen am 25. Juni 2017.</ref> |
|||
Der [[Kernfusionsreaktor]] '''International Thermonuclear Experimental Reactor''' („ITER“, deutsch: ''Internationaler Thermonuklearer Experimenteller Reaktor'') ist ein gemeinsames Forschungsprojekt der [[Europäische Union|Europäischen Union]] und der Länder [[Japan]], [[Kanada]], [[Schweiz]], [[Russland]], [[Volksrepublik China]], [[Südkorea]] und [[USA]]. Die USA waren von 1998 bis 2003 vorübergehend aus dem ITER-Projekt ausgestiegen, Kanada seit 2004. |
|||
Forschungsschwerpunkte sind verschiedene Methoden und Konstruktionen zur [[Plasma (Physik)|Plasma]]<nowiki/>heizung, -diagnostik und -kontrolle und die Erprobung verschiedener [[Blanket]]-Konstruktionen zum Erbrüten von [[Tritium]]. Es soll ein Brennen des Plasmas bis zu einer Stunde erreicht werden, und die freigesetzte Fusionsleistung soll dabei die eingebrachte Heizleistung um das Mehrfache übersteigen. ITER wird im Vergleich zu seinem Vorgänger [[Joint European Torus|JET]] wesentlich größer und mit [[Supraleiter|supraleitenden]] Magnetspulen ausgestattet. Beim Bau von ITER kam es bereits mehrfach zu Verzögerungen und Kostensteigerungen. Die Inbetriebnahme ist nun im Zeitraum 2034 bis 2036 geplant, Experimente mit Tritium ab 2039.<ref name="Zeit_Juli_2024">{{Literatur |Autor=Robert Gast |Titel=Kernfusionsreaktor Iter: Megaprojekt mit Megaverspätung |Sammelwerk=Die Zeit |Ort=Hamburg |Datum=2024-07-03 |ISSN=0044-2070 |Online=https://www.zeit.de/wissen/2024-07/kernfusionsreaktor-iter-energie-energiewende-verspaetung/komplettansicht |Abruf=2024-07-03}}</ref><ref name="Physicsworld_Juli_2024">Michael Banks: [https://physicsworld.com/iter-fusion-reactor-hit-by-massive-decade-long-delay-and-e5bn-price-hike/ ''ITER fusion reactor hit by massive decade-long delay and €5bn price hike.''] [[Physics World]], 3. Juli 2024.</ref> |
|||
Die EU, die USA, Japan, China, Russland und Südkorea gaben am [[28. Juni]] [[2005]] nach langen Verhandlungen den Startschuss für den Bau des so genannten Iter-Reaktors. Sie beschlossen, für insgesamt 9,6 Milliarden Euro einen Versuchsreaktor in [[Cadarache]] in Südfrankreich zu bauen. Er soll 20 Jahre lang betrieben werden. |
|||
Falls sich mit ITER und der parallel durchzuführenden Werkstoffforschung an der [[International Fusion Materials Irradiation Facility]] (IFMIF) zeigt, dass das Tokamak-Bauprinzip in den Gigawatt-Bereich vergrößert werden kann, soll ein Nachfolgeprojekt namens [[DEMO]] Strom ins Netz einspeisen und einen geschlossenen Tritium-Kreislauf demonstrieren.<ref>iter.org: {{Webarchiv|text=''ITER & Beyond'' |url=https://www.iter.org/proj/iterandbeyond |wayback=20120922162049 }}, 2013. Abgerufen am 2. Januar 2013.</ref><ref name=Sonnabend>K. Sonnabend: Von der Vision zur Fusion. ''Physik Journal'' 15 (2016) Nr. 3 Seite 25–29</ref> Selbst Befürworter der Technologie räumen aber ein, dass es auf dem Weg dorthin noch zahlreiche ungelöste Probleme gibt.<ref>{{Literatur |Autor=Malte Kreutzfeldt |Titel=Energie durch Kernfusion: Für immer ein Traum? |Sammelwerk=Die Tageszeitung: taz |Datum=2020-08-22 |ISSN=0931-9085 |Online=https://taz.de/Energie-durch-Kernfusion/!5707537/ |Abruf=2020-08-27}}</ref> |
|||
ITER soll Wege zu einer wirtschaftlichen Nutzung der kontrollierten [[Kernfusion]] aufzeigen. |
|||
Die ursprüngliche Bedeutung der Abkürzung 'ITER' („International Thermonuclear Experimental Reactor“) wird offiziell nicht mehr verwendet, stattdessen soll auf die [[latein]]ische Bedeutung für „iter“, 'der Weg', verwiesen werden. |
|||
ITER wird als gemeinsames Forschungsprojekt der sieben gleichberechtigten Partner [[Europäische Union|EU]], welche die [[Mitgliedstaaten der Europäischen Union|27 EU-Staaten]], das [[Vereinigtes Königreich|Vereinigte Königreich]] und die [[Schweiz]] vertritt, [[Vereinigte Staaten|USA]], [[Volksrepublik China|China]], [[Südkorea]], [[Japan]], [[Russland]] und [[Indien]] entwickelt, gebaut und betrieben.<ref name="SBFI">[[Schweizerische Eidgenossenschaft]]: [https://www.sbfi.admin.ch/sbfi/de/home/themen/internationale-forschungs--und-innovationszusammenarbeit/beteiligung-der-schweiz-an-internationalen-forschungsorganisatio/iter.html ''ITER / Fusion for Energy, Cadarache (F) / Barcelona''] Staatssekretariat für Bildung, Forschung und Innovation SBFI (sbfi.[[admin.ch]]).</ref> Die USA waren von 1998 bis 2003 vorübergehend aus dem Projekt ausgestiegen, [[Kanada]] ist seit 2004 nicht mehr dabei. Zwischen der [[Internationale Atomenergie-Organisation|Internationalen Atomenergie-Organisation]] (IAEO) und dem ITER-Projekt wurde 2008 eine Zusammenarbeit auf Expertenebene vereinbart.<ref>[http://www.energy-daily.com/reports/ITER_IAEA_sign_deal_to_move_nuclear_fusion_research_forward_999.html ''ITER, IAEA sign deal to move nuclear fusion research forward'']. In: Energy Daily, 13. Oktober 2008. Abgerufen am 8. Mai 2011.</ref> |
|||
== Kernfusion == |
|||
== Funktion == |
|||
Nach dem Vorbild der [[Sonne]] wird bei der [[Kernfusion]] [[Wasserstoff]] zu [[Helium]] verschmolzen. Dabei wird eine große Menge [[Energie]] in Form von (Wärme)-[[Strahlung]] frei. Ein Gramm Wasserstoff setzt dabei etwa dieselbe Menge Energie frei wie acht Tonnen [[Erdöl]] oder elf Tonnen Kohle. Die [[Wasserstoffbombe]] macht sich diesen Effekt zunutze, allerdings wird hier die Energie unkontrolliert auf einmal freigesetzt. |
|||
{{Hauptartikel|Tokamak}} |
|||
ITER funktioniert nach dem Tokamak-Prinzip. Die Spulen, die das ringförmige [[Vakuum]]<nowiki />gefäß umschlingen, erzeugen darin ein starkes [[Magnetfeld]] in Umfangsrichtung (Toroidalfeld). In das Gefäß wird dann ca. 1 Gramm [[Deuterium]]-[[Tritium]]-Gas eingelassen, durch eine oder mehrere verschiedene Heiztechniken (siehe [[Kernfusionsreaktor#Plasmaaufheizung]]) erhitzt und so in den [[Plasma (Physik)|Plasma]]-Zustand gebracht. Ein elektrischer Ringstrom erzeugt zusammen mit den Spulen das schraubenförmig verdrillte Magnetfeld, das das Plasma zusammenhält. Die Elektronen und Ionen bewegen sich unter der [[Lorentzkraft]] auf engen Schraubenbahnen um die [[Feldlinie]]n. Stöße untereinander erlauben allerdings eine Drift quer zum Feld. Teilchenbahnen an der Oberfläche des Plasmas enden jenseits einer Feldeinschnürung auf [[Divertor]]platten in der Nähe von Pumpenöffnungen. Die Divertoroberflächen aus [[Wolfram]]<ref>C. Thomser et al.: ''Plasma Facing Materials for the JET ITER-like Wall''. [[Fusion Science and Technology]] 62, 2012, S. 1–8 ([http://www.euro-fusionscipub.org/wp-content/uploads/2014/11/EFDP11063.pdf PDF]).</ref> sind die am stärksten wärmebelasteten Teile des Reaktors. |
|||
Die bei der Fusionsreaktion freigesetzten schnellen Neutronen tragen etwa 80 % der Fusionsleistung aus dem Plasma fort. Die restlichen 20 % der Fusionsleistung treten als Rückstoßenergie der in der Reaktion entstandenen [[Helium]]-4-Atomkerne auf; sie wird an das Plasma abgegeben und trägt erheblich zu dessen Heizung bei. Mit einer zur Steuerung nötigen äußeren Zusatz-Heizleistung von etwa 50 Mega[[Watt (Einheit)|watt]] (MW) „brennt“ das Plasma weiter. |
|||
== Fusionsreaktor == |
|||
== Details der Konstruktion == |
|||
Schon seit Jahrzehnten wird an der zivilen Nutzung der [[Kernfusion]] geforscht. Das größte Problem dabei ist, dass sich die Wasserstoffkerne extrem annähern müssen, um fusionieren zu können. Dem wirkt die abstoßende elektrische Kraft zwischen den Kernen aber entgegen. Deshalb muss das Produkt von Temperatur und Druck eine gewisse Schwelle überschreiten. In der Sonne reichen auf Grund des hohen Drucks 15,6 Millionen [[Grad Celsius]] aus. Bei den niedrigeren Drücken, die im Reaktor beherrschbar sind, liegt die Zündtemperatur bei mehreren hundert Millionen Grad Celsius. Auf derart hohe Temperaturen kann man den Wasserstoff aber nicht in bisher gebräuchlichen Medien erhitzen, da er sofort alle Gefäße zum Schmelzen oder Verdampfen bringen würde. |
|||
[[Datei:ITER-img 0237 detoure.jpg|mini|Schnitt durch ITER. Rechts unten eine Person zum Größenvergleich.]] |
|||
=== Plasmavolumen === |
|||
Der Wasserstoff wird daher in einem Vakuum erhitzt, schwebend, ohne Kontakt zum Behältnis. Um das zu erreichen, werden starke [[Magnet]]e um die [[Torus|torusförmige]] Reaktionskammer errichtet, die das hocherhitzte [[Plasma (Physik)|Wasserstoffplasma]] durch Magnetfelder in Position halten. Um den enormen Energieverlust konventioneller Elektromagnete zu reduzieren, werden die Spulen energiesparend als [[Supraleitung|Supraleiter]] ausgeführt. |
|||
In nominaler Geometrie hat das Plasma einen großen [[Rotationstorus|Torusradius]] von 6,2 m, einen kleinen Radius von 2 m (das heißt, es erstreckt sich von 4,2 bis 8,2 m von der vertikalen Symmetrieachse), ist 6,7 m hoch und hat ein Volumen von 837 m³. Diese Angaben beziehen sich auf die Separatrix genannte Fläche des Magnetfeldes, außerhalb derer die Feldlinien geladene Teilchen nicht einschließen, sondern zum Divertor lenken. |
|||
Der Energieaufwand zur Kühlung ist deutlich geringer als der Verlust durch den |
|||
elektrischen Widerstand, der bei ungekühlten Spulen vorhanden wäre. |
|||
=== Divertor === |
|||
Bei einem Ausfall des Magnetfeldes wird – entgegen der allgemeinen Auffassung – der Reaktor durch die enormen Temperaturen nicht zerstört. Der Kontakt mit der Reaktorwand verunreinigt das Plasma und lässt es sofort auskühlen. Außerdem ist das Plasma hoch verdünnt: Bei Iter kommen auf 837 Kubikmeter Plasmavolumen nur 0,5 Gramm Plasmamaterial. Das entspricht einer Dichte wie in einem [[Vakuum|Hochvakuum]]. |
|||
{{Hauptartikel|Divertor}} |
|||
Der Divertor befindet sich unten im Vakuumgefäß. Er ist in 54 schmale 10-Tonnen-Segmente unterteilt, die einzeln robotisch montiert und auch ausgetauscht werden. Sie bestehen aus einem Stahlkörper als Teil des Neutronenschirms und tragen je drei Oberflächenelemente aus wassergekühltem Wolfram, insgesamt 210 m<sup>2</sup>. |
|||
Magnetfeldlinien aus dem Außenbereich des Torus treffen die fast vertikal orientierten Bereiche der Divertor-Oberfläche in flachem Winkel. Dort beträgt die Wärmestromdichte aus [[Rekombination (Physik)|rekombinierenden]] Plasmateilchen kontinuierlich etwa 1 kW/cm<sup>2</sup>, kurzfristig 2 kW/cm<sup>2</sup>. Der flache Einfallswinkel verteilt nicht nur den Wärmestrom auf eine größere Oberfläche, sondern treibt entstehendes Neutralgas nach unten, zu den Cryopumpen.<ref>Iter.Org: [https://www.iter.org/mach/divertor Divertor]. 25. Nov 2017</ref><ref>{{Webarchiv | url= http://www.iter.org/pdfs/PDD2-4.pdf | wayback = 20070713082223| text = ITER Technical Basis, Kap. 2.4 Divertor.}}</ref> |
|||
Das Kühlen der Magnete, das Halten und Erhitzen des Plasmas benötigt enorme Energiemengen, bis der Fusionsprozess überhaupt einsetzt. Ist der Prozess erst einmal in Gang gekommen, wird ein Großteil der Heizenergie durch die entstehenden [[Alpha-Strahlung|Alphastrahlung]] (Heliumkerne) gedeckt. Bei bisherigen Projekten konnte die Fusion nur über kurze Zeit (etwa 2 Sekunden) aufrecht erhalten werden, so dass die durch die Fusion gewonnene Energie nur einem kleinen Teil der eingesetzten Energie entsprach. |
|||
Bereits realisierte Ergebnisse belaufen sich auf 20 Megawatt Heizleistung [[Aktivierungsenergie]] und 16 Megawatt Leistung des Reaktors. |
|||
Die Stahlkörper des Divertors müssen großen [[Lorentzkraft|Lorentzkräften]] standhalten, die auf elektrische Haloströme wirken, die aus dem Plasma über den Divertor zur Wand des Vakuumgefäßes fließen, wenn das Plasma ungeregelt zusammenbricht.<ref>Raphael Rosen (PPPL): [https://www.iter.org/newsline/-/2966 ''How would "halos" affect iter?''] ITER Newsline 26. März 2018.</ref><ref>Nina Schwarz et al.: ''Vertical Forces during VDEs in an ITER plasma and the Role of Halo Currents.'' Nucl. Fusion 63, 2023, [[doi:10.1088/1741-4326/acf50a]] (freier Volltext).</ref> |
|||
== ITER-Projekt == |
|||
=== Erste Wand === |
|||
Der Reaktor soll die wissenschaftliche und technische Machbarkeit der Energieerzeugung aus Kernfusion demonstrieren. Als erster Testreaktor soll er netto mehr Energie liefern, als er zum Betrieb benötigt. Es wird mit einer Energieverstärkung von 10 gerechnet. Das bedeutet, dass zehnmal mehr Energie freigesetzt werden soll, als zur Plasmaheizung notwendig ist. |
|||
Anders als der Divertor soll der überwiegende Teil der „Erste Wand“ genannten Oberfläche nur während des Anfahrens Kontakt zum Plasma haben, wird aber danach vor allem durch [[Elektromagnetische Strahlung|Strahlung]] sehr heiß. Teilchenbeschuss bei Plasmainstabilitäten bringt durch [[Sputtern]] Wandmaterial als Verunreinigung ins Plasma. |
|||
Lange war [[Beryllium]] als Beschichtung vorgesehen.<ref name="NL3323" /> Vorteile gegenüber Wolfram sind die höhere Wärmeleitfähigkeit und die geringere [[Ordnungszahl]] von ''Z'' = 4, sodass Beryllium als Verunreinigung geringere Energieverluste durch [[Bremsstrahlung]] verursachen würde.<ref>Eugenio Schuster: [http://www.lehigh.edu/~eus204/teaching/ME362/lectures/lecture05.pdf ''Nuclear Fusion and Radiation'']. Vorlesungsskript.</ref> Wolfram (W) vom Divertor würde allerdings das Beryllium (Be) verunreinigen. Die intermetallische Phase Be<sub>22</sub>W würde abplatzen.<ref name="Be22W">Rodrigo Mateus et al.: ''Stability of beryllium-tungsten coatings under annealing up to 1273 K.'' Nuclear Materials and Energy, 2023, [[doi:10.1016/j.nme.2023.101571]] (freier Volltext).</ref> Nun ist Wolfram auch für diese Oberfläche vorgesehen.<ref name="Be22W" /><ref name="neimag2023-10-06">Nuclear Engineering International: [https://www.neimagazine.com/news/newsiter-reviews-plans-11199208 ''ITER reviews plans.''] 6. Oktober 2023.</ref> |
|||
Wesentlicher Beitrag zu der positiven [[Energiebilanz]] liefert die [[Bergmannsche_Regel|Baugröße]], der konsequente Einsatz von [[Supraleiter]]n und die Verwendung des radioaktiven [[Tritium|Tritiums]]. Der Energieausstoß soll sich dabei in den Dimensionen eines herkömmlichen Kraftwerks bewegen. Mit dem Projekt sollen wesentliche Schlüsselelemente getestet werden, die für eine praktische wirtschaftliche Anwendung der Kernfusion notwendig sind. Er soll außerdem Erfahrungen im Betrieb liefern, die für einen geplanten nachfolgenden Demonstrationsreaktor ([[DEMO]]) notwendig sind. |
|||
Eine Kupferlegierung stellt den Wärmekontakt zu Kühlwasserkanälen her. Das Strukturmaterial der Paneele ist Stahl. Sie sitzen austauschbar auf den Blanket-Modulen.<ref name="NL3323">iter.org: [https://www.iter.org/newsline/-/3323 ''What will the blanket teach us?''] ITER Newsline, 9. September 2019.</ref> |
|||
Der Deuterium-Tritium-Fusionsreaktor wird im Forschungszentrum [[Cadarache]] im Süden Frankreichs zu wissenschaftlichen Zwecken erbaut. |
|||
=== Blanket === |
|||
Staatspräsident [[Jacques Chirac]] bezeichnete dieses Vorhaben als das größte Wissenschaftsprojekt seit der [[Internationale Raumstation|Internationalen Raumstation]]. |
|||
{{Hauptartikel|Blanket}} |
|||
Das Blanket (engl. für ''Decke'') bedeckt in Form von 440 austauschbaren Blöcken die Innenseite des Vakuumgefäßes und schützt es mit seinen 1530 t (überwiegend Stahl) vor den schnellen Neutronen aus der Fusionsreaktion. Der damit verbundene Wärmestrom ist weit größer als der von der Oberfläche und wird mit 1 t/s<ref>T Hirai (ITER Organization): [http://www.ipp.mpg.de/1533163/Tutorial_Hirai.pdf ''Engineering of In-vessel Components for ITER'']. PFMC-13, Rosenheim, Mai 2011.</ref> Kühlwasser bei Temperaturen zwischen 70 und 240 °C abgeführt. |
|||
=== Technische Daten === |
|||
ITER funktioniert nach dem [[Tokamak]]-Prinzip: in einem [[Torus|toroidalen]] [[Magnetfeld]] wird aus [[Wasserstoff]] ein [[Plasma (Physik)|Plasmastrom]] erzeugt. Dieser soll auf die entsprechende [[Temperatur]] und [[Dichte]] gebracht werden, um eine [[Kernfusion]] zu ermöglichen. |
|||
In den Blankets zukünftiger Fusionsreaktoren soll zudem Tritium erbrütet werden, indem die Neutronen in Beryllium oder Blei vermehrt werden und mit [[Lithium]]-6 zu Helium-4 und Tritium reagieren. Verschiedene Konstruktionen dafür sollen in einer späten Phase von ITER getestet werden. Diese Test-Blanket-Module werden gesonderte Kühlkreisläufe haben, mit Helium oder Wasser unter hohem Druck, um die Funktion auf einem hohen Temperaturniveau zu demonstrieren, wie es für eine Stromproduktion nötig wäre.<ref name="NL3323" /> |
|||
Nach den bisherigen Planungen (Stand 2001) sind die technischen Eckpunkte: |
|||
=== Vakuumgefäß === |
|||
{| border="1" cellspacing="0" cellpadding="5" |
|||
Das Vakuumgefäß umgibt als Torus das Plasma mit D-förmigem Querschnitt von 6 m innerer Breite. Es schützt das Plasma gegen Verunreinigung von außen und stabilisiert es passiv durch seine elektrische Leitfähigkeit. Diese ist in Richtung des Plasmastroms geringer, um diesen von außen steuern zu können. Das Vakuumgefäß schützt auch die Umgebung vor Kontamination mit radioaktiven Nukliden (nicht nur Tritium) und verringert die Neutronenbelastung der supraleitenden Spulen (Erwärmung) und der Strukturmaterialien (Aktivierung). Dazu befinden sich im Kühlwasser zwischen seinen doppelten Stahlwänden etwa 50.000 Stahlteile von insgesamt fast 1700 Tonnen. Diese sind zudem teilweise ferromagnetisch, um die Welligkeit des Toroidalfeldes zu verringern. Schließlich hat das Vakuumgefäß noch die Aufgabe, Zerfallswärme aus den Blankets aufzunehmen, wenn deren Wasserkühlung ausfällt. |
|||
|Gesamtradius: ||10,7 Meter |
|||
|- |
|||
|Höhe (über alles): ||30 Meter |
|||
|- |
|||
|Plasmaradius: ||6,2 Meter |
|||
|- |
|||
|Plasmavolumen: ||837 Kubikmeter |
|||
|- |
|||
|Masse des Plasmas: ||0,5 Gramm |
|||
|- |
|||
|Magnetfeld: ||5,3 [[Tesla (Einheit)|Tesla]] |
|||
|- |
|||
|Maximaler Plasmastrom: ||15 [[Ampere|Megaampere]] |
|||
|- |
|||
|Heizleistung und Stromtrieb: ||73 [[Watt (Einheit)|Megawatt]] |
|||
|- |
|||
|Fusionsleistung: ||500 Megawatt |
|||
|- |
|||
|Energieverstärkung: ||10x |
|||
|- |
|||
|Mittlere Temperatur: ||100 Millionen Grad Celsius |
|||
|- |
|||
|Brenndauer: ||> 400 Sekunden |
|||
|} |
|||
Zahlreiche rechteckige Öffnungen ({{lang|en|''Ports''}}) erlauben den Zugang zum Inneren für die verschiedenen Heiz- und diagnostischen Einrichtungen, für Pumpen und Wartungsarbeiten. Sie sind in drei Reihen angeordnet, 18 oben, 17 in der Mitte, 9 unten. Drei Ports sind für die Montage von Brutblanket-Testmodulen vorgesehen. Die Ports sind mit Stutzen {{lang|en|''Port Stubs''}} versehen, die von sogenannten {{lang|en|''Port Plugs''}} (Stöpseln) möglichst neutronendicht verschlossen sind.<ref>U. Fischer et al.: ''Neutronic Analysis of ITER Diagnostic Components'' In: Ingrid Pleli (Hgb): ''Nuclear Fusion Programme: Annual Report of the Association KIT/EURATOM 2012''. KIT-SR 7647, 2013, {{ISSN|1869-9669}}, {{Google Buch|BuchID=9TeVBgAAQBAJ|Seite=347}}.</ref> Diagnostische Instrumente z. B. sitzen teils vor, teils eingebettet in wassergekühlte Stahlteile, die das Volumen der Plugs ausmachen. Auf der rückwärtigen Seite sind die Plugs mit Flanschen vakuumdicht auf den Stutzen befestigt. Nach außen schließen sich Verlängerungen an, {{lang|en|''Port Extensions''}}, die zur Kompensation von thermischer Ausdehnung mit elastischen Faltenbälgen vakuumdicht an Öffnungen in der umgebenden Wand, dem Kryostaten, angeschlossen sind. In ihnen herrscht Atmosphärendruck. |
|||
=== Projekt === |
|||
Das Vakuumgefäß hat einen Außendurchmesser (ohne Anbauten) von gut 19 m und eine Höhe von 11 m. Ohne Einbauten (Blankets, Divertoren), Anbauten (Plugs, Port Extensions) und Füllung (Abschirmteile, Wasser) hat es eine Masse von rund 4000 t. Insgesamt lastet es mit fast 9000 t auf einem ringförmigen Podest am Boden des Kryostaten. Die neben dem Gewicht größten mechanischen Belastungen entstehen durch Gasdruck im Kryostaten im Fall eines großen Helium-Lecks bzw. elektromagnetisch bei schneller Abnahme des Toroidalfeldes (der reguläre Aufbau des Feldes dauert dagegen zwei Stunden).<ref>J.-M. Martinez (ITER Organization): [http://zingkashing.dx.am/ITER_Vacuum_Vessel_Load_Specification_2F52JY_v3_3.pdf ''ITER Vacuum Vessel Load Specification.''] Ver. 3.3, 3. Dezember 2013.</ref> |
|||
Bei Gesprächen [[1985]] zwischen [[Michail Gorbatschow]], [[François Mitterrand]] und [[Ronald Reagan]] wurde eine Zusammenarbeit bei der Forschung beschlossen. Die ersten Planungen begannen [[1988]] im deutschen [[Max-Planck-Institut für Plasmaphysik]], die [[1990]] in einem ersten Entwurf eines Testreaktors resultierten. |
|||
=== Spulen === |
|||
Mittlerweile sind auch [[Japan]], die [[Europäische Union|EU]], die [[Schweiz]], die [[Volksrepublik China]], und [[Südkorea]] an den Forschungen beteiligt. Von [[1998]] bis [[2001]] wurde die Reaktorkonstruktion detailliert ausgearbeitet und abgeschlossen. [[Kanada]] ist im Dezember 2003 aus dem Projekt ausgestiegen, diskutiert aber über einen Wiedereinstieg. [[Indien]] und [[Brasilien]] haben 2004 ihr Interesse an einer Beteiligung angekündigt. |
|||
[[Datei:NIST Light Source Illuminates Fusion Power Diagnostics (5940503323).jpg|mini|Spulenanordnung von ITER]] |
|||
==== Toroidalfeld-Spulen ==== |
|||
Das [[Toroidale-Poloidale Zerlegung|toroidale Feld]] (TF) hat eine [[magnetische Flussdichte|Flussdichte]] von 5,3 [[Tesla (Einheit)|T]] im Zentrum des Plasmas, in einem Ring 6,2 m von der Mitte des Torus entfernt. Es wird von 18 TF-Spulen erzeugt, die das Vakuumgefäß im nominalen Abstand von 50 mm umgeben (für mechanische Toleranzen und dynamische Verformungen). Die maximale Feldstärke von 11,8 T tritt direkt an den Spulen auf. Das supraleitende Material [[Niobzinn|Nb<sub>3</sub>Sn]], 23 t pro TF-Spule, ist bei der Arbeitstemperatur von 12 bis 13 [[Kelvin|K]] bis 13 T belastbar. Die Spule hat 134 Windungen; der Arbeitsstrom beträgt 69 k[[Ampere|A]], die [[Durchflutung]] also 9,1 MA. Das supraleitende Kabel enthält einen zentralen Kühlmittelkanal, einen Kupferanteil, der im Fall eines lokalen [[Quench (Supraleitung)|Quench]] den Strom übernimmt, ein äußeres Stahlrohr und eine Polyimid-Isolierung. Es ist in beidseitig genutete Tragprofile eingelegt und mit [[Epoxidharz]] vergossen, zusammen 110 t. Viel größer als das Eigengewicht sind jedoch die magnetischen Kräfte. Die Energie im Toroidalfeld beträgt 41 G[[Joule|J]] und sinkt, wenn die TF-Spulen auseinanderweichen. Die entsprechende radiale Kraft beträgt pro TF-Spule 403 M[[Newton (Einheit)|N]], die vierfache Gewichtskraft des [[Eiffelturm]]s. Obere und untere Spulenhälfte streben mit 205 MN auseinander. Daher hat jede TF-Spule ein stabiles Gehäuse mit einem Stahlquerschnitt von über 0,5 m², und die 18 TF-Spulen werden untereinander mit Spannbändern verbunden. Die Belastung ist dynamisch in Fällen von Plasmainstabilitäten oder von Quenches. Die Konstruktion basiert auf der Forderung, dass die Toroidalfeldspulen zehn Quenches aushalten müssen, ohne unbrauchbar zu werden.<ref>N. Mitchell et al.: [http://snf.ieeecsc.org/abstracts/st284-iter-magnets-design-and-construction-status ''The ITER Magnets: Design and Construction Status'']. IEEE Trans. Appl. Supercond. 22, 2012, {{DOI|10.1109/TASC.2011.2174560}}.</ref> Je zwei TF-Spulen, 2 × 298 t, werden mit einem Sektor des Vakuumgefäßes vormontiert an ihren Platz gehievt. |
|||
==== Zentraler Solenoid, Poloidalfeld- und Korrekturspulen ==== |
|||
Mit einem Baubeginn rechnet man im Moment im Jahr [[2006]], mit einer Betriebsaufnahme ist ab ca. [[2015]] zu rechnen. |
|||
[[Datei:ITER Central Solenoid (41767826062).jpg|mini|Herstellung des zentralen Solenoids]] |
|||
Innen sind die TF-Spulen geradlinig und aneinander gepresst. Sie lassen einen zylindrischen Hohlraum für den zentralen Solenoid (CS). Dieser ist 18 m hoch und besteht aus sechs gleichen Modulen mit je 549 Windungen. Der maximale Strom beträgt 45 kA, die Feldstärke 13 T, die Feldenergie 7 GJ. Um das Feld des Solenoids schnell zu ändern, sind hohe Spannungen nötig. Seine Isolation ist auf 29 kV [[Durchschlagsfestigkeit]] getestet. Der Solenoid „ruht“ auf den inneren Füßen der TF-Spulen, seine oberen Module allerdings nicht „freiwillig“ – Spannelemente verhindern das Abheben. Der Solenoid wiegt samt Strukturelementen 954 t. |
|||
Die TF-Spulen haben außen Flansche, um ringförmige Spulen tragen zu können, die die ganze Anordnung wie Breitenkreise umfassen. Sie formen zusammen mit dem Solenoid die [[Toroidale-Poloidale Zerlegung|poloidale Komponente]] des Magnetfeldes (PF) und – parallele Ströme ziehen sich an – den Querschnitt des Plasmas. Es sind sechs große PF-Spulen mit 45 kA und 18 Korrekturspulen mit 16 kA. Anders als die TF-Spulen und der Solenoid sind die schwächeren PF- und Korrekturspulen aus NbTi, die Arbeitstemperatur beträgt 6 K. Die Korrekturspulen gleichen statisch Fertigungs- und Montagetoleranzen der großen Spulen aus und werden mit einer Grenzfrequenz der Regelung von 100 Hz gegen Plasmainstabilitäten eingesetzt. Höhere Frequenzen schirmt das Vakuumgefäß ab. |
|||
Die Kosten für das ITER-Projekt werden auf etwa 10 Milliarden [[Euro]] veranschlagt, etwa 4 Milliarden Euro davon entfallen auf die Planung und den Bau der Anlage, ca. 1,5 Milliarden Euro muss das Land tragen, in dem der Reaktor errichtet wird, den Rest teilen sich die anderen Projektpartner. Mittlerweile wurde das Projekt in eine kleinere Version mit ca. 6 Milliarden Euro geändert (Stand Juni 2005). |
|||
==== Spulen im Vakuumgefäß ==== |
|||
Nicht nur der Bau, auch der Betrieb des Testreaktors ist teuer, in den geplanten 20 Betriebsjahren wird er nochmal rund 4,5 Milliarden Euro kosten. |
|||
An der Innenwand des Vakuumgefäßes, noch hinter den Blanket-Modulen, sind Spulen befestigt, mit denen das Plasma hochfrequenter beeinflusst werden kann. Es handelt sich um eine obere und eine untere VS-Spule ({{lang|en|''Vertical Stability''}}) parallel zu den PF-Spulen und um 27 ELM-Spulen<ref>Zur Unterdrückung von ELMs (Edge Localized Modes), zu vermeidende Plasmainstabilitäten, die die Wärmeableitung überlastet</ref>, drei pro Sektor. Diese Spulen sind normalleitend und haben eine Gesamtmasse von 7 Tonnen. |
|||
Wenn sich die Ergebnisse aus dem Testbetrieb wie erwartet gestalten, kann mit einem ersten regulären Fusionskraftwerk ab 2030–2040 gerechnet werden. |
|||
=== Pellet-Injektoren === |
|||
Von deutscher Seite am Projekt beteiligt ist das Max-Planck-Institut für Plasmaphysik (IPP) in [[Garching bei München|Garching]] bei [[München]] und das Institut für Plasmaphysik (IPP) am [[Forschungszentrum Jülich]]. Weitere wissenschaftliche Zentren liegen in [[San Diego]], [[USA]] und [[Naka]], [[Japan]]. Das Aufsichtsgremium ''ITER-Council'' hat seinen Sitz in [[Moskau]], [[Russland]]. |
|||
[[Datei:ITER Prototype 3-barrel shattered pellet injector (14132373814).jpg|mini|Pellet-Injektoren von ITER]] |
|||
Pellets aus gefrorenen Gasen werden mit Gasdruck in das Plasma geschossen – ein Gasstrahl allein würde nicht weit kommen. ITER wird drei verschiedene Arten von Pellet-Injektoren einsetzen. Eine dient dem Nachfüllen von Brennstoff. Dazu werden mehrfach pro Sekunde Deuterium und Tritium abwechselnd oder als Gemisch in Form von kurzen Zylindern mit einigen Millimetern Durchmesser nah an das Zentrum des Plasmas geschossen.<ref>Alexei R. Polevoi et al.: [http://ocs.ciemat.es/EPS2018PAP/pdf/P5.1050.pdf ''Integrated modelling of ITER scenarios with D-T Mix control.''] 45. EPS Conference on Plasma Physics, Prag, 2018.</ref> Um schädlich große ELMs (''Edge Localized Modes''; Plasmainstabilitäten, die die Gefäßwand thermisch überlasten können) zu vermeiden, werden regelmäßig kleine ELMs ausgelöst, indem die Oberfläche des Plasmas mit sehr kleinen D<sub>2</sub>-Pellets beschossen wird.<ref>Larry R. Baylor et al.: ''ELM mitigation with pellet ELM triggering and implications for PFCs and plasma performance in ITER.'' Journal of Nuclear Materials 463, 2015, [[doi:10.1016/j.jnucmat.2014.09.070]], ([http://pubman.mpdl.mpg.de/pubman/item/escidoc:2191450/component/escidoc:2384893/Baylor_ELM.pdf online]).</ref> Große Neon-Pellets (20 bis 50 g) sind gegen thermisches Durchgehen und [[Runaway-Breakdown|Runaway-Elektronen]] vorgesehen mit Reaktionszeiten von 20 bzw. 10 ms.<ref>Larry R. Baylor et al.: ''Pellet Injection Technology and Its Applications on ITER.'' IEEE Transactions on Plasma Science 44, 2016, [[doi:10.1109/TPS.2016.2550419]], ([https://www.osti.gov/servlets/purl/1460242 online], pdf!).</ref> |
|||
=== |
=== Kryostat === |
||
Der Kryostat ist ein kesselförmiges Vakuumgefäß, das mit 29 m Durchmesser und Höhe auch die Spulen umschließt. Er wird in vier Teilen eingebaut. Die Bodenplatte ist mit 1250 t das schwerste Einzelteil überhaupt. Der Kryostat ist [[Evakuieren (Verfahren)|evakuiert]], denn die heliumkalten Spulen müssten sonst einzeln isoliert werden, sowohl wegen der Wärmeleitung durch Konvektion als auch gegen die Kondensation von Gasen. Der luftdichte Abschluss nach außen ist zudem eine zweite Barriere gegen Austritt von Tritium. Der Kryostat hat zahlreiche große Öffnungen mit nach innen gerichteten Stutzen, die die Stutzen des Vakuumgefäßes umschließen. |
|||
=== Kryopumpen === |
|||
Der ITER wird gemäß Medienberichten vom 28. Juni 2005 in Cadarache (Südfrankreich) gebaut. So haben sich die Teilnehmer mit dem Rückzug Japans auf den französischen Standort geeinigt. Die Entscheidung soll mit Vertragsunterzeichnung Ende 2005 verbindlich werden. |
|||
Sechs der neun unteren Portale, auf Höhe des Divertors, führen zu großen, trommelförmigen [[Kryopumpe]]n, die das gebildete Helium und andere Verunreinigungen aus dem Vakuumgefäß entfernen sollen. Dabei wird auch der weit überwiegende Teil des Deuteriums und Tritiums ungenutzt abgepumpt. Um bei dem niedrigen Druck und auf Heliumtemperaturniveau (s. u.) Helium binden zu können, befinden sich an der Innenwand der Kryopumpen hinter einem geschlitzten Wärmeschild mit [[Aktivkohle]] beschichtete Absorber. Nach 3000 s Betriebszeit müssen die Absorber regeneriert werden. Dazu haben die Pumpen eingangsseitig Tellerventile von 0,8 m Durchmesser und 0,5 m Hub. Jeweils zwei der sechs Pumpen werden geschlossen, erwärmt und ausgepumpt. Auf dem höheren Druckniveau wird das Gas zum Gebäude für das Tritium-Handling geleitet. Zwei baugleiche Kryopumpen evakuieren den Kryostaten. Auch bei der Neutralgasinjektion werden Kryopumpen eingesetzt.<ref>{{YouTube | id=ldoD0K8tZaE | time=2220 | title=ITER Talks (4): Vacuum | uploader=ITER Organization | upload=2021-12-13}}</ref> |
|||
=== Kälteversorgung === |
|||
Seit [[2001]] wurde über einen Standort für den ITER beraten. Standortbewerbungen lagen aus [[Frankreich]], [[Spanien]], [[Japan]] und [[Kanada]] vor. 2005 konkurrierten noch Frankreich ([[Cadarache]]) und Japan ([[Rokkasho-Mura]]) um den Standort. Während die [[USA]], [[Japan]] und [[Südkorea]] den Standort [[Rokkasho-Mura]] bevorzugten, stimmten die EU, die Volksrepublik China und Russland für Cadarache. Am 28. Juni 2005 entschieden die beteiligten Staaten, den Testreaktor im französischen [[Cadarache]] zu erstellen. Bei der Zustimmung Japans spielten aber nicht nur sachliche Abwägungen, sondern auch außenpolitische Aspekte eine Rolle. Außerdem sollen Japan Sonderkonditionen eingeräumt werden, da es sich doch dazu entschloss, dass der Reaktor in Europa gebaut werden soll. Bereits im November 2004 hatte der EU-[[Ministerrat]] einstimmig beschlossen, ITER nur in Cadarache zu bauen, notfalls auch ohne die Beteiligung Japans, Süd-Koreas und der USA. |
|||
Die Supraleiter werden mit Helium gekühlt, mit hohem Druck und einer Eintrittstemperatur von 4,5 K. Dieser Zustand ist [[Kritischer Punkt (Thermodynamik)|überkritisch]] – die [[Dichte]] ist etwas geringer, die [[Viskosität]] viel geringer als bei flüssigem Helium unter Normaldruck (Siedepunkt 4,15 K). Die supraleitenden Kabel für die TF-, CS- und PF-Spulen haben einen zentralen Kühlkanal mit einem Durchfluss von 8 g/s pro Spule. Auch das Strukturmaterial wird gekühlt, hier ist der Durchfluss einige Kilogramm pro Sekunde. Die abzuführende Wärmeleistung stammt während des Fusionsbetriebs von Neutronen (bei 500 MW Fusionsleistung etwa 14 kW), vorher und nachher von Wirbelströmen im Strukturmaterial (kurzzeitig viel mehr, im Mittel jedoch ebenfalls 10 bis 20 kW). Die Kryopumpen werden ebenfalls mit flüssigem Helium gekühlt. Die gesamte verfügbare Kühlleistung auf dem 4,5-K-Niveau beträgt 65 kW. |
|||
Mit gasförmigem Helium auf einem Temperaturniveau von 80 K werden Wärmeschilde gekühlt, die kältere Teile vor Wärmestrahlung schützen. Auf diesem Temperaturniveau stehen 1300 kW Kühlleistung zur Verfügung. Wärmeschilde bedecken insbesondere die Außenseite des Vakuumgefäßes und die Innenseite des Kryostaten. Sie haben eine Gesamtfläche von etwa 4000 m<sup>2</sup> und die aufgeschweißten Kühlleitungen eine Gesamtlänge von 23 km.<ref name="heat_shield"/> |
|||
Für den Bau des ITER gab es bis 2003 auch eine inoffizielle deutsche Bewerbung mit dem ehemaligen KKW-Nord „[[Bruno Leuschner]]“ in [[Lubmin]] an der Ostsee. Das Kraftwerksgelände wurde in den letzten Jahren durch die Energiewerke Nord GmbH als Zwischenlager sehr gut ausgebaut und ein Industriehafen mit überdurchschnittlichem Tiefgang gebaut. |
|||
Im Sommer des Jahres 2003 kippte Bundeskanzler [[Gerhard Schröder]] – trotz einer Zusage des ehemaligen Kanzlers [[Helmut Kohl]] – die Zusage zur Bewerbung um den ITER. Der Grüne Bundestagsabgeordnete [[Hans-Josef Fell]] setzte sich in diesem Zusammenhang in der Berliner Landesvertretung des Landes [[Mecklenburg-Vorpommern]] für ein Ende der Fusionsforschung und Kernspaltung in Deutschland ein und bemühte sich ebenfalls, die Montage des in [[Greifswald]] geplanten Forschungsreaktors vom Typ [[Stellarator]], den [[Wendelstein 7-X]] des Max-Planck-Institut für Plasmaphysik, zu verhindern. Argumentiert wird damit, dass die Kernfusion innerhalb der nächsten 50 Jahre nichts zu der erforderlichen schnellsten Reduzierung des CO<sub>2</sub>-Ausstoßes beitrage und dass man mit dem investierten Geld auf anderen Gebieten weit mehr Arbeitsplätze schaffen könne. |
|||
=== Stromversorgung === |
|||
Mit dem ITER Kernfusionsreaktor am Standort Lubmin wäre die Universität Greifswald langfristig zu einem der Spitzenstandorte internationaler Fusionsforschung geworden, da wissenschaftliches Fachpersonal sowohl am Max-Planck-Institut, an der Universität Greifswald und am ITER beteiligt gewesen wäre. Lubmin war international der erfolgversprechendste Konkurrent. Der nun festgelegte Standort Cadarache in Frankreich ist ein Erdbeben-Risikogebiet, dies galt ebenfalls für den in Betracht gezogenen japanischen Standort. |
|||
Der Energiebedarf für die Kühlanlagen, einschließlich der Umwälzpumpen für die Wasserkühlkreisläufe, macht etwa 80 % der etwa 110 MW aus, die die gesamte Anlage während der Betriebsphasen permanent benötigt. Während der Plasmapulse steigt der Bedarf für bis zu 30 Sekunden auf bis zu 620 MW.<ref>iter.org: [https://www.iter.org/mach/powersupply ''Power Supply''].</ref> Die Leistung wird aus dem öffentlichen Netz bezogen. Zu diesem Zweck hat Frankreich zwei redundante [[Drehstrom-Hochspannungs-Übertragung|400-kV-Leitungen]] zum 125 km entfernten Netzknoten bei [[Avignon]] samt [[Schaltanlage]]n errichtet. Die [[Leistungstransformator]]en stammen aus den USA und aus China. Der kurzfristige [[Regelleistung (Stromnetz)|Regelbedarf]] von 300 bis 400 MW erfordert eine enge Kooperation mit dem Netzbetreiber [[Réseau de Transport d’Electricité|RTE]].<ref>Robert Arnoux: [https://www.iter.org/newsline/219/1145 ''Feeding the Beast'']. ITER Newsline 219, 20. April 2012.</ref> |
|||
== |
== Forschungsziele == |
||
=== Zeitplan === |
|||
Die Ankündigung des Standortes für den Testreaktor hat eine kontroverse Diskussion über das Projekt und die Kernfusion im Allgemeinen entfacht. Kritiker, wie die Umweltorganisation [[Greenpeace]], weisen darauf hin, dass auch bei Kernfusion [[Radioaktivität]] entsteht – wenn auch in erheblich geringerem Maße als bei der [[Kernspaltung]] –, nämlich im Behälter, in dem die Kernfusion abläuft. Nur dieser muss nach Betriebsende entsorgt und für etwa 100 Jahre sicher gelagert werden. |
|||
In den ersten Jahren soll die Anlage mit einem Plasma aus normalem Wasserstoff und Helium ohne Fusionsreaktionen betrieben werden. Viele rein plasmaphysikalische Fragen lassen sich so erforschen, ohne die [[Kontamination (Radioaktivität)|Kontamination]] des Gefäßinneren mit Tritium und die [[Neutronenaktivierung|Aktivierung]] von Materialien in Kauf zu nehmen. Erst für den Nachweis des Netto-Energiegewinns und die Erprobung von Brutblanket-Modulen ist die Verwendung eines Deuterium-Tritium-Gemischs vorgesehen. |
|||
=== Plasmastabilität === |
|||
Andere Gegner äußern sich besorgt über die neue Technik. Sie befürchten, dass sich das Projekt finanziell nicht rechnet und die angestrebten Ziele nicht erreicht werden. Für das gesamte Projekt sind bisher über zehn Milliarden [[Euro]] veranschlagt worden. Ein Nachweis, dass Kernfusion zur Energiegewinnung überhaupt wirtschaftlich genutzt werden kann, steht bislang noch aus – dieser Nachweis soll von ITER in 30 Jahren erbracht werden. |
|||
Die geladenen Teilchen bewegen sich wendelförmig um die magnetischen Feldlinien (Gyration). Diese sind aber bei den für die angestrebte Fusionsleistung nötigen Dichten nicht unveränderlich (Minimierung der Feldenergie bei gegebenem Fluss), sondern das Plasma wirkt mechanisch auf das Feld zurück. Plasmainstabilitäten treten auf, wenn sich viele Teilchen in ihrer Bewegung synchronisieren. Teilchen koppeln miteinander nicht nur über Schwingungen der Feldlinien, sondern auch elektrostatisch über Raumladungen. Für eine effektive Kopplung sorgen [[Resonanz (Physik)|Resonanzen]]. Wegen der [[Nichtlinearität]] der Kopplungen müssen Frequenzen nicht (näherungsweise) gleich sein, sondern es reichen ganzzahlige Verhältnisse. Folgende Frequenzen spielen eine Rolle: die Gyrationsfrequenzen von Elektronen und Ionen und die Umlauffrequenzen von Elektronen, Ionen und von Plasmawellen um den kleinen und großen Torusumfang. Eine geschlossene Lösung ist nicht möglich, und die numerische Lösung ist ineffizient, da es sich um ein [[steifes Anfangswertproblem]] handelt. Es ist nicht nur der Frequenzbereich enorm groß, sondern auch die nötige räumliche Auflösung. Daher werden heuristische Vorschläge zur Stabilisierung des Plasmas in aufwändigen Experimenten realisiert und praktisch erprobt. |
|||
Eine Art von Plasmainstabilitäten, die im Betriebsbereich von Fusionsreaktoren nach dem Tokamak-Prinzip (''H mode'') enorm stören, sind {{lang|en|''Edge-Located [[Moden|Modes]]''}} (ELMs). Dabei bilden sich in Bruchteilen von Millisekunden schleifenförmige Ausbuchtungen, entfernt ähnlich den [[Protuberanz]]en an der Sonnenoberfläche. Die zeit- und räumliche Konzentration (< 1 ms, < 1 m) eines Ausbruchs kann die Blanket-Oberfläche schmelzen lassen, und wiederholtes ELMen bedeutet für das Plasma enorme Verluste von magnetischer und thermischer Energie und von Partikeln. Verschiedene Ansätze sind in Erprobung, ELMs zu unterdrücken oder wenigstens in ihren Auswirkungen zu begrenzen (Betrieb im ''ELMing H mode'').<ref>IPP, Volker Rohde: [http://www.ipp.mpg.de/ippcms/de/presse/pi/01_11_pi ''Plasma-Stabilität nach Maß''], abgerufen im November 2016</ref> Die meisten Methoden erfordern eine Beobachtung von Plasmaparametern mit hoher zeitlicher Auflösung und schnelle Reaktionen wie Stromänderungen in lokalen Spulen, Einstrahlung inkohärenter magnetischer Energie (Rauschleistung) im Frequenzbereich der Gyration der Ionen und Einschuss von Wasserstoff-[[Pellet]]s. |
|||
Ein weiterer Kritikpunkt ist die Baugröße. Für einen wirtschaftlichen Betrieb wird eine elektrische Leistung im Gigawatt-Bereich notwendig sein. Nach Ansicht einiger Umweltverbände sind jedoch kleinere Kraftwerke und [[dezentrale Energieerzeugung]] umweltfreundlicher. |
|||
=== Leistung === |
|||
Es soll eine etwa 10-fache Verstärkung der eingesetzten Heizleistung, also eine Fusionsleistung von etwa 500 MW<sub>th</sub> erreicht werden. Damit ITER als erfolgreich gilt, muss dieser Zustand 400 Sekunden lang stabil bleiben. In einem anderen Betriebsmodus sind Brenndauern von bis zu einer Stunde vorgesehen bei einer Leistungsverstärkung von mindestens 5. Kurzzeitig und mit geringerer Heizleistung soll eine Leistungsverstärkung von über 30 erprobt werden, wie sie für kommerzielle Reaktoren vorgesehen ist.<ref name="Pitts">R. A. Pitts (ITER, Plasma Operations): [http://staff.polito.it/roberto.zanino/sub1/teach_files/current_topics/lect_1_pitts.pdf ''The ITER Project''], 2011.</ref><ref name="STAC">ITER Council/Science and Technology Advisory Committee: [http://efdasql.ipp.mpg.de/igd/PublicH-Mode/ExpertMeetings/Milano2008/Wednesday/Core_Transport_and_Modeling-Wed_AM/ITPA_Milano_Doyle/IC-STAC-5-4-1-01_ITER-Physics-Workplan-v1_081013%20copy.pdf ''ITER Physics Work Programme 2009–2011'']. 2008.</ref> Die Forschungen am ITER zur Brenndauer des Plasmas werden unter anderem am [[ASDEX Upgrade]] vorbereitet.<ref>IPP, Alexander Bock: [http://www.ipp.mpg.de/de/aktuelles/presse/pi/2016/04_16 ''Dauerbetrieb des Tokamaks rückt näher''], abgerufen im November 2016</ref> |
|||
<!-- == Technologische Ziele == --> |
|||
== Standort == |
|||
{{Positionskarte|Frankreich|maptype=regions|lat=43/41/15|long=5/45/43|region=FR-13|mark = Paris plan pointer b jms.svg|marksize=12|width=250|caption=Lage von Cadarache, Frankreich}} |
|||
Seit 2001 wurde über einen Standort für den ITER beraten. Standortbewerbungen kamen aus Frankreich, Spanien, Japan und [[Kanada]]. Bis 2003 gab es auch eine inoffizielle deutsche Bewerbung mit dem ehemaligen [[Kernkraftwerk Greifswald|Kernkraftwerk „Bruno Leuschner“ Greifswald]] in [[Lubmin]] bei [[Greifswald]]. Damit wären die Anlagen für das weltgrößte [[Tokamak]]-Experiment in direkter Nachbarschaft zur Baustelle des [[Wendelstein 7-X|weltgrößten Stellarator-Experiments]] errichtet worden. Der ITER-Förderverband Region Greifswald unter Führung des früheren Ministerpräsidenten [[Alfred Gomolka]] reichte 2002 eine vollständige Standortbewerbung bei der Landesregierung Mecklenburg-Vorpommern ein.<ref name="ITER Standortbewerbung Vision Fusion e.V.">Vision Fusion e. V.: [http://alfred-gomolka.de/docs/ITERLubminGreifswald.pdf ''ITER Standortbewerbung Greifswald''] (PDF; 1,9 MB), 2003. Abgerufen am 12. April 2018.</ref> Die Bewerbung wurde jedoch von der EU zurückgewiesen, da das Land Mecklenburg-Vorpommern als Region nicht zu einer Bewerbung berechtigt war, die Bundesregierung hat eine Bewerbung aus Kostengründen abgelehnt.<ref>{{Internetquelle |url=https://www.deutschlandfunk.de/meldungen-liste-forschung-aktuell.1508.de.html?drn:news_id=75526 |titel=Die deutsche Bewerbung für den Forschungsreaktor ITER ist geplatzt. |abruf=2019-09-15}}</ref> Im Sommer des Jahres 2003 zog Bundeskanzler [[Gerhard Schröder]] die Zusage des ehemaligen Kanzlers [[Helmut Kohl]] zur Bewerbung um den ITER-Standort zurück. |
|||
2005 konkurrierten noch Frankreich mit seinem traditionellen Kernforschungszentrum in [[Cadarache]] und Japan mit [[Rokkasho (Aomori)|Rokkasho]] um den Standort. Während die USA, Japan und [[Südkorea]] den Standort Rokkasho bevorzugten, stimmten die Europäische Atomgemeinschaft, die Volksrepublik China und Russland für Cadarache. Im November 2004 beschloss der [[Rat der Europäischen Union|EU-Ministerrat]] für die [[Europäische Atomgemeinschaft|EURATOM]] einstimmig, ITER in Cadarache zu bauen, notfalls auch ohne die Beteiligung Japans, Südkoreas und der USA. Japan wurden Sonderkonditionen eingeräumt, falls der Reaktor in Europa gebaut werden sollte, woraufhin Japan seine Bewerbung zurückzog. Am 28. Juni 2005 entschieden die beteiligten Staaten gemeinsam, den Reaktor in Frankreich zu errichten, das sich damit zu umfangreichen Investitionen in die Infrastruktur wie Straßen, Stromversorgung, Datenleitungen sowie Wohnungen für die zukünftigen Forscher und deren Familien verpflichtete. |
|||
== Finanzierung == |
|||
Am 21. November 2006 unterzeichneten die Projektteilnehmer im [[Élysée-Palast]] in Paris den endgültigen Vertrag, der auch die Finanzierung des Baus regelt. Teilnehmerstaaten sind neben der [[Europäische Atomgemeinschaft|Europäischen Atomgemeinschaft]] (EURATOM) die Staaten China, Indien, Japan, Russland, Südkorea und die USA. Der Vertrag trat am 24. Oktober 2007 in Kraft. Als Ausgleich für die Wahl eines europäischen Standortes wurde Japan ein mindestens zehnprozentiger Anteil an den Aufträgen zur Ausstattung des Reaktors sowie die Förderung japanischer Forschung aus Mitteln der [[Europäische Atomgemeinschaft|EURATOM]] zugesagt. |
|||
Während der Bauphase trägt die Europäische Union respektive die EURATOM 5/11 bzw. 45,5 % der Gesamtkosten. Davon bringt Frankreich 40 % auf, entsprechend 2/11 der Gesamtkosten. Die übrigen sechs Projektpartner tragen jeweils 1/11 bzw. 9,1 % der Gesamtkosten und damit den verbleibenden Kostenanteil von 6/11. Ein Teil davon wird von jeder Partei als Sachleistung erbracht, die unabhängig von den endgültigen Kosten der Beschaffung und Lieferung zu erbringen sind. Die Kosten des Betriebs und der Deaktivierung werden zu 34 % von EURATOM getragen.<ref name="KOM2010">Mitteilung der Kommission an das Europäische Parlament und den Rat: {{Webarchiv|text=''ITER: aktueller Stand und Zukunftsperspektiven'' |url=http://ec.europa.eu/research/energy/euratom/pdf/iter_communication_may_2010_de.pdf |wayback=20111215115850 }}. Brüssel, 4. Mai 2010, KOM(2010) 226 endgültig.</ref> Die Schweiz zahlt den größten Teil ihrer Finanzbeiträge für das Projekt ITER an die EU im Rahmen des am 5. Dezember 2014 unterzeichneten Abkommens über die wissenschaftliche Zusammenarbeit zwischen der Schweiz und der EU. Der bis 2014 ausbezahlte Beitrag der Schweiz an den Bau von ITER beträgt 183 Millionen Schweizer Franken.<ref name="SBFI" /> |
|||
Die Errichtung sollte zunächst gut 5,5 Mrd. Euro kosten (5,896 Mrd. EUR in Preisen des Jahres 2008). Schon im Juni 2008 mehrten sich Stimmen, die eine deutliche Kostensteigerung ankündigten.<ref>Der Spiegel, 11. Juni 2008: [http://www.spiegel.de/wissenschaft/mensch/fusionsreaktor-iter-angeblich-vor-kostenexplosion-a-559108.html ''Fusionsreaktor: „Iter“ angeblich vor Kostenexplosion''], aufgerufen am 8. Mai 2013</ref> Im September 2008 erklärte der stellvertretende ITER-Direktor Norbert Holtkamp auf dem 25. Symposium zur Fusionstechnologie in Rostock, dass die ursprünglich geplanten Kosten um mindestens 10 Prozent steigen würden, eventuell sogar um 100 Prozent. Zurückzuführen sei dies auf die stark gestiegenen Preise für Rohstoffe und Energie sowie teure technische Weiterentwicklungen.<ref>[http://www.handelsblatt.com/technologie/forschung/fusionsreaktor-iter-wird-deutlich-teurer;2040547 ''Milliardenprojekt in Finanznot. Fusionsreaktor Iter wird deutlich teurer'']. Handelsblatt, 15. September 2008. Abgerufen am 8. Mai 2011.</ref> |
|||
Im Mai 2010 teilte die [[Europäische Kommission]] mit, dass sich laut einer aktuellen Kostenschätzung ihr Anteil an den Baukosten von ehemals geplanten 2,7 Milliarden Euro auf 7,3 Milliarden Euro verdreifachen wird.<ref name="KOM2010" /> Die EU deckelte daraufhin die EURATOM-Mittel bei 6,6 Milliarden Euro. Darüber hinausgehende Kosten will sie durch Umschichtungen aus dem Agrar- und dem Forschungsetat decken. |
|||
Die EU hat in ihrem „Mehrjährigen Finanzrahmen“ (MFR) 2021–2027 als Beitrag 6,1 Mrd. € festgelegt.<ref>[https://ec.europa.eu/energy/sites/ener/files/documents/iter_factsheet_governance_and_funding_de.pdf] online</ref> Gegenüber dem MFR 2014–2020 entspricht das einer Erhöhung um 81 %. |
|||
Während die ITER-Organisation keine Kostenschätzungen abgibt, könnte nach einem {{lang|en|''[[Worst Case]]''}}-Szenario des [[Energieministerium der Vereinigten Staaten|DOE]] aus dem Jahr 2014 der US-Anteil auf 6,5 Milliarden US-Dollar steigen. Dies würde Gesamtkosten in Höhe von weit über 50 Mrd. US-Dollar entsprechen.<ref>David Kramer: ''US taking a hard look at its involvement in ITER''. In: ''Physics Today'' 67, 2014, S. 20–21, {{DOI|10.1063/PT.3.2271}} ([http://fire.pppl.gov/ITER_budget_PT_020514.pdf online]).</ref> |
|||
== Projekthistorie == |
|||
=== Initiierung durch die Sowjetunion === |
|||
[[Datei:Iter.svg|mini|hochkant=0.5|Ehemaliges Logo]] |
|||
Bei Gesprächen mit den Präsidenten Frankreichs und der USA, [[François Mitterrand]] und [[Ronald Reagan]], wurden 1985 aufgrund eines Vorschlages des sowjetischen Staatschefs [[Michail Sergejewitsch Gorbatschow|Michail Gorbatschow]] eine Zusammenarbeit bei der Kernfusions-Forschung und der gemeinsame Bau eines Reaktors beschlossen.<ref>{{Internetquelle |url=https://www.iter.org/proj/iterhistory | titel=The ITER story | abruf=2013-06-13 | sprache=en}}</ref> Die Planungen begannen 1988 im deutschen [[Max-Planck-Institut für Plasmaphysik]] und führten 1990 zu einem ersten Entwurf des Versuchsreaktors. Bis 1998 wurde ein Entwurf (ITER I) mit den Eckdaten 8,1 m großem Torusradius und 1500 MW Fusionsleistung ausgearbeitet.<ref name="IPP 2005">Max-Planck-Institut für Plasmaphysik: [http://www.desy.de/gfx/pdf/2_Bradshaw.pdf ''Der lange Weg zu ITER''] (PDF; 9,5 MB), 28. Oktober 2005. Abgerufen am 24. Juni 2013.</ref> |
|||
=== ITER-Vertrag === |
|||
Nachdem der ursprüngliche Entwurf in eine kleinere (500 MW), kostenreduzierte Version von ITER mit geringeren technischen Anforderungen gewandelt wurde, gaben die teilnehmenden Parteien am 28. Juni 2005 nach langen Verhandlungen den Startschuss für den Bau von ITER.<ref name="IPP 2005" /> Der Beschluss umfasst den Bau eines Versuchsreaktors in Cadarache in Südfrankreich für insgesamt knapp 5 Milliarden Euro. Die Betriebskosten über die geplante Laufzeit des Reaktors von 20 Jahren würden ähnlich hoch sein. Am 21. November 2006 wurde in Paris der ITER-Vertrag von den sieben Partnern unter Teilnahme des damaligen französischen Staatspräsidenten Jacques Chirac unterzeichnet. Gleichzeitig fand die erste Sitzung des ITER Interim Council statt. Der Vertrag trat am 24. Oktober 2007 in Kraft, 30 Tage nachdem er vom letzten Vertragspartner China ratifiziert worden war.<ref>{{CELEX|32006D0943|''2006/943/Euratom: Entscheidung der Kommission vom 17. November 2006 über die vorläufige Anwendbarkeit des Übereinkommens über die Gründung der Internationalen ITER-Fusionsenergieorganisation für die gemeinsame Durchführung des ITER-Projekts und des Übereinkommens über die Vorrechte und Immunitäten der Internationalen ITER-Fusionsenergieorganisation für die gemeinsame Durchführung des ITER-Projekts''}}</ref><ref>{{CELEX|32007D0198|''2007/198/Euratom: Entscheidung des Rates vom 27. März 2007 über die Errichtung des europäischen gemeinsamen Unternehmens für den ITER und die Entwicklung der Fusionsenergie sowie die Gewährung von Vergünstigungen dafür''}}</ref> |
|||
=== Organisation === |
|||
Jeder der sieben Partner richtet eine eigene nationale Organisation ein, welche die Aufgabe hat, die vertraglichen Verpflichtungen des jeweiligen Landes gegenüber ITER zu erfüllen. Für die Europäische Atomgemeinschaft fällt diese Aufgabe der neu gegründeten [[Agenturen der Europäischen Union|Agentur]] {{lang|en|''Fusion for Energy – The European Joint Undertaking for ITER and the Development for Fusion Energy''}} mit Sitz in [[Barcelona]] zu. |
|||
Von deutscher Seite am Projekt beteiligt sind das [[Max-Planck-Institut für Plasmaphysik]] (IPP) in [[Garching bei München|Garching]] bei München, das Institut für Plasmaphysik (IEK-4) am [[Forschungszentrum Jülich]] und verschiedene Institute des [[Karlsruher Institut für Technologie|KIT]]. Weitere wissenschaftliche Zentren liegen in [[San Diego]] (USA) und [[Naka]] (Japan). |
|||
Das Aufsichtsgremium (IC, {{lang|en|''ITER-Council''}}) hat seinen Sitz in [[Moskau]]. |
|||
Das zentrale Management (IO, {{lang|en|''ITER Organization''}}) mit 500 direkten Angestellten und 350 externen Mitarbeitern residiert im nahe der Baustelle gelegenen Dorf Saint-Paul-lès-Durance.<ref>iter.org: {{Webarchiv|url=https://www.iter.org/org/io |wayback=20140319123857 |text=ITER Organization }}</ref> Zusammen mit den nationalen Organisationen sind es 2000 Mitarbeiter.<ref name="BigotNature">Bernard Bigot (Generaldirektor): ''Nuclear physics: Pull together for fusion''. Nature 522, S. 149–151, 11. Juni 2015, [[doi:10.1038/522149a]].</ref> |
|||
Alle zwei Jahre wird das Management einer externen Evaluation unterzogen.<ref name="Madia" /> Das Ergebnis der Evaluation des Managements durch Madia & Associates im Jahr 2013 fiel so vernichtend aus, dass die ITER-Organisation den Bericht unter Verschluss halten wollte.<ref>Daniel Clery (Science Editor): [http://news.sciencemag.org/people-events/2014/02/updated-new-review-slams-fusion-projects-management ''Updated: New Review Slams Fusion Project's Management''], 28. Februar 2014.</ref> {{lang|en|''The New Yorker''}} hat die {{lang|en|''Executive Summary''}} des Berichts veröffentlicht.<ref name="Madia">Raffi Khatchadourian: [http://www.newyorker.com/online/blogs/comment/2014/02/how-to-fix-iter.html ''How to Fix ITER'']. The New Yorker, 28. Februar 2014.</ref> Die ITER-Organisation zeigt auf die Projektpartner: Das Management würde dadurch erschwert, dass jeder der sieben Projektpartner mit Rücksicht auf die heimische Industrie lieber Teile herstellt und liefert, als Geld zu überweisen. In zähen Verhandlungen würden Entwicklungs- und Fertigungsaufträge zerstückelt, mit dem Risiko, dass die Teile bei der Montage nicht zusammenpassen.<ref>Alexander Stirn: [https://www.sueddeutsche.de/wissen/fusionsreaktor-iter-die-politik-des-sonnenofens-1.1666043 ''Politik des Sonnenofens'']. Süddeutsche Zeitung, 4. Mai 2013.</ref> |
|||
=== Baufortschritt === |
|||
[[Datei:ITER construction in 2018 (41809718461).jpg|mini|Juni 2018: Die Tokamak-Grube ist mit einem temporären Dach geschlossen, sodass Installationen im Inneren ausgeführt werden können.<ref>iter.org: [https://www.iter.org/construction/tkmcomplex ''Bildserie Tokamak Komplex'']. 16. September 2018.</ref>]] |
|||
Anfang 2007 begannen die Vorbereitungen für den Bau. 2009 war der Baugrund auf 42 Hektar plan. 2011 war die Baugrube für den Hauptkomplex ausgehoben ({{lang|en|''Seismic Pit''}}, 130×90×17 m³) und der Rohbau des ersten Nebengebäudes, der über 250 m langen {{lang|en|''Poloidal Field Coils Winding Facility''}}, fertiggestellt. Darin werden mit großer Verspätung<ref name="BigotNature" /><ref>Neil Mitchell: [http://indico.cern.ch/event/288051/material/slides/ ''Status of ITER and Progress on Critical Systems'']. CERN, 18. Dezember 2013.</ref> die fünf größten der ringförmigen Spulen für das poloidale Magnetfeld gewickelt.<ref>iter.org: [https://www.iter.org/construction/pf Winding the largest magnets on site], Dez. 2011</ref> Die Maschinen dafür wurden erst 2016 geliefert, montiert und mit einem Leiter aus Kupfer erprobt.<ref>iter.org: [https://www.iter.org/construction/SiteFabricationPFcoils On-site Fabrication – PF Coils].</ref> 2012 wurde im {{lang|en|''Seismic Pit''}} das 1,5 m dicke Fundament hergestellt. 2013 und 2014 wurde auf 2 m hohen, schwingungsdämpfenden Sockeln die 1,5 m dicke Bodenplatte gefertigt, die das Reaktorgebäude und die nördlich und südlich angrenzenden Gebäude für das Tritium-Handling bzw. die Plasmadiagnostik erdbebensicher tragen soll. Der [[Hochbau]] des 7-stöckigen Gebäudes dauerte gut fünf Jahre.<ref>iter.org: [https://www.iter.org/construction/tkmcomplex ''The Tokamak Complex'']. 30. Sept. 2019.</ref><ref>iter.org: [https://www.iter.org/proj/itermilestones#150 ''Last concrete pour of the Tokamak Building.''] 7. November 2020.</ref> 2014 wurden das Kontroll- und Verwaltungszentrum bezogen und die temporäre Kryostat-Montagehalle errichtet,<ref>iter.org: [https://www.iter.org/album/construction/ kommentiertes Fotoalbum von der Großbaustelle].</ref> in der seit 2016 die vier 30 m großen und 600 bis 1250 Tonnen schweren Teile des Kryostaten aus 54 von Indien gelieferten Einzelteilen zusammengesetzt werden, bis Juli 2019 zunächst der Boden und das untere Zylinderstück.<ref>iter.org: [https://www.iter.org/construction/SiteFabricationCryostat ''On-Site Fabrication: Cryostat.''] 30. Sept. 2019.</ref> Erste [[#Spulen|TF-Spulen]] wurden im Mai 2016 in Italien und Februar 2017 in Japan gewickelt und getempert.<ref>iter.org: [https://www.iter.org/newsline/-/2449 Erstes Spulenpaket in Europa fertiggestellt]. 25. Nov 2017.</ref><ref>iter.org: [https://www.iter.org/newsline/-/2662 Erstes Spulenpaket in Japan fertiggestellt]. 25. Nov. 2017.</ref> Ende Juni 2017 trafen aus Korea erste Teile eines von zwei Sector Sub-Assembly Tools (SSAT) ein.<ref>iter.org: [https://www.iter.org/newsline/-/2686 ''ITER's largest tool can ship'']. 15. Mai 2017.</ref> Mit diesen je 22 m hohen und 800 Tonnen schweren Montagevorrichtungen werden in der Montagehalle neben der Tokamak-Grube die neun Sektoren des Vakuum-Gefäßes mit Wärmeschilden und je zwei Toroidalfeldspulen ausgerüstet.<ref>ITER Org.: [https://www.youtube.com/watch?v=HOOQHLlo_Nc ''Vacuum Vessel Sector Sub-Assembly tool''] YouTube-Video, 13. November 2014.</ref> Ende März 2020 wurde der [[Brückenkran]] zwischen Montagehalle und Tokamak-Grube einsatzbereit.<ref>iter.org: [https://www.iter.org/proj/itermilestones#154 ''First crane access to Tokamak Building.''] 28. März 2020.</ref> Damit konnte die Montage des Reaktors am 28. Juli 2020 beginnen, für die {{Bruch|4|1|2}} Jahre angesetzt waren.<ref>iter.org: [https://www.iter.org/proj/itermilestones#164 ''Q4-24: Close up the cryostat.'']</ref> Bis Mitte 2022 waren die beiden unteren Teile des Kryostaten, die Spulen PF6 und PF5 sowie vorübergehend<ref>iter.org: [https://www.iter.org/newsline/-/3904 ''A four-day "reverse lift".''] 10. Juli 2023.</ref> das Sektormodul #6 installiert.<ref>iter.org: [https://www.iter.org/proj/itermilestones ''Project Milestones.''] Abgerufen am 23. Juli 2022.</ref> 2023 wurden die Rohbauten für das Neutral-Beam-System<ref>iter.org: [https://www.iter.org/newsline/-/3855 ''Neutral beam power supply.''] 20. März 2023.</ref> und die Tritium-Anlage<ref>iter.org: [https://www.iter.org/newsline/-/3977 ''Tritium Building – A "Formidable Adventure" Comes to an End.''] 18. Dezember 2023.</ref> fertig. |
|||
=== Verzögerungen im Zeitplan === |
|||
Der Zeitplan für die Konstruktion der Fertigungsanlagen und des Reaktors musste mehrfach revidiert werden. Ursprünglich sollte die Anlage 2016 den Betrieb aufnehmen. Kurze Zeit später ging man von 2019 aus. Anfang 2015 wurde der Franzose [[Bernard Bigot]] als Nachfolger des Japaners [[Osamu Motojima]] Generaldirektor von ITER. Bigot erklärte Ende 2015, dass ein erstes Plasma frühestens 2025 gezündet werden könne. Das DOE hielt 2028 für realistischer. Jede Verzögerung wird die Versorgung mit Tritium erschweren, das aus zurzeit noch laufenden [[Schwerwasserreaktor|schwerwassermoderierten Kernspaltungsreaktoren]] stammt, aber mit zwölf Jahren Halbwertszeit zerfällt.<ref>Michael Kovari et al.: ''Tritium resources available for fusion reactors.'' Nucl. Fusion 58, 2018, [[doi:10.1088/1741-4326/aa9d25]] (freier Volltext).</ref><ref>Richard J. Pearson et al.: ''Tritium supply and use: a key issue for the development of nuclear fusion energy.'' Fusion Engineering and Design 136, 2018, [[doi:10.1016/j.fusengdes.2018.04.090]] (freier Volltext).</ref><ref>John Evans: [https://physicsworld.com/a/the-fusion-industry-must-rise-to-its-tritium-challenge/ ''The fusion industry must rise to its tritium challenge.''] Physics World, 20. Mai 2024.</ref> |
|||
Im Juni 2016 legte Bigot einen detaillierten Plan vor, wie der frühere Termin gehalten werden könne, indem er das Ziel änderte: Erst nach einem eher symbolischen „ersten Plasma“ 2025 sollen die drei wesentlichen Heizsysteme installiert werden, im Wechsel mit relativ kurzen Experimentierphasen mit steigender Heizleistung und ab 2035 mit Tritium.<ref>Davide Castelvecchi, Jeff Tollefson: ''US advised to stick with troubled fusion reactor ITER''. Nature 534, 2016, {{DOI|10.1038/nature.2016.19994}}.</ref><ref>iter.org: [https://www.iter.org/doc/www/content/com/Lists/ITER%20Technical%20Reports/Attachments/9/ITER-Research-Plan_final_ITR_FINAL-Cover_High-Res.pdf ITR-18-003 ''ITER Research Plan within the Staged Approach.''] ITER Technical Report ITR-18-003, 17. September 2018.</ref><ref>iter.org: [https://www.iter.org/newsline/-/2588 ''IC-19 endorses schedule though D-T Operation.''] November 2016.</ref><ref>Fusion For Energy (F4E), The Governing Board: [https://f4e.europa.eu/downloads/aboutf4e/decisions/Annual_and_Multiannual_Programme_2019-2023.pdf ''Annual and Multiannual Programme 2019–2023.''] 12. Dezember 2018.</ref> |
|||
Auf diesen aufwendigen Wechsel soll nach dem im Juni 2024 beschlossenen Zeitplan verzichtet werden, um den Betrieb mit voller Leistung und mit Tritium möglichst rasch zu erreichen, 2036 bzw. 2039.<ref name="Zeit_Juli_2024" /><ref name="Physicsworld_Juli_2024" /><ref>Elizabeth Gibney: ''ITER delay: what it means for nuclear fusion.'' Nature News, 8. Juli 2024, [[doi:10.1038/d41586-024-02247-2]].</ref> Zwischenzeitlich waren bei drei der neun Sektoren der Vakuumkammer Maßabweichungen von bis zu zwei Zentimetern festgestellt worden, sowie verbreitet<ref>iter.org: [https://www.iter.org/newsline/-/3984 ''Vacuum Technology – Finding Infinitesimal Needles in a Haystack.''] 15 Januar 2024.</ref> Spannungsrisskorrosion an den Wärmeschild-Kühlleitungen, die über ihre gesamte Länge erneuert werden müssen.<ref name="heat_shield">iter.org: [https://www.iter.org/newsline/-/3999 ''Thermal shield repair.''] 26. Februar 2024.</ref> Die Reparaturen an den Sektoren #6 und #7<ref>iter.org: [https://www.iter.org/newsline/-/3991 ''Vacuum vessel repair – Where are we at?''] 12. Februar 2024.</ref> haben im März 2024 „ernsthaft begonnen.“<ref>iter.org: [https://www.iter.org/newsline/-/4017 ''Sector repair has started.''] 25. März 2024.</ref> |
|||
=== Generaldirektoren === |
|||
Nachdem ITER zunächst ab 2005 von dem japanischen Diplomaten und ehemaligen Botschafter [[Kaname Ikeda]] geleitet worden war, wurde 2010 dessen Landsmann [[Osamu Motojima]], ein Physiker, sein Nachfolger als Generaldirektor. Er wurde von dem französischen Chemiker und Regierungsbeamten Bernard Bigot abgelöst, der am 5. März 2015 sein Amt antrat.<ref>{{Internetquelle |url=https://www.iter.org/newsline/-/2132 |titel=An interview with ITER Director-General Bernard Bigot |hrsg=ITER |sprache=en |datum=2015-03-08 |abruf=2022-05-17}}</ref> 2019 verlängerte der ITER-Aufsichtsrat Bigots Amtszeit um ein weiteres Mandat bis 2025. Bigot starb jedoch am 14. Mai 2022 im Amt. Seine Aufgaben übernahm zunächst geschäftsführend sein bisheriger Stellvertreter Eisuke Tada,<ref name="abcnews2022">{{Internetquelle |url=https://abcnews.go.com/Technology/wireStory/french-scientist-leading-nuclear-fusion-project-dies-72-84716789 |titel=French scientist leading nuclear fusion project dies at 72 |hrsg=[[ABC News]] |sprache=en |datum=2022-05-14 |abruf=2022-05-17 |kommentar=Agenturmeldung [[Associated Press]]}}</ref> bevor im September 2022 [[Pietro Barabaschi]] zum neuen Generaldirektor ernannt wurde.<ref>{{Internetquelle |url=https://fusionforenergy.europa.eu/news/pietro-barabaschi-appointed-director-general-of-iter-organization/ |titel=Pietro Barabaschi appointed Director-General of ITER Organization |hrsg=Fusion for Energy |sprache=en |datum=2022-09-15 |abruf=2022-09-22 }}</ref> |
|||
== Siehe auch == |
== Siehe auch == |
||
* [[JT-60SA]] (Tokamak zur Erforschung verschiedener Plasmageometrien, auch zur Optimierung des ITER-Betriebs) |
|||
* [[Kernfusionsreaktor]] |
|||
* [[Tokamak]] |
|||
== Literatur == |
|||
* [[Joint European Torus|Joint European Torus (JET)]] – bestehender Kernfusionsreaktor in [[Culham]], England |
|||
* Daniel Clery: ''ITER’s $12 Billion Gamble''. [[Science]] 314, 2006, S. 238–242, {{DOI|10.1126/science.314.5797.238}}. |
|||
* Rüdiger von Preuschen-Liebenstein: ''Internationale ITER-Fusionsenergieorganisation: Wegbereiterin der Energieerzeugung durch Kernverschmelzung''. atw 2006, S. 622–625. |
|||
* N. Holtkamp: ''An overview of the ITER project''. Fusion Engineering and Design 82, 2007, S. 427–434, {{DOI|10.1016/j.fusengdes.2007.03.029}}. |
|||
== Dokumentationen == |
|||
* [https://www.3sat.de/wissen/wissenschaftsdoku/231102-sendung-hoffnung-kernfusion-wido-100.html ''Hoffnung Kernfusion - Der Traum von unendlich viel sauberer Energie.''] TV-Dokumentation in [[High Definition Television|HD]], Deutschland 2023 für [[ZDF]] und [[3sat]]. |
|||
== Weblinks == |
== Weblinks == |
||
{{Commonscat|ITER}} |
|||
* http://www.iter.org/ – Offizielle Homepage des ITER-Projekts |
|||
{{Wiktionary}} |
|||
* http://www.ipp.mpg.de/ippcms/de/pr/forschung/iter/index.html – Max-Planck-Institut für Plasmaphysik |
|||
* {{Internetquelle |hrsg=The ITER Organization |titel=ITER |url=https://www.iter.org/ |abruf=2020-01-28 |sprache=englisch |kommentar=Offizielle Homepage des Projekts}} |
|||
* http://www.fz-juelich.de/ipp/ITER – Institut für Plasmaphysik am Kernforschungszentrum Jülich |
|||
* {{Internetquelle |hrsg=ITER Construction Video |titel=ITER Video |url=https://www.iter.org/news/videos/257 |abruf=2013-12-17 |sprache=englisch |kommentar=Film über den Bau von ITER}} |
|||
* http://www.iaea.org – International Atomic Energy Agency |
|||
* {{Internetquelle |hrsg=Max-Planck-Gesellschaft zur Förderung der Wissenschaften e. V.|titel=Teilnahme an ITER |url=https://www.ipp.mpg.de/9018/iter |abruf=2020-01-28}} |
|||
* {{Internetquelle|hrsg=Forschungszentrum Jülich GmbH |titel=Forschung für ITER |url=http://www.fz-juelich.de/ief/ief-4/iter |abruf=2008-08-03}} |
|||
* Von Prof. McCray gesammelte [http://archives.eui.eu/en/fonds/154224?item=ITER%20 Dokumente] zur Frühphase von ITER (1979–1989) können im [http://www.eui.eu/Research/HistoricalArchivesOfEU/Index.aspx Historischen Archiv der EU] in Florenz eingesehen werden. |
|||
== Einzelnachweise == |
|||
<references responsive /> |
|||
{{Coordinate |NS=43.708906|EW=5.778460|type=landmark |region=FR-13|dim=1000}} |
|||
[[Kategorie:Kernenergie]] |
|||
[[Kategorie:Kernphysik]] |
|||
[[Kategorie:Kernfusion]] |
|||
[[Kategorie:Internationales Forschungsprojekt]] |
|||
[[da:ITER]] |
|||
[[Kategorie:Kernfusionsreaktor]] |
|||
[[en:ITER]] |
|||
[[Kategorie:Bauwerk in Provence-Alpes-Côte d’Azur]] |
|||
[[eo:ITER]] |
|||
[[ |
[[Kategorie:Abkürzung]] |
||
[[Kategorie:Saint-Paul-lès-Durance]] |
|||
[[fi:ITER]] |
|||
[[Kategorie:Forschungseinrichtungsgründung 2007]] |
|||
[[fr:International Thermonuclear Experimental Reactor]] |
|||
[[he:פרויקט איטר]] |
|||
[[id:ITER]] |
|||
[[it:ITER]] |
|||
[[ja:ITER]] |
|||
[[ko:국제열핵융합실험로]] |
|||
[[nl:ITER]] |
|||
[[pl:ITER]] |
|||
[[ru:Международный экспериментальный термоядерный реактор]] |
|||
[[sk:ITER]] |
|||
[[sv:Iter]] |
|||
[[zh:国际热核聚变实验反应堆]] |
|||
[[zh-min-nan:Kok-chè Jia̍t-hu̍t-chú Si̍t-giām Hoán-èng-lô·]] |
Aktuelle Version vom 22. Februar 2025, 10:44 Uhr
International Thermonuclear Experimental Reactor | |
---|---|
![]() | |
![]() | |
Die 35 an ITER teilnehmenden Staaten | |
Motto | The way to new energy |
Sitz | 13115 Saint-Paul-lès-Durance, Frankreich |
Generaldirektor | Pietro Barabaschi |
Gründung | 24. Oktober 2007 |
Website | iter.org |



ITER (englisch für International Thermonuclear Experimental Reactor; lateinisch bedeutet das Wort ‚Weg‘, ‚Marsch‘ oder ‚Reise‘) ist ein Versuchs-Kernfusionsreaktor und internationales Forschungsprojekt mit dem Fernziel der Stromerzeugung aus Fusionsenergie. Der Reaktor beruht auf dem Tokamak-Prinzip und ist seit 2007 beim südfranzösischen Kernforschungszentrum Cadarache im Bau.[1]
Forschungsschwerpunkte sind verschiedene Methoden und Konstruktionen zur Plasmaheizung, -diagnostik und -kontrolle und die Erprobung verschiedener Blanket-Konstruktionen zum Erbrüten von Tritium. Es soll ein Brennen des Plasmas bis zu einer Stunde erreicht werden, und die freigesetzte Fusionsleistung soll dabei die eingebrachte Heizleistung um das Mehrfache übersteigen. ITER wird im Vergleich zu seinem Vorgänger JET wesentlich größer und mit supraleitenden Magnetspulen ausgestattet. Beim Bau von ITER kam es bereits mehrfach zu Verzögerungen und Kostensteigerungen. Die Inbetriebnahme ist nun im Zeitraum 2034 bis 2036 geplant, Experimente mit Tritium ab 2039.[2][3]
Falls sich mit ITER und der parallel durchzuführenden Werkstoffforschung an der International Fusion Materials Irradiation Facility (IFMIF) zeigt, dass das Tokamak-Bauprinzip in den Gigawatt-Bereich vergrößert werden kann, soll ein Nachfolgeprojekt namens DEMO Strom ins Netz einspeisen und einen geschlossenen Tritium-Kreislauf demonstrieren.[4][5] Selbst Befürworter der Technologie räumen aber ein, dass es auf dem Weg dorthin noch zahlreiche ungelöste Probleme gibt.[6]
ITER wird als gemeinsames Forschungsprojekt der sieben gleichberechtigten Partner EU, welche die 27 EU-Staaten, das Vereinigte Königreich und die Schweiz vertritt, USA, China, Südkorea, Japan, Russland und Indien entwickelt, gebaut und betrieben.[7] Die USA waren von 1998 bis 2003 vorübergehend aus dem Projekt ausgestiegen, Kanada ist seit 2004 nicht mehr dabei. Zwischen der Internationalen Atomenergie-Organisation (IAEO) und dem ITER-Projekt wurde 2008 eine Zusammenarbeit auf Expertenebene vereinbart.[8]
Funktion
[Bearbeiten | Quelltext bearbeiten]ITER funktioniert nach dem Tokamak-Prinzip. Die Spulen, die das ringförmige Vakuumgefäß umschlingen, erzeugen darin ein starkes Magnetfeld in Umfangsrichtung (Toroidalfeld). In das Gefäß wird dann ca. 1 Gramm Deuterium-Tritium-Gas eingelassen, durch eine oder mehrere verschiedene Heiztechniken (siehe Kernfusionsreaktor#Plasmaaufheizung) erhitzt und so in den Plasma-Zustand gebracht. Ein elektrischer Ringstrom erzeugt zusammen mit den Spulen das schraubenförmig verdrillte Magnetfeld, das das Plasma zusammenhält. Die Elektronen und Ionen bewegen sich unter der Lorentzkraft auf engen Schraubenbahnen um die Feldlinien. Stöße untereinander erlauben allerdings eine Drift quer zum Feld. Teilchenbahnen an der Oberfläche des Plasmas enden jenseits einer Feldeinschnürung auf Divertorplatten in der Nähe von Pumpenöffnungen. Die Divertoroberflächen aus Wolfram[9] sind die am stärksten wärmebelasteten Teile des Reaktors.
Die bei der Fusionsreaktion freigesetzten schnellen Neutronen tragen etwa 80 % der Fusionsleistung aus dem Plasma fort. Die restlichen 20 % der Fusionsleistung treten als Rückstoßenergie der in der Reaktion entstandenen Helium-4-Atomkerne auf; sie wird an das Plasma abgegeben und trägt erheblich zu dessen Heizung bei. Mit einer zur Steuerung nötigen äußeren Zusatz-Heizleistung von etwa 50 Megawatt (MW) „brennt“ das Plasma weiter.
Details der Konstruktion
[Bearbeiten | Quelltext bearbeiten]
Plasmavolumen
[Bearbeiten | Quelltext bearbeiten]In nominaler Geometrie hat das Plasma einen großen Torusradius von 6,2 m, einen kleinen Radius von 2 m (das heißt, es erstreckt sich von 4,2 bis 8,2 m von der vertikalen Symmetrieachse), ist 6,7 m hoch und hat ein Volumen von 837 m³. Diese Angaben beziehen sich auf die Separatrix genannte Fläche des Magnetfeldes, außerhalb derer die Feldlinien geladene Teilchen nicht einschließen, sondern zum Divertor lenken.
Divertor
[Bearbeiten | Quelltext bearbeiten]Der Divertor befindet sich unten im Vakuumgefäß. Er ist in 54 schmale 10-Tonnen-Segmente unterteilt, die einzeln robotisch montiert und auch ausgetauscht werden. Sie bestehen aus einem Stahlkörper als Teil des Neutronenschirms und tragen je drei Oberflächenelemente aus wassergekühltem Wolfram, insgesamt 210 m2.
Magnetfeldlinien aus dem Außenbereich des Torus treffen die fast vertikal orientierten Bereiche der Divertor-Oberfläche in flachem Winkel. Dort beträgt die Wärmestromdichte aus rekombinierenden Plasmateilchen kontinuierlich etwa 1 kW/cm2, kurzfristig 2 kW/cm2. Der flache Einfallswinkel verteilt nicht nur den Wärmestrom auf eine größere Oberfläche, sondern treibt entstehendes Neutralgas nach unten, zu den Cryopumpen.[10][11]
Die Stahlkörper des Divertors müssen großen Lorentzkräften standhalten, die auf elektrische Haloströme wirken, die aus dem Plasma über den Divertor zur Wand des Vakuumgefäßes fließen, wenn das Plasma ungeregelt zusammenbricht.[12][13]
Erste Wand
[Bearbeiten | Quelltext bearbeiten]Anders als der Divertor soll der überwiegende Teil der „Erste Wand“ genannten Oberfläche nur während des Anfahrens Kontakt zum Plasma haben, wird aber danach vor allem durch Strahlung sehr heiß. Teilchenbeschuss bei Plasmainstabilitäten bringt durch Sputtern Wandmaterial als Verunreinigung ins Plasma.
Lange war Beryllium als Beschichtung vorgesehen.[14] Vorteile gegenüber Wolfram sind die höhere Wärmeleitfähigkeit und die geringere Ordnungszahl von Z = 4, sodass Beryllium als Verunreinigung geringere Energieverluste durch Bremsstrahlung verursachen würde.[15] Wolfram (W) vom Divertor würde allerdings das Beryllium (Be) verunreinigen. Die intermetallische Phase Be22W würde abplatzen.[16] Nun ist Wolfram auch für diese Oberfläche vorgesehen.[16][17]
Eine Kupferlegierung stellt den Wärmekontakt zu Kühlwasserkanälen her. Das Strukturmaterial der Paneele ist Stahl. Sie sitzen austauschbar auf den Blanket-Modulen.[14]
Blanket
[Bearbeiten | Quelltext bearbeiten]Das Blanket (engl. für Decke) bedeckt in Form von 440 austauschbaren Blöcken die Innenseite des Vakuumgefäßes und schützt es mit seinen 1530 t (überwiegend Stahl) vor den schnellen Neutronen aus der Fusionsreaktion. Der damit verbundene Wärmestrom ist weit größer als der von der Oberfläche und wird mit 1 t/s[18] Kühlwasser bei Temperaturen zwischen 70 und 240 °C abgeführt.
In den Blankets zukünftiger Fusionsreaktoren soll zudem Tritium erbrütet werden, indem die Neutronen in Beryllium oder Blei vermehrt werden und mit Lithium-6 zu Helium-4 und Tritium reagieren. Verschiedene Konstruktionen dafür sollen in einer späten Phase von ITER getestet werden. Diese Test-Blanket-Module werden gesonderte Kühlkreisläufe haben, mit Helium oder Wasser unter hohem Druck, um die Funktion auf einem hohen Temperaturniveau zu demonstrieren, wie es für eine Stromproduktion nötig wäre.[14]
Vakuumgefäß
[Bearbeiten | Quelltext bearbeiten]Das Vakuumgefäß umgibt als Torus das Plasma mit D-förmigem Querschnitt von 6 m innerer Breite. Es schützt das Plasma gegen Verunreinigung von außen und stabilisiert es passiv durch seine elektrische Leitfähigkeit. Diese ist in Richtung des Plasmastroms geringer, um diesen von außen steuern zu können. Das Vakuumgefäß schützt auch die Umgebung vor Kontamination mit radioaktiven Nukliden (nicht nur Tritium) und verringert die Neutronenbelastung der supraleitenden Spulen (Erwärmung) und der Strukturmaterialien (Aktivierung). Dazu befinden sich im Kühlwasser zwischen seinen doppelten Stahlwänden etwa 50.000 Stahlteile von insgesamt fast 1700 Tonnen. Diese sind zudem teilweise ferromagnetisch, um die Welligkeit des Toroidalfeldes zu verringern. Schließlich hat das Vakuumgefäß noch die Aufgabe, Zerfallswärme aus den Blankets aufzunehmen, wenn deren Wasserkühlung ausfällt.
Zahlreiche rechteckige Öffnungen (Ports) erlauben den Zugang zum Inneren für die verschiedenen Heiz- und diagnostischen Einrichtungen, für Pumpen und Wartungsarbeiten. Sie sind in drei Reihen angeordnet, 18 oben, 17 in der Mitte, 9 unten. Drei Ports sind für die Montage von Brutblanket-Testmodulen vorgesehen. Die Ports sind mit Stutzen Port Stubs versehen, die von sogenannten Port Plugs (Stöpseln) möglichst neutronendicht verschlossen sind.[19] Diagnostische Instrumente z. B. sitzen teils vor, teils eingebettet in wassergekühlte Stahlteile, die das Volumen der Plugs ausmachen. Auf der rückwärtigen Seite sind die Plugs mit Flanschen vakuumdicht auf den Stutzen befestigt. Nach außen schließen sich Verlängerungen an, Port Extensions, die zur Kompensation von thermischer Ausdehnung mit elastischen Faltenbälgen vakuumdicht an Öffnungen in der umgebenden Wand, dem Kryostaten, angeschlossen sind. In ihnen herrscht Atmosphärendruck.
Das Vakuumgefäß hat einen Außendurchmesser (ohne Anbauten) von gut 19 m und eine Höhe von 11 m. Ohne Einbauten (Blankets, Divertoren), Anbauten (Plugs, Port Extensions) und Füllung (Abschirmteile, Wasser) hat es eine Masse von rund 4000 t. Insgesamt lastet es mit fast 9000 t auf einem ringförmigen Podest am Boden des Kryostaten. Die neben dem Gewicht größten mechanischen Belastungen entstehen durch Gasdruck im Kryostaten im Fall eines großen Helium-Lecks bzw. elektromagnetisch bei schneller Abnahme des Toroidalfeldes (der reguläre Aufbau des Feldes dauert dagegen zwei Stunden).[20]
Spulen
[Bearbeiten | Quelltext bearbeiten]
Toroidalfeld-Spulen
[Bearbeiten | Quelltext bearbeiten]Das toroidale Feld (TF) hat eine Flussdichte von 5,3 T im Zentrum des Plasmas, in einem Ring 6,2 m von der Mitte des Torus entfernt. Es wird von 18 TF-Spulen erzeugt, die das Vakuumgefäß im nominalen Abstand von 50 mm umgeben (für mechanische Toleranzen und dynamische Verformungen). Die maximale Feldstärke von 11,8 T tritt direkt an den Spulen auf. Das supraleitende Material Nb3Sn, 23 t pro TF-Spule, ist bei der Arbeitstemperatur von 12 bis 13 K bis 13 T belastbar. Die Spule hat 134 Windungen; der Arbeitsstrom beträgt 69 kA, die Durchflutung also 9,1 MA. Das supraleitende Kabel enthält einen zentralen Kühlmittelkanal, einen Kupferanteil, der im Fall eines lokalen Quench den Strom übernimmt, ein äußeres Stahlrohr und eine Polyimid-Isolierung. Es ist in beidseitig genutete Tragprofile eingelegt und mit Epoxidharz vergossen, zusammen 110 t. Viel größer als das Eigengewicht sind jedoch die magnetischen Kräfte. Die Energie im Toroidalfeld beträgt 41 GJ und sinkt, wenn die TF-Spulen auseinanderweichen. Die entsprechende radiale Kraft beträgt pro TF-Spule 403 MN, die vierfache Gewichtskraft des Eiffelturms. Obere und untere Spulenhälfte streben mit 205 MN auseinander. Daher hat jede TF-Spule ein stabiles Gehäuse mit einem Stahlquerschnitt von über 0,5 m², und die 18 TF-Spulen werden untereinander mit Spannbändern verbunden. Die Belastung ist dynamisch in Fällen von Plasmainstabilitäten oder von Quenches. Die Konstruktion basiert auf der Forderung, dass die Toroidalfeldspulen zehn Quenches aushalten müssen, ohne unbrauchbar zu werden.[21] Je zwei TF-Spulen, 2 × 298 t, werden mit einem Sektor des Vakuumgefäßes vormontiert an ihren Platz gehievt.
Zentraler Solenoid, Poloidalfeld- und Korrekturspulen
[Bearbeiten | Quelltext bearbeiten]
Innen sind die TF-Spulen geradlinig und aneinander gepresst. Sie lassen einen zylindrischen Hohlraum für den zentralen Solenoid (CS). Dieser ist 18 m hoch und besteht aus sechs gleichen Modulen mit je 549 Windungen. Der maximale Strom beträgt 45 kA, die Feldstärke 13 T, die Feldenergie 7 GJ. Um das Feld des Solenoids schnell zu ändern, sind hohe Spannungen nötig. Seine Isolation ist auf 29 kV Durchschlagsfestigkeit getestet. Der Solenoid „ruht“ auf den inneren Füßen der TF-Spulen, seine oberen Module allerdings nicht „freiwillig“ – Spannelemente verhindern das Abheben. Der Solenoid wiegt samt Strukturelementen 954 t.
Die TF-Spulen haben außen Flansche, um ringförmige Spulen tragen zu können, die die ganze Anordnung wie Breitenkreise umfassen. Sie formen zusammen mit dem Solenoid die poloidale Komponente des Magnetfeldes (PF) und – parallele Ströme ziehen sich an – den Querschnitt des Plasmas. Es sind sechs große PF-Spulen mit 45 kA und 18 Korrekturspulen mit 16 kA. Anders als die TF-Spulen und der Solenoid sind die schwächeren PF- und Korrekturspulen aus NbTi, die Arbeitstemperatur beträgt 6 K. Die Korrekturspulen gleichen statisch Fertigungs- und Montagetoleranzen der großen Spulen aus und werden mit einer Grenzfrequenz der Regelung von 100 Hz gegen Plasmainstabilitäten eingesetzt. Höhere Frequenzen schirmt das Vakuumgefäß ab.
Spulen im Vakuumgefäß
[Bearbeiten | Quelltext bearbeiten]An der Innenwand des Vakuumgefäßes, noch hinter den Blanket-Modulen, sind Spulen befestigt, mit denen das Plasma hochfrequenter beeinflusst werden kann. Es handelt sich um eine obere und eine untere VS-Spule (Vertical Stability) parallel zu den PF-Spulen und um 27 ELM-Spulen[22], drei pro Sektor. Diese Spulen sind normalleitend und haben eine Gesamtmasse von 7 Tonnen.
Pellet-Injektoren
[Bearbeiten | Quelltext bearbeiten]
Pellets aus gefrorenen Gasen werden mit Gasdruck in das Plasma geschossen – ein Gasstrahl allein würde nicht weit kommen. ITER wird drei verschiedene Arten von Pellet-Injektoren einsetzen. Eine dient dem Nachfüllen von Brennstoff. Dazu werden mehrfach pro Sekunde Deuterium und Tritium abwechselnd oder als Gemisch in Form von kurzen Zylindern mit einigen Millimetern Durchmesser nah an das Zentrum des Plasmas geschossen.[23] Um schädlich große ELMs (Edge Localized Modes; Plasmainstabilitäten, die die Gefäßwand thermisch überlasten können) zu vermeiden, werden regelmäßig kleine ELMs ausgelöst, indem die Oberfläche des Plasmas mit sehr kleinen D2-Pellets beschossen wird.[24] Große Neon-Pellets (20 bis 50 g) sind gegen thermisches Durchgehen und Runaway-Elektronen vorgesehen mit Reaktionszeiten von 20 bzw. 10 ms.[25]
Kryostat
[Bearbeiten | Quelltext bearbeiten]Der Kryostat ist ein kesselförmiges Vakuumgefäß, das mit 29 m Durchmesser und Höhe auch die Spulen umschließt. Er wird in vier Teilen eingebaut. Die Bodenplatte ist mit 1250 t das schwerste Einzelteil überhaupt. Der Kryostat ist evakuiert, denn die heliumkalten Spulen müssten sonst einzeln isoliert werden, sowohl wegen der Wärmeleitung durch Konvektion als auch gegen die Kondensation von Gasen. Der luftdichte Abschluss nach außen ist zudem eine zweite Barriere gegen Austritt von Tritium. Der Kryostat hat zahlreiche große Öffnungen mit nach innen gerichteten Stutzen, die die Stutzen des Vakuumgefäßes umschließen.
Kryopumpen
[Bearbeiten | Quelltext bearbeiten]Sechs der neun unteren Portale, auf Höhe des Divertors, führen zu großen, trommelförmigen Kryopumpen, die das gebildete Helium und andere Verunreinigungen aus dem Vakuumgefäß entfernen sollen. Dabei wird auch der weit überwiegende Teil des Deuteriums und Tritiums ungenutzt abgepumpt. Um bei dem niedrigen Druck und auf Heliumtemperaturniveau (s. u.) Helium binden zu können, befinden sich an der Innenwand der Kryopumpen hinter einem geschlitzten Wärmeschild mit Aktivkohle beschichtete Absorber. Nach 3000 s Betriebszeit müssen die Absorber regeneriert werden. Dazu haben die Pumpen eingangsseitig Tellerventile von 0,8 m Durchmesser und 0,5 m Hub. Jeweils zwei der sechs Pumpen werden geschlossen, erwärmt und ausgepumpt. Auf dem höheren Druckniveau wird das Gas zum Gebäude für das Tritium-Handling geleitet. Zwei baugleiche Kryopumpen evakuieren den Kryostaten. Auch bei der Neutralgasinjektion werden Kryopumpen eingesetzt.[26]
Kälteversorgung
[Bearbeiten | Quelltext bearbeiten]Die Supraleiter werden mit Helium gekühlt, mit hohem Druck und einer Eintrittstemperatur von 4,5 K. Dieser Zustand ist überkritisch – die Dichte ist etwas geringer, die Viskosität viel geringer als bei flüssigem Helium unter Normaldruck (Siedepunkt 4,15 K). Die supraleitenden Kabel für die TF-, CS- und PF-Spulen haben einen zentralen Kühlkanal mit einem Durchfluss von 8 g/s pro Spule. Auch das Strukturmaterial wird gekühlt, hier ist der Durchfluss einige Kilogramm pro Sekunde. Die abzuführende Wärmeleistung stammt während des Fusionsbetriebs von Neutronen (bei 500 MW Fusionsleistung etwa 14 kW), vorher und nachher von Wirbelströmen im Strukturmaterial (kurzzeitig viel mehr, im Mittel jedoch ebenfalls 10 bis 20 kW). Die Kryopumpen werden ebenfalls mit flüssigem Helium gekühlt. Die gesamte verfügbare Kühlleistung auf dem 4,5-K-Niveau beträgt 65 kW.
Mit gasförmigem Helium auf einem Temperaturniveau von 80 K werden Wärmeschilde gekühlt, die kältere Teile vor Wärmestrahlung schützen. Auf diesem Temperaturniveau stehen 1300 kW Kühlleistung zur Verfügung. Wärmeschilde bedecken insbesondere die Außenseite des Vakuumgefäßes und die Innenseite des Kryostaten. Sie haben eine Gesamtfläche von etwa 4000 m2 und die aufgeschweißten Kühlleitungen eine Gesamtlänge von 23 km.[27]
Stromversorgung
[Bearbeiten | Quelltext bearbeiten]Der Energiebedarf für die Kühlanlagen, einschließlich der Umwälzpumpen für die Wasserkühlkreisläufe, macht etwa 80 % der etwa 110 MW aus, die die gesamte Anlage während der Betriebsphasen permanent benötigt. Während der Plasmapulse steigt der Bedarf für bis zu 30 Sekunden auf bis zu 620 MW.[28] Die Leistung wird aus dem öffentlichen Netz bezogen. Zu diesem Zweck hat Frankreich zwei redundante 400-kV-Leitungen zum 125 km entfernten Netzknoten bei Avignon samt Schaltanlagen errichtet. Die Leistungstransformatoren stammen aus den USA und aus China. Der kurzfristige Regelbedarf von 300 bis 400 MW erfordert eine enge Kooperation mit dem Netzbetreiber RTE.[29]
Forschungsziele
[Bearbeiten | Quelltext bearbeiten]Zeitplan
[Bearbeiten | Quelltext bearbeiten]In den ersten Jahren soll die Anlage mit einem Plasma aus normalem Wasserstoff und Helium ohne Fusionsreaktionen betrieben werden. Viele rein plasmaphysikalische Fragen lassen sich so erforschen, ohne die Kontamination des Gefäßinneren mit Tritium und die Aktivierung von Materialien in Kauf zu nehmen. Erst für den Nachweis des Netto-Energiegewinns und die Erprobung von Brutblanket-Modulen ist die Verwendung eines Deuterium-Tritium-Gemischs vorgesehen.
Plasmastabilität
[Bearbeiten | Quelltext bearbeiten]Die geladenen Teilchen bewegen sich wendelförmig um die magnetischen Feldlinien (Gyration). Diese sind aber bei den für die angestrebte Fusionsleistung nötigen Dichten nicht unveränderlich (Minimierung der Feldenergie bei gegebenem Fluss), sondern das Plasma wirkt mechanisch auf das Feld zurück. Plasmainstabilitäten treten auf, wenn sich viele Teilchen in ihrer Bewegung synchronisieren. Teilchen koppeln miteinander nicht nur über Schwingungen der Feldlinien, sondern auch elektrostatisch über Raumladungen. Für eine effektive Kopplung sorgen Resonanzen. Wegen der Nichtlinearität der Kopplungen müssen Frequenzen nicht (näherungsweise) gleich sein, sondern es reichen ganzzahlige Verhältnisse. Folgende Frequenzen spielen eine Rolle: die Gyrationsfrequenzen von Elektronen und Ionen und die Umlauffrequenzen von Elektronen, Ionen und von Plasmawellen um den kleinen und großen Torusumfang. Eine geschlossene Lösung ist nicht möglich, und die numerische Lösung ist ineffizient, da es sich um ein steifes Anfangswertproblem handelt. Es ist nicht nur der Frequenzbereich enorm groß, sondern auch die nötige räumliche Auflösung. Daher werden heuristische Vorschläge zur Stabilisierung des Plasmas in aufwändigen Experimenten realisiert und praktisch erprobt.
Eine Art von Plasmainstabilitäten, die im Betriebsbereich von Fusionsreaktoren nach dem Tokamak-Prinzip (H mode) enorm stören, sind Edge-Located Modes (ELMs). Dabei bilden sich in Bruchteilen von Millisekunden schleifenförmige Ausbuchtungen, entfernt ähnlich den Protuberanzen an der Sonnenoberfläche. Die zeit- und räumliche Konzentration (< 1 ms, < 1 m) eines Ausbruchs kann die Blanket-Oberfläche schmelzen lassen, und wiederholtes ELMen bedeutet für das Plasma enorme Verluste von magnetischer und thermischer Energie und von Partikeln. Verschiedene Ansätze sind in Erprobung, ELMs zu unterdrücken oder wenigstens in ihren Auswirkungen zu begrenzen (Betrieb im ELMing H mode).[30] Die meisten Methoden erfordern eine Beobachtung von Plasmaparametern mit hoher zeitlicher Auflösung und schnelle Reaktionen wie Stromänderungen in lokalen Spulen, Einstrahlung inkohärenter magnetischer Energie (Rauschleistung) im Frequenzbereich der Gyration der Ionen und Einschuss von Wasserstoff-Pellets.
Leistung
[Bearbeiten | Quelltext bearbeiten]Es soll eine etwa 10-fache Verstärkung der eingesetzten Heizleistung, also eine Fusionsleistung von etwa 500 MWth erreicht werden. Damit ITER als erfolgreich gilt, muss dieser Zustand 400 Sekunden lang stabil bleiben. In einem anderen Betriebsmodus sind Brenndauern von bis zu einer Stunde vorgesehen bei einer Leistungsverstärkung von mindestens 5. Kurzzeitig und mit geringerer Heizleistung soll eine Leistungsverstärkung von über 30 erprobt werden, wie sie für kommerzielle Reaktoren vorgesehen ist.[31][32] Die Forschungen am ITER zur Brenndauer des Plasmas werden unter anderem am ASDEX Upgrade vorbereitet.[33]
Standort
[Bearbeiten | Quelltext bearbeiten]Lage von Cadarache, Frankreich |
Seit 2001 wurde über einen Standort für den ITER beraten. Standortbewerbungen kamen aus Frankreich, Spanien, Japan und Kanada. Bis 2003 gab es auch eine inoffizielle deutsche Bewerbung mit dem ehemaligen Kernkraftwerk „Bruno Leuschner“ Greifswald in Lubmin bei Greifswald. Damit wären die Anlagen für das weltgrößte Tokamak-Experiment in direkter Nachbarschaft zur Baustelle des weltgrößten Stellarator-Experiments errichtet worden. Der ITER-Förderverband Region Greifswald unter Führung des früheren Ministerpräsidenten Alfred Gomolka reichte 2002 eine vollständige Standortbewerbung bei der Landesregierung Mecklenburg-Vorpommern ein.[34] Die Bewerbung wurde jedoch von der EU zurückgewiesen, da das Land Mecklenburg-Vorpommern als Region nicht zu einer Bewerbung berechtigt war, die Bundesregierung hat eine Bewerbung aus Kostengründen abgelehnt.[35] Im Sommer des Jahres 2003 zog Bundeskanzler Gerhard Schröder die Zusage des ehemaligen Kanzlers Helmut Kohl zur Bewerbung um den ITER-Standort zurück.
2005 konkurrierten noch Frankreich mit seinem traditionellen Kernforschungszentrum in Cadarache und Japan mit Rokkasho um den Standort. Während die USA, Japan und Südkorea den Standort Rokkasho bevorzugten, stimmten die Europäische Atomgemeinschaft, die Volksrepublik China und Russland für Cadarache. Im November 2004 beschloss der EU-Ministerrat für die EURATOM einstimmig, ITER in Cadarache zu bauen, notfalls auch ohne die Beteiligung Japans, Südkoreas und der USA. Japan wurden Sonderkonditionen eingeräumt, falls der Reaktor in Europa gebaut werden sollte, woraufhin Japan seine Bewerbung zurückzog. Am 28. Juni 2005 entschieden die beteiligten Staaten gemeinsam, den Reaktor in Frankreich zu errichten, das sich damit zu umfangreichen Investitionen in die Infrastruktur wie Straßen, Stromversorgung, Datenleitungen sowie Wohnungen für die zukünftigen Forscher und deren Familien verpflichtete.
Finanzierung
[Bearbeiten | Quelltext bearbeiten]Am 21. November 2006 unterzeichneten die Projektteilnehmer im Élysée-Palast in Paris den endgültigen Vertrag, der auch die Finanzierung des Baus regelt. Teilnehmerstaaten sind neben der Europäischen Atomgemeinschaft (EURATOM) die Staaten China, Indien, Japan, Russland, Südkorea und die USA. Der Vertrag trat am 24. Oktober 2007 in Kraft. Als Ausgleich für die Wahl eines europäischen Standortes wurde Japan ein mindestens zehnprozentiger Anteil an den Aufträgen zur Ausstattung des Reaktors sowie die Förderung japanischer Forschung aus Mitteln der EURATOM zugesagt.
Während der Bauphase trägt die Europäische Union respektive die EURATOM 5/11 bzw. 45,5 % der Gesamtkosten. Davon bringt Frankreich 40 % auf, entsprechend 2/11 der Gesamtkosten. Die übrigen sechs Projektpartner tragen jeweils 1/11 bzw. 9,1 % der Gesamtkosten und damit den verbleibenden Kostenanteil von 6/11. Ein Teil davon wird von jeder Partei als Sachleistung erbracht, die unabhängig von den endgültigen Kosten der Beschaffung und Lieferung zu erbringen sind. Die Kosten des Betriebs und der Deaktivierung werden zu 34 % von EURATOM getragen.[36] Die Schweiz zahlt den größten Teil ihrer Finanzbeiträge für das Projekt ITER an die EU im Rahmen des am 5. Dezember 2014 unterzeichneten Abkommens über die wissenschaftliche Zusammenarbeit zwischen der Schweiz und der EU. Der bis 2014 ausbezahlte Beitrag der Schweiz an den Bau von ITER beträgt 183 Millionen Schweizer Franken.[7]
Die Errichtung sollte zunächst gut 5,5 Mrd. Euro kosten (5,896 Mrd. EUR in Preisen des Jahres 2008). Schon im Juni 2008 mehrten sich Stimmen, die eine deutliche Kostensteigerung ankündigten.[37] Im September 2008 erklärte der stellvertretende ITER-Direktor Norbert Holtkamp auf dem 25. Symposium zur Fusionstechnologie in Rostock, dass die ursprünglich geplanten Kosten um mindestens 10 Prozent steigen würden, eventuell sogar um 100 Prozent. Zurückzuführen sei dies auf die stark gestiegenen Preise für Rohstoffe und Energie sowie teure technische Weiterentwicklungen.[38]
Im Mai 2010 teilte die Europäische Kommission mit, dass sich laut einer aktuellen Kostenschätzung ihr Anteil an den Baukosten von ehemals geplanten 2,7 Milliarden Euro auf 7,3 Milliarden Euro verdreifachen wird.[36] Die EU deckelte daraufhin die EURATOM-Mittel bei 6,6 Milliarden Euro. Darüber hinausgehende Kosten will sie durch Umschichtungen aus dem Agrar- und dem Forschungsetat decken.
Die EU hat in ihrem „Mehrjährigen Finanzrahmen“ (MFR) 2021–2027 als Beitrag 6,1 Mrd. € festgelegt.[39] Gegenüber dem MFR 2014–2020 entspricht das einer Erhöhung um 81 %.
Während die ITER-Organisation keine Kostenschätzungen abgibt, könnte nach einem Worst Case-Szenario des DOE aus dem Jahr 2014 der US-Anteil auf 6,5 Milliarden US-Dollar steigen. Dies würde Gesamtkosten in Höhe von weit über 50 Mrd. US-Dollar entsprechen.[40]
Projekthistorie
[Bearbeiten | Quelltext bearbeiten]Initiierung durch die Sowjetunion
[Bearbeiten | Quelltext bearbeiten]
Bei Gesprächen mit den Präsidenten Frankreichs und der USA, François Mitterrand und Ronald Reagan, wurden 1985 aufgrund eines Vorschlages des sowjetischen Staatschefs Michail Gorbatschow eine Zusammenarbeit bei der Kernfusions-Forschung und der gemeinsame Bau eines Reaktors beschlossen.[41] Die Planungen begannen 1988 im deutschen Max-Planck-Institut für Plasmaphysik und führten 1990 zu einem ersten Entwurf des Versuchsreaktors. Bis 1998 wurde ein Entwurf (ITER I) mit den Eckdaten 8,1 m großem Torusradius und 1500 MW Fusionsleistung ausgearbeitet.[42]
ITER-Vertrag
[Bearbeiten | Quelltext bearbeiten]Nachdem der ursprüngliche Entwurf in eine kleinere (500 MW), kostenreduzierte Version von ITER mit geringeren technischen Anforderungen gewandelt wurde, gaben die teilnehmenden Parteien am 28. Juni 2005 nach langen Verhandlungen den Startschuss für den Bau von ITER.[42] Der Beschluss umfasst den Bau eines Versuchsreaktors in Cadarache in Südfrankreich für insgesamt knapp 5 Milliarden Euro. Die Betriebskosten über die geplante Laufzeit des Reaktors von 20 Jahren würden ähnlich hoch sein. Am 21. November 2006 wurde in Paris der ITER-Vertrag von den sieben Partnern unter Teilnahme des damaligen französischen Staatspräsidenten Jacques Chirac unterzeichnet. Gleichzeitig fand die erste Sitzung des ITER Interim Council statt. Der Vertrag trat am 24. Oktober 2007 in Kraft, 30 Tage nachdem er vom letzten Vertragspartner China ratifiziert worden war.[43][44]
Organisation
[Bearbeiten | Quelltext bearbeiten]Jeder der sieben Partner richtet eine eigene nationale Organisation ein, welche die Aufgabe hat, die vertraglichen Verpflichtungen des jeweiligen Landes gegenüber ITER zu erfüllen. Für die Europäische Atomgemeinschaft fällt diese Aufgabe der neu gegründeten Agentur Fusion for Energy – The European Joint Undertaking for ITER and the Development for Fusion Energy mit Sitz in Barcelona zu.
Von deutscher Seite am Projekt beteiligt sind das Max-Planck-Institut für Plasmaphysik (IPP) in Garching bei München, das Institut für Plasmaphysik (IEK-4) am Forschungszentrum Jülich und verschiedene Institute des KIT. Weitere wissenschaftliche Zentren liegen in San Diego (USA) und Naka (Japan).
Das Aufsichtsgremium (IC, ITER-Council) hat seinen Sitz in Moskau.
Das zentrale Management (IO, ITER Organization) mit 500 direkten Angestellten und 350 externen Mitarbeitern residiert im nahe der Baustelle gelegenen Dorf Saint-Paul-lès-Durance.[45] Zusammen mit den nationalen Organisationen sind es 2000 Mitarbeiter.[46]
Alle zwei Jahre wird das Management einer externen Evaluation unterzogen.[47] Das Ergebnis der Evaluation des Managements durch Madia & Associates im Jahr 2013 fiel so vernichtend aus, dass die ITER-Organisation den Bericht unter Verschluss halten wollte.[48] The New Yorker hat die Executive Summary des Berichts veröffentlicht.[47] Die ITER-Organisation zeigt auf die Projektpartner: Das Management würde dadurch erschwert, dass jeder der sieben Projektpartner mit Rücksicht auf die heimische Industrie lieber Teile herstellt und liefert, als Geld zu überweisen. In zähen Verhandlungen würden Entwicklungs- und Fertigungsaufträge zerstückelt, mit dem Risiko, dass die Teile bei der Montage nicht zusammenpassen.[49]
Baufortschritt
[Bearbeiten | Quelltext bearbeiten]
Anfang 2007 begannen die Vorbereitungen für den Bau. 2009 war der Baugrund auf 42 Hektar plan. 2011 war die Baugrube für den Hauptkomplex ausgehoben (Seismic Pit, 130×90×17 m³) und der Rohbau des ersten Nebengebäudes, der über 250 m langen Poloidal Field Coils Winding Facility, fertiggestellt. Darin werden mit großer Verspätung[46][51] die fünf größten der ringförmigen Spulen für das poloidale Magnetfeld gewickelt.[52] Die Maschinen dafür wurden erst 2016 geliefert, montiert und mit einem Leiter aus Kupfer erprobt.[53] 2012 wurde im Seismic Pit das 1,5 m dicke Fundament hergestellt. 2013 und 2014 wurde auf 2 m hohen, schwingungsdämpfenden Sockeln die 1,5 m dicke Bodenplatte gefertigt, die das Reaktorgebäude und die nördlich und südlich angrenzenden Gebäude für das Tritium-Handling bzw. die Plasmadiagnostik erdbebensicher tragen soll. Der Hochbau des 7-stöckigen Gebäudes dauerte gut fünf Jahre.[54][55] 2014 wurden das Kontroll- und Verwaltungszentrum bezogen und die temporäre Kryostat-Montagehalle errichtet,[56] in der seit 2016 die vier 30 m großen und 600 bis 1250 Tonnen schweren Teile des Kryostaten aus 54 von Indien gelieferten Einzelteilen zusammengesetzt werden, bis Juli 2019 zunächst der Boden und das untere Zylinderstück.[57] Erste TF-Spulen wurden im Mai 2016 in Italien und Februar 2017 in Japan gewickelt und getempert.[58][59] Ende Juni 2017 trafen aus Korea erste Teile eines von zwei Sector Sub-Assembly Tools (SSAT) ein.[60] Mit diesen je 22 m hohen und 800 Tonnen schweren Montagevorrichtungen werden in der Montagehalle neben der Tokamak-Grube die neun Sektoren des Vakuum-Gefäßes mit Wärmeschilden und je zwei Toroidalfeldspulen ausgerüstet.[61] Ende März 2020 wurde der Brückenkran zwischen Montagehalle und Tokamak-Grube einsatzbereit.[62] Damit konnte die Montage des Reaktors am 28. Juli 2020 beginnen, für die 4 1⁄2 Jahre angesetzt waren.[63] Bis Mitte 2022 waren die beiden unteren Teile des Kryostaten, die Spulen PF6 und PF5 sowie vorübergehend[64] das Sektormodul #6 installiert.[65] 2023 wurden die Rohbauten für das Neutral-Beam-System[66] und die Tritium-Anlage[67] fertig.
Verzögerungen im Zeitplan
[Bearbeiten | Quelltext bearbeiten]Der Zeitplan für die Konstruktion der Fertigungsanlagen und des Reaktors musste mehrfach revidiert werden. Ursprünglich sollte die Anlage 2016 den Betrieb aufnehmen. Kurze Zeit später ging man von 2019 aus. Anfang 2015 wurde der Franzose Bernard Bigot als Nachfolger des Japaners Osamu Motojima Generaldirektor von ITER. Bigot erklärte Ende 2015, dass ein erstes Plasma frühestens 2025 gezündet werden könne. Das DOE hielt 2028 für realistischer. Jede Verzögerung wird die Versorgung mit Tritium erschweren, das aus zurzeit noch laufenden schwerwassermoderierten Kernspaltungsreaktoren stammt, aber mit zwölf Jahren Halbwertszeit zerfällt.[68][69][70]
Im Juni 2016 legte Bigot einen detaillierten Plan vor, wie der frühere Termin gehalten werden könne, indem er das Ziel änderte: Erst nach einem eher symbolischen „ersten Plasma“ 2025 sollen die drei wesentlichen Heizsysteme installiert werden, im Wechsel mit relativ kurzen Experimentierphasen mit steigender Heizleistung und ab 2035 mit Tritium.[71][72][73][74]
Auf diesen aufwendigen Wechsel soll nach dem im Juni 2024 beschlossenen Zeitplan verzichtet werden, um den Betrieb mit voller Leistung und mit Tritium möglichst rasch zu erreichen, 2036 bzw. 2039.[2][3][75] Zwischenzeitlich waren bei drei der neun Sektoren der Vakuumkammer Maßabweichungen von bis zu zwei Zentimetern festgestellt worden, sowie verbreitet[76] Spannungsrisskorrosion an den Wärmeschild-Kühlleitungen, die über ihre gesamte Länge erneuert werden müssen.[27] Die Reparaturen an den Sektoren #6 und #7[77] haben im März 2024 „ernsthaft begonnen.“[78]
Generaldirektoren
[Bearbeiten | Quelltext bearbeiten]Nachdem ITER zunächst ab 2005 von dem japanischen Diplomaten und ehemaligen Botschafter Kaname Ikeda geleitet worden war, wurde 2010 dessen Landsmann Osamu Motojima, ein Physiker, sein Nachfolger als Generaldirektor. Er wurde von dem französischen Chemiker und Regierungsbeamten Bernard Bigot abgelöst, der am 5. März 2015 sein Amt antrat.[79] 2019 verlängerte der ITER-Aufsichtsrat Bigots Amtszeit um ein weiteres Mandat bis 2025. Bigot starb jedoch am 14. Mai 2022 im Amt. Seine Aufgaben übernahm zunächst geschäftsführend sein bisheriger Stellvertreter Eisuke Tada,[80] bevor im September 2022 Pietro Barabaschi zum neuen Generaldirektor ernannt wurde.[81]
Siehe auch
[Bearbeiten | Quelltext bearbeiten]- JT-60SA (Tokamak zur Erforschung verschiedener Plasmageometrien, auch zur Optimierung des ITER-Betriebs)
Literatur
[Bearbeiten | Quelltext bearbeiten]- Daniel Clery: ITER’s $12 Billion Gamble. Science 314, 2006, S. 238–242, doi:10.1126/science.314.5797.238.
- Rüdiger von Preuschen-Liebenstein: Internationale ITER-Fusionsenergieorganisation: Wegbereiterin der Energieerzeugung durch Kernverschmelzung. atw 2006, S. 622–625.
- N. Holtkamp: An overview of the ITER project. Fusion Engineering and Design 82, 2007, S. 427–434, doi:10.1016/j.fusengdes.2007.03.029.
Dokumentationen
[Bearbeiten | Quelltext bearbeiten]- Hoffnung Kernfusion - Der Traum von unendlich viel sauberer Energie. TV-Dokumentation in HD, Deutschland 2023 für ZDF und 3sat.
Weblinks
[Bearbeiten | Quelltext bearbeiten]- ITER. The ITER Organization, abgerufen am 28. Januar 2020 (englisch, Offizielle Homepage des Projekts).
- ITER Video. ITER Construction Video, abgerufen am 17. Dezember 2013 (englisch, Film über den Bau von ITER).
- Teilnahme an ITER. Max-Planck-Gesellschaft zur Förderung der Wissenschaften e. V., abgerufen am 28. Januar 2020.
- Forschung für ITER. Forschungszentrum Jülich GmbH, abgerufen am 3. August 2008.
- Von Prof. McCray gesammelte Dokumente zur Frühphase von ITER (1979–1989) können im Historischen Archiv der EU in Florenz eingesehen werden.
Einzelnachweise
[Bearbeiten | Quelltext bearbeiten]- ↑ Projektplan ITER, abgerufen am 25. Juni 2017.
- ↑ a b Robert Gast: Kernfusionsreaktor Iter: Megaprojekt mit Megaverspätung. In: Die Zeit. 3. Juli 2024, ISSN 0044-2070 (zeit.de [abgerufen am 3. Juli 2024]).
- ↑ a b Michael Banks: ITER fusion reactor hit by massive decade-long delay and €5bn price hike. Physics World, 3. Juli 2024.
- ↑ iter.org: ITER & Beyond ( vom 22. September 2012 im Internet Archive), 2013. Abgerufen am 2. Januar 2013.
- ↑ K. Sonnabend: Von der Vision zur Fusion. Physik Journal 15 (2016) Nr. 3 Seite 25–29
- ↑ Malte Kreutzfeldt: Energie durch Kernfusion: Für immer ein Traum? In: Die Tageszeitung: taz. 22. August 2020, ISSN 0931-9085 (taz.de [abgerufen am 27. August 2020]).
- ↑ a b Schweizerische Eidgenossenschaft: ITER / Fusion for Energy, Cadarache (F) / Barcelona Staatssekretariat für Bildung, Forschung und Innovation SBFI (sbfi.admin.ch).
- ↑ ITER, IAEA sign deal to move nuclear fusion research forward. In: Energy Daily, 13. Oktober 2008. Abgerufen am 8. Mai 2011.
- ↑ C. Thomser et al.: Plasma Facing Materials for the JET ITER-like Wall. Fusion Science and Technology 62, 2012, S. 1–8 (PDF).
- ↑ Iter.Org: Divertor. 25. Nov 2017
- ↑ ITER Technical Basis, Kap. 2.4 Divertor. ( vom 13. Juli 2007 im Internet Archive)
- ↑ Raphael Rosen (PPPL): How would "halos" affect iter? ITER Newsline 26. März 2018.
- ↑ Nina Schwarz et al.: Vertical Forces during VDEs in an ITER plasma and the Role of Halo Currents. Nucl. Fusion 63, 2023, doi:10.1088/1741-4326/acf50a (freier Volltext).
- ↑ a b c iter.org: What will the blanket teach us? ITER Newsline, 9. September 2019.
- ↑ Eugenio Schuster: Nuclear Fusion and Radiation. Vorlesungsskript.
- ↑ a b Rodrigo Mateus et al.: Stability of beryllium-tungsten coatings under annealing up to 1273 K. Nuclear Materials and Energy, 2023, doi:10.1016/j.nme.2023.101571 (freier Volltext).
- ↑ Nuclear Engineering International: ITER reviews plans. 6. Oktober 2023.
- ↑ T Hirai (ITER Organization): Engineering of In-vessel Components for ITER. PFMC-13, Rosenheim, Mai 2011.
- ↑ U. Fischer et al.: Neutronic Analysis of ITER Diagnostic Components In: Ingrid Pleli (Hgb): Nuclear Fusion Programme: Annual Report of the Association KIT/EURATOM 2012. KIT-SR 7647, 2013, ISSN 1869-9669, eingeschränkte Vorschau in der Google-Buchsuche.
- ↑ J.-M. Martinez (ITER Organization): ITER Vacuum Vessel Load Specification. Ver. 3.3, 3. Dezember 2013.
- ↑ N. Mitchell et al.: The ITER Magnets: Design and Construction Status. IEEE Trans. Appl. Supercond. 22, 2012, doi:10.1109/TASC.2011.2174560.
- ↑ Zur Unterdrückung von ELMs (Edge Localized Modes), zu vermeidende Plasmainstabilitäten, die die Wärmeableitung überlastet
- ↑ Alexei R. Polevoi et al.: Integrated modelling of ITER scenarios with D-T Mix control. 45. EPS Conference on Plasma Physics, Prag, 2018.
- ↑ Larry R. Baylor et al.: ELM mitigation with pellet ELM triggering and implications for PFCs and plasma performance in ITER. Journal of Nuclear Materials 463, 2015, doi:10.1016/j.jnucmat.2014.09.070, (online).
- ↑ Larry R. Baylor et al.: Pellet Injection Technology and Its Applications on ITER. IEEE Transactions on Plasma Science 44, 2016, doi:10.1109/TPS.2016.2550419, (online, pdf!).
- ↑ ITER Organization: ITER Talks (4): Vacuum (ab 0:37:00) auf YouTube, 13. Dezember 2021.
- ↑ a b iter.org: Thermal shield repair. 26. Februar 2024.
- ↑ iter.org: Power Supply.
- ↑ Robert Arnoux: Feeding the Beast. ITER Newsline 219, 20. April 2012.
- ↑ IPP, Volker Rohde: Plasma-Stabilität nach Maß, abgerufen im November 2016
- ↑ R. A. Pitts (ITER, Plasma Operations): The ITER Project, 2011.
- ↑ ITER Council/Science and Technology Advisory Committee: ITER Physics Work Programme 2009–2011. 2008.
- ↑ IPP, Alexander Bock: Dauerbetrieb des Tokamaks rückt näher, abgerufen im November 2016
- ↑ Vision Fusion e. V.: ITER Standortbewerbung Greifswald (PDF; 1,9 MB), 2003. Abgerufen am 12. April 2018.
- ↑ Die deutsche Bewerbung für den Forschungsreaktor ITER ist geplatzt. Abgerufen am 15. September 2019.
- ↑ a b Mitteilung der Kommission an das Europäische Parlament und den Rat: ITER: aktueller Stand und Zukunftsperspektiven ( vom 15. Dezember 2011 im Internet Archive). Brüssel, 4. Mai 2010, KOM(2010) 226 endgültig.
- ↑ Der Spiegel, 11. Juni 2008: Fusionsreaktor: „Iter“ angeblich vor Kostenexplosion, aufgerufen am 8. Mai 2013
- ↑ Milliardenprojekt in Finanznot. Fusionsreaktor Iter wird deutlich teurer. Handelsblatt, 15. September 2008. Abgerufen am 8. Mai 2011.
- ↑ [1] online
- ↑ David Kramer: US taking a hard look at its involvement in ITER. In: Physics Today 67, 2014, S. 20–21, doi:10.1063/PT.3.2271 (online).
- ↑ The ITER story. Abgerufen am 13. Juni 2013 (englisch).
- ↑ a b Max-Planck-Institut für Plasmaphysik: Der lange Weg zu ITER (PDF; 9,5 MB), 28. Oktober 2005. Abgerufen am 24. Juni 2013.
- ↑ 2006/943/Euratom: Entscheidung der Kommission vom 17. November 2006 über die vorläufige Anwendbarkeit des Übereinkommens über die Gründung der Internationalen ITER-Fusionsenergieorganisation für die gemeinsame Durchführung des ITER-Projekts und des Übereinkommens über die Vorrechte und Immunitäten der Internationalen ITER-Fusionsenergieorganisation für die gemeinsame Durchführung des ITER-Projekts
- ↑ 2007/198/Euratom: Entscheidung des Rates vom 27. März 2007 über die Errichtung des europäischen gemeinsamen Unternehmens für den ITER und die Entwicklung der Fusionsenergie sowie die Gewährung von Vergünstigungen dafür
- ↑ iter.org: ITER Organization ( vom 19. März 2014 im Internet Archive)
- ↑ a b Bernard Bigot (Generaldirektor): Nuclear physics: Pull together for fusion. Nature 522, S. 149–151, 11. Juni 2015, doi:10.1038/522149a.
- ↑ a b Raffi Khatchadourian: How to Fix ITER. The New Yorker, 28. Februar 2014.
- ↑ Daniel Clery (Science Editor): Updated: New Review Slams Fusion Project's Management, 28. Februar 2014.
- ↑ Alexander Stirn: Politik des Sonnenofens. Süddeutsche Zeitung, 4. Mai 2013.
- ↑ iter.org: Bildserie Tokamak Komplex. 16. September 2018.
- ↑ Neil Mitchell: Status of ITER and Progress on Critical Systems. CERN, 18. Dezember 2013.
- ↑ iter.org: Winding the largest magnets on site, Dez. 2011
- ↑ iter.org: On-site Fabrication – PF Coils.
- ↑ iter.org: The Tokamak Complex. 30. Sept. 2019.
- ↑ iter.org: Last concrete pour of the Tokamak Building. 7. November 2020.
- ↑ iter.org: kommentiertes Fotoalbum von der Großbaustelle.
- ↑ iter.org: On-Site Fabrication: Cryostat. 30. Sept. 2019.
- ↑ iter.org: Erstes Spulenpaket in Europa fertiggestellt. 25. Nov 2017.
- ↑ iter.org: Erstes Spulenpaket in Japan fertiggestellt. 25. Nov. 2017.
- ↑ iter.org: ITER's largest tool can ship. 15. Mai 2017.
- ↑ ITER Org.: Vacuum Vessel Sector Sub-Assembly tool YouTube-Video, 13. November 2014.
- ↑ iter.org: First crane access to Tokamak Building. 28. März 2020.
- ↑ iter.org: Q4-24: Close up the cryostat.
- ↑ iter.org: A four-day "reverse lift". 10. Juli 2023.
- ↑ iter.org: Project Milestones. Abgerufen am 23. Juli 2022.
- ↑ iter.org: Neutral beam power supply. 20. März 2023.
- ↑ iter.org: Tritium Building – A "Formidable Adventure" Comes to an End. 18. Dezember 2023.
- ↑ Michael Kovari et al.: Tritium resources available for fusion reactors. Nucl. Fusion 58, 2018, doi:10.1088/1741-4326/aa9d25 (freier Volltext).
- ↑ Richard J. Pearson et al.: Tritium supply and use: a key issue for the development of nuclear fusion energy. Fusion Engineering and Design 136, 2018, doi:10.1016/j.fusengdes.2018.04.090 (freier Volltext).
- ↑ John Evans: The fusion industry must rise to its tritium challenge. Physics World, 20. Mai 2024.
- ↑ Davide Castelvecchi, Jeff Tollefson: US advised to stick with troubled fusion reactor ITER. Nature 534, 2016, doi:10.1038/nature.2016.19994.
- ↑ iter.org: ITR-18-003 ITER Research Plan within the Staged Approach. ITER Technical Report ITR-18-003, 17. September 2018.
- ↑ iter.org: IC-19 endorses schedule though D-T Operation. November 2016.
- ↑ Fusion For Energy (F4E), The Governing Board: Annual and Multiannual Programme 2019–2023. 12. Dezember 2018.
- ↑ Elizabeth Gibney: ITER delay: what it means for nuclear fusion. Nature News, 8. Juli 2024, doi:10.1038/d41586-024-02247-2.
- ↑ iter.org: Vacuum Technology – Finding Infinitesimal Needles in a Haystack. 15 Januar 2024.
- ↑ iter.org: Vacuum vessel repair – Where are we at? 12. Februar 2024.
- ↑ iter.org: Sector repair has started. 25. März 2024.
- ↑ An interview with ITER Director-General Bernard Bigot. ITER, 8. März 2015, abgerufen am 17. Mai 2022 (englisch).
- ↑ French scientist leading nuclear fusion project dies at 72. ABC News, 14. Mai 2022, abgerufen am 17. Mai 2022 (englisch, Agenturmeldung Associated Press).
- ↑ Pietro Barabaschi appointed Director-General of ITER Organization. Fusion for Energy, 15. September 2022, abgerufen am 22. September 2022 (englisch).
Koordinaten: 43° 42′ 32″ N, 5° 46′ 42″ O