Elektroskop
Ein Elektroskop ist ein Gerät zum Nachweis elektrischer Ladungen und Spannungen. Seine Funktionsweise beruht auf der Anziehung und Abstoßung elektrischer Ladungen und es zählt zu den elektrostatischen Spannungsmessgeräten. Ein Elektroskop mit kalibrierter Skala nennt man auch Elektrometer. Mit ihm können elektrische Ladungen und Spannungen nicht nur nachgewiesen, sondern auch gemessen werden.
Zum nahezu stromlosen Messen kleiner elektrischer Spannungen siehe auch Elektrometerverstärker. Zur leistungslosen Messung der elektrischen Feldstärke kann ein Rotationsvoltmeter (auch Feldmühle genannt) verwendet werden.
Penis
Bauformen
Zeigerelektroskop
Die einfachste Bauform ist das Zeigerelektroskop, die auch am häufigsten verwendet wird.[1] Diese Bauform wird nach ihrem Erfinder Karl Ferdinand Braun auch Braun-Elektroskop oder Braunsches Elektroskop genannt.[2] Es besteht im Wesentlichen aus einem isoliert aufgestellten Metallstab, an dem ein Metallzeiger befestigt ist, dessen Schwerpunkt unterhalb des Drehpunkts liegt. Wenn auf diese Anordnung eine elektrische Ladung gebracht wird, so stoßen sich Stab und Zeiger ab, und der Zeiger wird ausgelenkt. Je größer die Ladung ist, desto größer ist die Zeigerauslenkung.
Doppelzeiger-Elektroskop

Empfindliche Bauformen verwenden statt eines Einzelzeigers oft auch Doppelzeiger. Hierdurch kann die Rückstellkraft (Erdanziehung) des ähnlich einer Waage nahezu ausbalancierten Zeigers sehr gering gehalten werden. Dadurch wird es auch empfindlicher gegen Fremdeinflüsse, wie etwa Erschütterungen oder Luftströmungen. Doppelzeigerinstrumente sind daher meist relativ massiv aufgebaut und durch Glasplatten gekapselt.
Doppelzeiger-Elektroskope reagieren bereits auf geringe, z. B. durch Reiben von Kunststoffgegenständen an Textilien oder Fell erzeugte elektrostatische Ladungen (Reibungselektrizität). Hält man den geriebenen Kunststoffgegenstand an das Elektrometer, geht ein Teil seiner Ladung auf die Zeigeranordnung über und man beobachtet einen Zeigerausschlag.
Folien-Elektroskop
Diese auch Blättchenelektroskop genannte Bauform besteht aus einem gefalteten Gold-, Aluminium- oder Kupferfolienstreifen, der ggf. im Vakuum über einen Drahtbügel gehängt sind. Wird das Gerät aufgeladen, spreizen sich die Folienhälften v-förmig auseinander. Diese Anordnung ist ebenfalls sehr empfindlich, jedoch lässt sich daran keine Skala anbringen - die Folienstreifen sind zu leicht und flexibel und würden sich an die Skala anlegen oder von ihr gestört werden.
Die beiden Folienhälften sollen im spannungslosen Zustand einen gewissen Mindestabstand aufweisen, sodass sich die Innenflächen der Folie nicht berühren. Sie könnten ansonsten auch bei anliegender Spannung aneinander kleben bleiben, was bei einer sicherheitsrelevanten Anwendung nicht akzeptabel ist.
Der Ausschlag nimmt bei geringerer Foliendicke bzw. -masse zu. Die Folienbreite hat abgesehen von der erhöhten elektrischen Kapazität keinen Einfluss auf den Ausschlag. Die Folienlänge dagegen beeinflusst vor allem die Form und damit die Sichtbarkeit der Ausfaltung.
Faden-Elektrometer
Fadenelektrometer nach Wulf verwenden einen oder zwei mit einem Bügel leicht gespannte Fäden, die sich bei Anlegen einer Spannung spreizen.
Erdpotentialfreie (bipolare) Elektroskope
Zeiger-Elektroskope sind auch in bipolarer, d. h. symmetrischer (ungeerdeter) Ausführung herstellbar, z. B. mittels isolierter Lagerung des Zeigers zwischen zwei gegenüber Erdpotential isolierten Elektroden. Sie sind jedoch unpraktischer, da sie nach dem Prinzip der Anziehung arbeiten und die Kraft bei Annäherung ebenfalls steigt, sodass die Skalierung ungünstig eingeteilt ist. Weiterhin besteht eher die Gefahr eines Überschlags (Funke) durch den sich den Elektroden nähernden Zeiger.
Bauform nach Bohnenberger
In einer Bauform nach Bohnenberger kann man anhand der Lageänderung eines zwischen zwei Plattenelektroden hängenden Goldplättchens Spannungen vergleichen bzw. Differenzspannungen zwischen den Elektroden nachweisen. Bei einer Spannungsdifferenz entsteht ein Drehmoment, welches das Plättchen aus seiner Ruhelage (parallel zu den Platten) auslenkt und es mit seiner Ebene in Richtung der elektrischen Feldlinien ausrichtet. Die Länge des elektrischen Feldes zwischen den Platten wird verkürzt. Bohnenbergers Gerät ist somit ein Vergleicher - eine Skala ist auch in diesem Gerät nicht realisierbar, da sie das Feld stören würde.
Flatterblatt-Elektroskop

Das Flatterblatt-Elektroskop ist eine Variante des Zamboni-Pendels und gehört wie dieses zu den elektrostatischen Pendeln. Da dieses Gerät wie jene Ladungen transportiert, arbeitet es nicht leistungslos und gehört somit eigentlich nicht zu den elektrostatischen Messgeräten. Beim Flatterblatt-Elektroskop handelt es sich um einen mit Luft isolierten senkrecht stehenden Kondensator, zwischen dessen gegen Erde isolierten Platten ein rechteckiges Metallplättchen elektrisch isoliert auf seiner unteren Kante steht. Wenn das Plättchen zu einer der Kondensatorplatten kippt, dann nimmt es deren Ladung an, und wird deshalb vom elektrostatischen Feld zur anderen Platte hin gekippt, wo sich seine Ladung und seine Bewegungsrichtung wieder umkehren.
Kapillarelektrometer
Diese Bauform nutzt als Messprinzip die physikalische Eigenschaft der Oberflächenspannung einer Quecksilbersäule in einem Kapillarröhrchen, die oben mit verdünnter Schwefelsäure bedeckt ist. → Kapillarelektrometer
Energiebilanz
Elektrometer arbeiten mechanisch, der Zeigerausschlag bedeutet mechanische Arbeit. Daraus folgt, dass bei Betrieb des Geräts elektrische Energie in das Gerät hineingeflossen sein muss. Die meiste Energie steckt in der Ladung des Aufbaues (der Eigenkapazität) und wird nicht umgewandelt. Ein Teil wird jedoch zu kinetischer Energie (Zeiger bewegt sich) und potentieller Energie (Zeigerausschlag). Während die potentielle Energie bei Entladung wieder in elektrische Energie umgewandelt wird, kann die kinetische Energie durch unelastische Stöße, Luft- und Lagerreibung in Wärme verwandelt werden. Ein Teil der Energie kann auch in die plastische Verformung der Folien fließen.
Der Stromfluss der Ladungsverschiebung verursacht aufgrund des vergleichsweise geringen elektrischen Widerstandes der Zeiger und der Aufhängung dagegen keine nennenswerten Verluste. Der Stromfluss bewirkt auch ein magnetisches Feld - auch dieses spielt jedoch für die Energiebilanz keine Rolle.
Die ständig auch im stationären Zustand verlorengehende Energie wird durch die Leckströme abgeführt. Diese umfassen einerseits Ströme durch die nicht idealen Isolatoren (Wärme) und andererseits Ladungsverluste durch ionisierte, sich entfernende und rekombinierende Luft- und Wassermoleküle sowie Staubpartikel.
Historische Bedeutung

Die Entdeckung des Radiums und Poloniums gelang Marie und Pierre Curie mit Hilfe eines einfachen Elektroskops. Dieses zeigt nicht direkt die ionisierende Strahlung, die Geschwindigkeit der Entladung wird jedoch durch ionisierende Strahlung und die damit verbundene Zunahme der Leitfähigkeit der Luft beschleunigt. Damit sind Rückschlüsse auf die Radioaktivität möglich. Dieses Prinzip wird z. B. in Dosimetern verwendet.
Auch Messungen der Luftelektrizität (Feldstärke in der Atmosphäre, mit oder ohne Gewitter) sowie Experimente mit Ultraviolettstrahlung wurden mit Elektrometern durchgeführt.
Siehe auch
- Influenzmaschine
- Elektrofeldmeter
- Ladungsverstärker
- Rotationsvoltmeter (auch Feldmühle genannt)
Weblinks
- Historisches Elektrometer im virtuellen Museum der Wissenschaft
- Physik, 12 E-Felder - Aufbau und Funktionsweise von einem Elektroskop Animation zur Funktionsweise des Elektroskops
Einzelnachweise
- ↑ Reinhart Weber: Physik, Teil I: Klassische Physik — Experimentelle und theoretische Grundlagen, S. 326.
- ↑ Sven H. Pfleger: Aus dem Physiksaal: Grundlagen und Experimente der klassischen Schulphysik, S. 172. Teilweise online verfügbar bei Google-Books.