Jump to content

Turing's method

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In mathematics, Turing's method is used to verify that for any given Gram point gm there lie m + 1 zeros of ζ(s), in the region 0 < Im(s) < Im(gm), where ζ(s) is the Riemann zeta function.[1] It was discovered by Alan Turing and published in 1953,[2] although that proof contained errors and a correction was published in 1970 by R. Sherman Lehman.[3]

For every integer i with i < n we find a list of Gram points and a complementary list , where gi is the smallest number such that

where Z(t) is the Hardy Z function. Note that gi may be negative or zero. Assuming that and there exists some integer k such that , then if

and

Then the bound is achieved and we have that there are exactly m + 1 zeros of ζ(s), in the region 0 < Im(s) < Im(gm).

References

  1. ^ Edwards, H. M. (1974). Riemann's zeta function. Pure and Applied Mathematics. Vol. 58. New York-London: Academic Press. ISBN 0-12-232750-0. Zbl 0315.10035.
  2. ^ Turing, A. M. (1953). "Some Calculations of the Riemann Zeta-Function". Proceedings of the London Mathematical Society. s3-3 (1): 99–117. doi:10.1112/plms/s3-3.1.99.
  3. ^ Lehman, R. S. (1970). "On the Distribution of Zeros of the Riemann Zeta-Function". Proceedings of the London Mathematical Society. s3-20 (2): 303–320. doi:10.1112/plms/s3-20.2.303.