Jump to content

Relative effective Cartier divisor

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by TakuyaMurata (talk | contribs) at 01:22, 7 November 2017 (An effective Cartier divisor as the zero-locus of a section of a line bundle). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In algebraic geometry, an effective Cartier divisor in a scheme X over a ring R is a closed subscheme D of X that (1) is flat over R and (2) the ideal sheaf of D is locally free of rank one (i.e., invertible sheaf). Equivalently, a closed subscheme D of X is an effective Cartier divisor if there is an open affine cover of X and nonzerodivisors such that the intersection is given by the equation (called local equations) and its ideal sheaf is flat over R and such that they are compatible.

An effective Cartier divisor as the zero-locus of a section of a line bundle

Let L be a line bundle on X and s a section of it such that (in other words, s is a -regular element for any open subset U.)

Choose some open cover of X such that . For each i, through the isomorphisms, the restriction corresponds to a nonzerodivisor of . Now, define the closed subscheme of X (called the zero-locus of the section s) by

where the right-hand side means the closed subscheme of given by the ideal sheaf generated by . This is well-defined (i.e., they agree on the overlaps) since is a unit element. For the similar reason, the closed subscheme is independent of the choice of local trivializations.

This construction actually exhausts all effective Cartier divisors on X as follows. Let D be an effective Cartier divisor and denote the ideal sheaf of D. Because of flatness, taking of gives the exact sequence

In particular, 1 in can be identified with a section in , which we denote by .

Now we can repeat the early argument with . Since D is an effective Cartier divisor, D is locally of the form on for some nonzerodivisor f in A. The trivialization is given by multiplication by f; in particular, 1 corresponds to f. Hence, the zero-locus of is D.

Properties

  • If D and D' are effective Cartier divisors, then the sum is the effective Cartier divisor defined locally as if f, g give local equations for D and D' .
  • If D is an effective Cartier divisor and is a ring homomorphism, then is an effective Cartier divisor in .
  • If D is an effective Cartier divisor and a flat morphism over R, then is an effective Cartier divisor in X' with the ideal sheaf .

Taking of gives the exact sequence

.

This allows one to see global sections of as global sections of . In particular, the constant 1 on X can be thought of as a section of and D is then the zero locus of this section. Conversely, if is a line bundle on X and s a global section of it that is a nonzerodivisor on and if is flat over R, then defines an effective Cartier divisor whose ideal sheaf is isomorphic to the inverse of L.

Effective Cartier divisors on a relative curve

From now on suppose X is a smooth curve (still over R). Let D be an effective Cartier divisor in X and assume it is proper over R (which is immediate if X is proper.) Then is a locally free R-module of finite rank. This rank is called the degree of D and is denoted by . It is a locally constant function on . If D and D' are proper effective Cartier divisors, then is proper over R and . Let be a finite flat morphism. Then .[1] On the other hand, a base change does not change degree: .[2]

A closed subscheme D of X is finite, flat and of finite presentation if and only if it is an effective Cartier divisor that is proper over R.[3]

Notes

  1. ^ Katz–Mazur 1985, Lemma 1.2.8.
  2. ^ Katz–Mazur 1985, Lemma 1.2.9.
  3. ^ Katz–Mazur 1985, Lemma 1.2.3.

References

  • Katz, Nicholas M; Mazur, Barry (1985). Arithmetic Moduli of Elliptic Curves. Princeton University Press. ISBN 0-691-08352-5.