Symmetric tensor
In mathematics, a symmetric tensor is tensor that is invariant under a permutation of its vector arguments:
for every permutation σ of the symbols {1,2,...,r}. Alternatively, an rth order symmetric tensor represented in coordinates as a quantity with r indices satisfies
The space of symmetric tensors of rank r on a finite dimensional vector space is naturally isomorphic to the dual of the space of homogeneous polynomials of degree r on V. Over fields of characteristic zero, the graded vector space of all symmetric tensors can be naturally identified with the symmetric algebra on V. A related concept is that of the antisymmetric tensor or alternating form. Symmetric tensors occur widely in engineering, physics and mathematics.
Definition
Let V be a vector space and
a tensor of order k. Then T is a symmetric tensor if
for the braiding maps associated to every permutation σ on the symbols {1,2,...,k} (or equivalently for every transposition on these symbols).
Given a basis {ei} of V, any symmetric tensor T of rank k can be written as
for some unique list of coefficients (the components of the tensor in the basis) that are symmetric on the indices. That is to say
for every permutation σ.
The space of all symmetric tensors of order k defined on V is often denoted by Sk(V) or Symk(V). It is itself a vector space, and if V has dimension N then the dimension of Symk(V) is the binomial coefficient
We then construct Sym(V) as the direct sum of Symk(V) for k = 0,1,2,…
Examples
Many material properties and fields used in physics and engineering can be represented as symmetric tensor fields; for example: stress, strain, and anisotropic conductivity. Also, in diffusion MRI one often uses symmetric tensors to describe diffusion in the brain or other parts of the body.
Ellipsoids are examples of algebraic varieties; and so, for general rank, symmetric tensors, in the guise of homogeneous polynomials, are used to define projective varieties, and are often studied as such.
Symmetric part of a tensor
Suppose is a vector space over a field of characteristic 0. If T∈V⊗k is a tensor of order , then the symmetric part of is the symmetric tensor defined by
the summation extending over the symmetric group on k symbols. In terms of a basis, and employing the Einstein summation convention, if
then
The components of the tensor appearing on the right are often denoted by
with parentheses around the indices which have been symmetrized. [Square brackets are used to indicate anti-symmetrization.]
Symmetric product
If T is a simple tensor, given as a pure tensor product
then the symmetric part of T is the symmetric product of the factors:
In general we can turn Sym(V) into an algebra by defining the commutative and associative product ''[1]. Given two tensors T1∈Symk1(V) and T2∈Symk2(V), we use the symmetrization operator to define:
It can be verified (as is done by Kostrikin and Manin[1]) that the resulting product is in fact commutative and associative. In some cases the operator is not written at all: T1T2 = T1T2.
In some cases an exponential notation is used:
Or simply:
Decomposition
For symmetric tensors of arbitrary order k, decompositions
are also possible. The minimum number r for which such a decomposition is possible is the symmetric rank of T[2]. For second order tensors this corresponds to the rank of the matrix representing the tensor in any basis, and it is well-known that the maximum rank is equal to the dimension of the underlying vector space. However, for higher orders this need not hold: the rank can be higher than the number of dimensions in the underlying vector space. The higher-order singular value decomposition of a symmetric tensor is a special decomposition of this form [2] (often called the canonical decomposition.)
See also
- antisymmetric tensor
- Ricci calculus
- Schur polynomial
- symmetric polynomial
- transpose
- Young symmetrizer
Notes
- ^ a b Kostrikin, Alexei I.; Manin, Iurii Ivanovich (1997). Linear algebra and geometry. Algebra, Logic and Applications. Vol. 1. Gordon and Breach. pp. 276--279. ISBN 9056990497.
- ^ a b Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1137/060661569, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with
|doi=10.1137/060661569
instead.
References
- Bourbaki, Nicolas (1989), Elements of mathematics, Algebra I, Springer-Verlag, ISBN 3-540-64243-9.
- Bourbaki, Nicolas (1990), Elements of mathematics, Algebra II, Springer-Verlag, ISBN 3-540-19375-8.
- Greub, Werner Hildbert (1967), Multilinear algebra, Die Grundlehren der Mathematischen Wissenschaften, Band 136, Springer-Verlag New York, Inc., New York, MR0224623.
- Sternberg, Shlomo (1983), Lectures on differential geometry, New York: Chelsea, ISBN 978-0-8284-0316-0.
External links
- Cesar O. Aguilar, The Dimension of Symmetric k-tensors