Jump to content

Talk:Developable surface

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Geometry guy (talk | contribs) at 21:33, 3 June 2007 (Add maths rating/Comments using AWB). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
WikiProject iconMathematics Stub‑class Low‑priority
WikiProject iconThis article is within the scope of WikiProject Mathematics, a collaborative effort to improve the coverage of mathematics on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.
StubThis article has been rated as Stub-class on Wikipedia's content assessment scale.
LowThis article has been rated as Low-priority on the project's priority scale.
In mathematics, a developable surface is a surface with zero Gaussian curvature.

Wondering if having everywhere zero curvature implies that the surface is developable? If so is their a proof of the result? --Salix alba (talk) 19:55, 27 February 2007 (UTC)[reply]