https://de.wikipedia.org/w/index.php?action=history&feed=atom&title=Robuste_Optimierung Robuste Optimierung - Versionsgeschichte 2025-05-29T23:12:03Z Versionsgeschichte dieser Seite in Wikipedia MediaWiki 1.45.0-wmf.3 https://de.wikipedia.org/w/index.php?title=Robuste_Optimierung&diff=251412023&oldid=prev Qajnen: /* growthexperiments-addlink-summary-summary:1|1|0 */ 2024-12-20T12:59:05Z <p>Linkvorschlag-Funktion: 1 Link hinzugefügt.</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="de"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Nächstältere Version</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Version vom 20. Dezember 2024, 14:59 Uhr</td> </tr><tr> <td colspan="2" class="diff-lineno">Zeile 16:</td> <td colspan="2" class="diff-lineno">Zeile 16:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Für den Fall, dass der Parameterraum &lt;math&gt;P&lt;/math&gt; endlich ist und damit nur aus endlich vielen Elementen besteht, ist dieses Robuste Optimierungsproblem selber ein lineares Optimierungsproblem: Für jedes Paar &lt;math&gt;(c,d)\in P&lt;/math&gt; gibt es eine lineare Nebenbedingung &lt;math&gt;cx + dy \le 10&lt;/math&gt;.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Für den Fall, dass der Parameterraum &lt;math&gt;P&lt;/math&gt; endlich ist und damit nur aus endlich vielen Elementen besteht, ist dieses Robuste Optimierungsproblem selber ein lineares Optimierungsproblem: Für jedes Paar &lt;math&gt;(c,d)\in P&lt;/math&gt; gibt es eine lineare Nebenbedingung &lt;math&gt;cx + dy \le 10&lt;/math&gt;.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Für den Fall, dass &lt;math&gt;P&lt;/math&gt; nicht eine endliche Menge ist, ist dieses Problem ein lineares, semi-infinites Optimierungsproblem, also ein lineares Optimierungsproblem mit endlich vielen (zwei) Entscheidungsvariablen und unendlich vielen Nebenbedingungen.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Für den Fall, dass &lt;math&gt;P&lt;/math&gt; nicht eine <ins style="font-weight: bold; text-decoration: none;">[[</ins>endliche Menge<ins style="font-weight: bold; text-decoration: none;">]]</ins> ist, ist dieses Problem ein lineares, semi-infinites Optimierungsproblem, also ein lineares Optimierungsproblem mit endlich vielen (zwei) Entscheidungsvariablen und unendlich vielen Nebenbedingungen.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Klassifizierung ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Klassifizierung ==</div></td> </tr> </table> Qajnen https://de.wikipedia.org/w/index.php?title=Robuste_Optimierung&diff=240097232&oldid=prev BumbleMath: Link hinzugefügt 2023-12-11T17:51:55Z <p>Link hinzugefügt</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="de"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Nächstältere Version</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Version vom 11. Dezember 2023, 19:51 Uhr</td> </tr><tr> <td colspan="2" class="diff-lineno">Zeile 1:</td> <td colspan="2" class="diff-lineno">Zeile 1:</td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>'''Robuste Optimierung''' ist ein Gebiet der [[Optimierung (Mathematik)|Optimierung in der Mathematik]]. Dabei geht es um Optimierungsprobleme, in denen nach Stabilität gegenüber Unsicherheit und/oder Variabilität in den Werten der Problemparameter gestrebt wird.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>'''Robuste Optimierung''' ist ein Gebiet der [[Optimierung (Mathematik)|Optimierung in der Mathematik]]. Dabei geht es um <ins style="font-weight: bold; text-decoration: none;">[[Optimierungsproblem|</ins>Optimierungsprobleme<ins style="font-weight: bold; text-decoration: none;">]]</ins>, in denen nach Stabilität gegenüber Unsicherheit und/oder Variabilität in den Werten der Problemparameter gestrebt wird.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Geschichte ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Geschichte ==</div></td> </tr> </table> BumbleMath https://de.wikipedia.org/w/index.php?title=Robuste_Optimierung&diff=215466433&oldid=prev Horst Gräbner: hier kein Leerzeichen 2021-09-10T08:05:19Z <p>hier kein Leerzeichen</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="de"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Nächstältere Version</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Version vom 10. September 2021, 10:05 Uhr</td> </tr><tr> <td colspan="2" class="diff-lineno">Zeile 20:</td> <td colspan="2" class="diff-lineno">Zeile 20:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Klassifizierung ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Klassifizierung ==</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Es gibt eine Reihe von Klassifizierungskriterien für Probleme bzw. Modelle der Robusten Optimierung. So ist z. B. eine Unterscheidung zwischen Problemen mit '''lokalen''' oder '''globalen''' Robustheitsmodellen möglich, oder auch zwischen '''[[Stochastik|stochastischen]]''' und '''nichtstochastischen''' Robustheitsmodellen. Moderne Verfahren der Robusten Optimierung sind vor allem auf nichtstochastischen Robustheitsmodellen aufgebaut, die sich am '''schlimmsten''' (Worst-Case-)<del style="font-weight: bold; text-decoration: none;"> </del>Fall orientieren.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Es gibt eine Reihe von Klassifizierungskriterien für Probleme bzw. Modelle der Robusten Optimierung. So ist z. B. eine Unterscheidung zwischen Problemen mit '''lokalen''' oder '''globalen''' Robustheitsmodellen möglich, oder auch zwischen '''[[Stochastik|stochastischen]]''' und '''nichtstochastischen''' Robustheitsmodellen. Moderne Verfahren der Robusten Optimierung sind vor allem auf nichtstochastischen Robustheitsmodellen aufgebaut, die sich am '''schlimmsten''' (Worst-Case-)Fall orientieren.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Lokale Robustheit ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Lokale Robustheit ==</div></td> </tr> </table> Horst Gräbner https://de.wikipedia.org/w/index.php?title=Robuste_Optimierung&diff=215464345&oldid=prev Klugwiebrot am 10. September 2021 um 06:24 Uhr 2021-09-10T06:24:18Z <p></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="de"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Nächstältere Version</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Version vom 10. September 2021, 08:24 Uhr</td> </tr><tr> <td colspan="2" class="diff-lineno">Zeile 20:</td> <td colspan="2" class="diff-lineno">Zeile 20:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Klassifizierung ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Klassifizierung ==</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Es gibt eine Reihe von Klassifizierungskriterien für Probleme bzw. Modelle der Robusten Optimierung. So ist z. B. eine Unterscheidung zwischen Problemen mit '''lokalen''' oder '''globalen''' Robustheitsmodellen möglich, oder auch zwischen '''[[Stochastik|stochastischen]]''' und '''nichtstochastischen''' Robustheitsmodellen. Moderne Verfahren der Robusten Optimierung sind vor allem auf nichtstochastischen Robustheitsmodellen aufgebaut, die sich am '''schlimmsten''' (Worst-Case-)Fall orientieren.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Es gibt eine Reihe von Klassifizierungskriterien für Probleme bzw. Modelle der Robusten Optimierung. So ist z. B. eine Unterscheidung zwischen Problemen mit '''lokalen''' oder '''globalen''' Robustheitsmodellen möglich, oder auch zwischen '''[[Stochastik|stochastischen]]''' und '''nichtstochastischen''' Robustheitsmodellen. Moderne Verfahren der Robusten Optimierung sind vor allem auf nichtstochastischen Robustheitsmodellen aufgebaut, die sich am '''schlimmsten''' (Worst-Case-)<ins style="font-weight: bold; text-decoration: none;"> </ins>Fall orientieren.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Lokale Robustheit ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Lokale Robustheit ==</div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Zeile 40:</td> <td colspan="2" class="diff-lineno">Zeile 40:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>wobei &lt;math&gt;U&lt;/math&gt; die Menge aller ''möglichen'' Werte von &lt;math&gt;u&lt;/math&gt; bezeichnet, die in Frage kommen.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>wobei &lt;math&gt;U&lt;/math&gt; die Menge aller ''möglichen'' Werte von &lt;math&gt;u&lt;/math&gt; bezeichnet, die in Frage kommen.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Dies ist ein ''globales'' robustes Optimierungsproblem <del style="font-weight: bold; text-decoration: none;">dahingegen</del>, dass die robuste Nebenbedingung &lt;math&gt;g(x,u)\le b, \forall u\in U&lt;/math&gt; alle ''möglichen'' Werte von &lt;math&gt;u&lt;/math&gt; betrachtet.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Dies ist ein ''globales'' robustes Optimierungsproblem <ins style="font-weight: bold; text-decoration: none;">dahingehend</ins>, dass die robuste Nebenbedingung &lt;math&gt;g(x,u)\le b, \forall u\in U&lt;/math&gt; alle ''möglichen'' Werte von &lt;math&gt;u&lt;/math&gt; betrachtet.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Die Schwierigkeit bei solch einer ''globalen'' Nebenbedingung besteht darin, dass eine Situation auftreten kann, in der es kein &lt;math&gt;x\in X&lt;/math&gt; gibt, dass diese Nebenbedingung erfüllt. Selbst wenn solch ein &lt;math&gt;x\in X&lt;/math&gt; existiert, kann die Nebenbedingung selber zu ''konservativ'' sein. Sie kann dazu führen, dass die Lösung &lt;math&gt;x\in X&lt;/math&gt; nur zu einem kleinen Zielfunktionswert &lt;math&gt;f(x)&lt;/math&gt; führt, der jedoch nicht repräsentativ für andere Lösungen &lt;math&gt;x\in X&lt;/math&gt; steht. Es könnte zum Beispiel ein &lt;math&gt;x'\in X&lt;/math&gt; geben, <del style="font-weight: bold; text-decoration: none;">dass</del> die robuste Nebenbedingung nur ganz leicht verletzt, aber einen viel größeren Zielfunktionswert &lt;math&gt;f(x')\in X&lt;/math&gt; erreicht. In diesen Fällen kann es notwendig sein, die robuste Nebenbedingung etwas aufzuweichen und/oder die Formulierung des Problems zu ändern.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Die Schwierigkeit bei solch einer ''globalen'' Nebenbedingung besteht darin, dass eine Situation auftreten kann, in der es kein &lt;math&gt;x\in X&lt;/math&gt; gibt, dass diese Nebenbedingung erfüllt. Selbst wenn solch ein &lt;math&gt;x\in X&lt;/math&gt; existiert, kann die Nebenbedingung selber zu ''konservativ'' sein. Sie kann dazu führen, dass die Lösung &lt;math&gt;x\in X&lt;/math&gt; nur zu einem kleinen Zielfunktionswert &lt;math&gt;f(x)&lt;/math&gt; führt, der jedoch nicht repräsentativ für andere Lösungen &lt;math&gt;x\in X&lt;/math&gt; steht. Es könnte zum Beispiel ein &lt;math&gt;x'\in X&lt;/math&gt; geben, <ins style="font-weight: bold; text-decoration: none;">das</ins> die robuste Nebenbedingung nur ganz leicht verletzt, aber einen viel größeren Zielfunktionswert &lt;math&gt;f(x')\in X&lt;/math&gt; erreicht. In diesen Fällen kann es notwendig sein, die robuste Nebenbedingung etwas aufzuweichen und/oder die Formulierung des Problems zu ändern.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Beispiel ===</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Beispiel ===</div></td> </tr> </table> Klugwiebrot https://de.wikipedia.org/w/index.php?title=Robuste_Optimierung&diff=199578094&oldid=prev Lilith.Renoyan am 3. Mai 2020 um 15:25 Uhr 2020-05-03T15:25:15Z <p></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="de"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Nächstältere Version</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Version vom 3. Mai 2020, 17:25 Uhr</td> </tr><tr> <td colspan="2" class="diff-lineno">Zeile 2:</td> <td colspan="2" class="diff-lineno">Zeile 2:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Geschichte ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Geschichte ==</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Die Ursprünge der Robusten Optimierung gehen zurück auf die Begründung der modernen [[Entscheidungstheorie]] in den 1950er Jahren. Dabei wurden '''Worst-Case-Analysen''' entwickelt, um mit hohen Unsicherheiten umgehen zu können. Robuste Optimierung wurde in den 70er Jahren zu einem eigenen Forschungsgebiet mit verschiedenen Entwicklungen in Gebieten wie [[Operations Research]], [[Kontrolltheorie]], [[Statistik]], [[Wirtschaftswissenschaft]] u. a.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Die Ursprünge der Robusten Optimierung gehen zurück auf die Begründung der modernen [[Entscheidungstheorie]] in den 1950er Jahren. Dabei wurden '''Worst-Case-Analysen''' entwickelt, um mit hohen Unsicherheiten umgehen zu können. Robuste Optimierung wurde in den 70er Jahren zu einem eigenen Forschungsgebiet mit verschiedenen Entwicklungen in Gebieten wie [[Operations Research]], [[Kontrolltheorie]], [[Statistik]], [[Wirtschaftswissenschaft]] u. a.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-lineno">Zeile 59:</td> <td colspan="2" class="diff-lineno">Zeile 60:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Die beschriebene Bedeutung von Globaler Robustheit wird in der Praxis nicht oft verwendet, da die dadurch entstehenden robusten Optimierungsprobleme normalerweise (jedoch nicht immer) sehr schwer zu lösen sind.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Die beschriebene Bedeutung von Globaler Robustheit wird in der Praxis nicht oft verwendet, da die dadurch entstehenden robusten Optimierungsprobleme normalerweise (jedoch nicht immer) sehr schwer zu lösen sind.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>== <del style="font-weight: bold; text-decoration: none;">Bibliographie</del> ==</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>== <ins style="font-weight: bold; text-decoration: none;">Literatur</ins> ==</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* Armin Scholl: ''Robuste Planung und Optimierung<del style="font-weight: bold; text-decoration: none;">:</del> Grundlagen<del style="font-weight: bold; text-decoration: none;"> –</del> Konzepte und Methoden<del style="font-weight: bold; text-decoration: none;"> –</del> experimentelle Untersuchungen.'' Heidelberg 2001, ISBN <del style="font-weight: bold; text-decoration: none;">3790814083</del></div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* <ins style="font-weight: bold; text-decoration: none;">[[</ins>Armin Scholl<ins style="font-weight: bold; text-decoration: none;"> (Wirtschaftswissenschaftler)|Armin Scholl]]</ins>: ''Robuste Planung und Optimierung<ins style="font-weight: bold; text-decoration: none;">.</ins> Grundlagen<ins style="font-weight: bold; text-decoration: none;">,</ins> Konzepte und Methoden<ins style="font-weight: bold; text-decoration: none;">,</ins> experimentelle Untersuchungen.''<ins style="font-weight: bold; text-decoration: none;"> Physica-Verlag,</ins> Heidelberg 2001, ISBN <ins style="font-weight: bold; text-decoration: none;">3-7908-1408-3 (zugl. Dissertation, TU Darmstadt).</ins></div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Kategorie:Optimierung]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Kategorie:Optimierung]]</div></td> </tr> </table> Lilith.Renoyan https://de.wikipedia.org/w/index.php?title=Robuste_Optimierung&diff=198256785&oldid=prev Aka: Halbgeviertstrich, Leerzeichen in Überschrift, Kleinkram 2020-03-30T09:29:38Z <p>Halbgeviertstrich, Leerzeichen in Überschrift, Kleinkram</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="de"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Nächstältere Version</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Version vom 30. März 2020, 11:29 Uhr</td> </tr><tr> <td colspan="2" class="diff-lineno">Zeile 1:</td> <td colspan="2" class="diff-lineno">Zeile 1:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Robuste Optimierung''' ist ein Gebiet der [[Optimierung (Mathematik)|Optimierung in der Mathematik]]. Dabei geht es um Optimierungsprobleme, in denen nach Stabilität gegenüber Unsicherheit und/oder Variabilität in den Werten der Problemparameter gestrebt wird.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Robuste Optimierung''' ist ein Gebiet der [[Optimierung (Mathematik)|Optimierung in der Mathematik]]. Dabei geht es um Optimierungsprobleme, in denen nach Stabilität gegenüber Unsicherheit und/oder Variabilität in den Werten der Problemparameter gestrebt wird.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>==Geschichte==</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>==<ins style="font-weight: bold; text-decoration: none;"> </ins>Geschichte<ins style="font-weight: bold; text-decoration: none;"> </ins>==</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Die Ursprünge der Robusten Optimierung gehen zurück auf die Begründung der modernen [[Entscheidungstheorie]] in den 1950er Jahren. Dabei wurden '''Worst-Case-Analysen''' entwickelt, um mit hohen Unsicherheiten umgehen zu können. Robuste Optimierung wurde in den 70er Jahren zu einem eigenen Forschungsgebiet mit verschiedenen Entwicklungen in Gebieten wie [[Operations Research]], [[Kontrolltheorie]], [[Statistik]], [[Wirtschaftswissenschaft]] u. a.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Die Ursprünge der Robusten Optimierung gehen zurück auf die Begründung der modernen [[Entscheidungstheorie]] in den 1950er Jahren. Dabei wurden '''Worst-Case-Analysen''' entwickelt, um mit hohen Unsicherheiten umgehen zu können. Robuste Optimierung wurde in den 70er Jahren zu einem eigenen Forschungsgebiet mit verschiedenen Entwicklungen in Gebieten wie [[Operations Research]], [[Kontrolltheorie]], [[Statistik]], [[Wirtschaftswissenschaft]] u. a.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>== Beispiel ==<del style="font-weight: bold; text-decoration: none;"> </del></div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>== Beispiel ==</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Gegeben sei das einfache [[Lineare Optimierung|lineare Optimierungsproblem]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Gegeben sei das einfache [[Lineare Optimierung|lineare Optimierungsproblem]]</div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Zeile 11:</td> <td colspan="2" class="diff-lineno">Zeile 11:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>mit &lt;math&gt;P&lt;/math&gt; als Untermenge von &lt;math&gt;\mathbb{R}^{2}&lt;/math&gt;.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>mit &lt;math&gt;P&lt;/math&gt; als Untermenge von &lt;math&gt;\mathbb{R}^{2}&lt;/math&gt;.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Die Bedingung &lt;math&gt;\forall (c,d)\in P&lt;/math&gt; in den Nebenbedingungen macht dieses Problem zu einem 'robusten' Problem. Sie bedeutet, dass für jedes Paar &lt;math&gt;(x,y)&lt;/math&gt; die Nebenbedingungen &lt;math&gt;cx + dy \le 10&lt;/math&gt; für den 'schlimmsten' Fall von &lt;math&gt;(c,d)\in P&lt;/math&gt; gelten muss, also auch für das Paar &lt;math&gt;(c,d)\in P&lt;/math&gt;, das den Wert von &lt;math&gt;cx + dy&lt;/math&gt; für gegebene &lt;math&gt;(x,y)&lt;/math&gt; maximiert.<del style="font-weight: bold; text-decoration: none;"> </del></div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Die Bedingung &lt;math&gt;\forall (c,d)\in P&lt;/math&gt; in den Nebenbedingungen macht dieses Problem zu einem 'robusten' Problem. Sie bedeutet, dass für jedes Paar &lt;math&gt;(x,y)&lt;/math&gt; die Nebenbedingungen &lt;math&gt;cx + dy \le 10&lt;/math&gt; für den 'schlimmsten' Fall von &lt;math&gt;(c,d)\in P&lt;/math&gt; gelten muss, also auch für das Paar &lt;math&gt;(c,d)\in P&lt;/math&gt;, das den Wert von &lt;math&gt;cx + dy&lt;/math&gt; für gegebene &lt;math&gt;(x,y)&lt;/math&gt; maximiert.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Für den Fall, dass der Parameterraum &lt;math&gt;P&lt;/math&gt; endlich ist und damit nur aus endlich vielen Elementen besteht, ist dieses Robuste Optimierungsproblem selber ein lineares Optimierungsproblem: Für jedes Paar &lt;math&gt;(c,d)\in P&lt;/math&gt; gibt es eine lineare Nebenbedingung &lt;math&gt;cx + dy \le 10&lt;/math&gt;.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Für den Fall, dass der Parameterraum &lt;math&gt;P&lt;/math&gt; endlich ist und damit nur aus endlich vielen Elementen besteht, ist dieses Robuste Optimierungsproblem selber ein lineares Optimierungsproblem: Für jedes Paar &lt;math&gt;(c,d)\in P&lt;/math&gt; gibt es eine lineare Nebenbedingung &lt;math&gt;cx + dy \le 10&lt;/math&gt;.</div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Zeile 27:</td> <td colspan="2" class="diff-lineno">Zeile 27:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>: &lt;math&gt;\hat{\rho}(x,\hat{u}):= \max_{\rho\ge 0}\ \{\rho: u\in S(x), \forall u\in B(\rho,\hat{u})\}&lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>: &lt;math&gt;\hat{\rho}(x,\hat{u}):= \max_{\rho\ge 0}\ \{\rho: u\in S(x), \forall u\in B(\rho,\hat{u})\}&lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>mit &lt;math&gt;\hat{u}&lt;/math&gt; als dem nominalen Wert des Parameters, &lt;math&gt;B(\rho,\hat{u})&lt;/math&gt; als eine Kugel mit Radius &lt;math&gt;\rho&lt;/math&gt;, die zentriert ist im Punkt &lt;math&gt;\hat{u}&lt;/math&gt;, und &lt;math&gt;S(x)&lt;/math&gt; als die Menge an Werten von &lt;math&gt;u&lt;/math&gt;, die die für die Entscheidung &lt;math&gt;x&lt;/math&gt; gegebenen Stabilitäts- bzw. Effizienzeigenschaften erfüllen.<del style="font-weight: bold; text-decoration: none;"> </del></div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>mit &lt;math&gt;\hat{u}&lt;/math&gt; als dem nominalen Wert des Parameters, &lt;math&gt;B(\rho,\hat{u})&lt;/math&gt; als eine Kugel mit Radius &lt;math&gt;\rho&lt;/math&gt;, die zentriert ist im Punkt &lt;math&gt;\hat{u}&lt;/math&gt;, und &lt;math&gt;S(x)&lt;/math&gt; als die Menge an Werten von &lt;math&gt;u&lt;/math&gt;, die die für die Entscheidung &lt;math&gt;x&lt;/math&gt; gegebenen Stabilitäts- bzw. Effizienzeigenschaften erfüllen.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Die Robustheit (bzw. der Stabilitätsradius) der Entscheidung &lt;math&gt;x&lt;/math&gt; ist damit der Radius der größten Kugel, die zentriert ist im Punkt &lt;math&gt;\hat{u}&lt;/math&gt;, von der alle Elemente die Stabilitätskriterien von &lt;math&gt;x&lt;/math&gt; erfüllen.<del style="font-weight: bold; text-decoration: none;"> </del></div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Die Robustheit (bzw. der Stabilitätsradius) der Entscheidung &lt;math&gt;x&lt;/math&gt; ist damit der Radius der größten Kugel, die zentriert ist im Punkt &lt;math&gt;\hat{u}&lt;/math&gt;, von der alle Elemente die Stabilitätskriterien von &lt;math&gt;x&lt;/math&gt; erfüllen.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>== Globale Robustheit==</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>== Globale Robustheit<ins style="font-weight: bold; text-decoration: none;"> </ins>==</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Gegeben sei das robuste Optimierungsproblem</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Gegeben sei das robuste Optimierungsproblem</div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Zeile 37:</td> <td colspan="2" class="diff-lineno">Zeile 37:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>: &lt;math&gt;\max_{x\in X}\ \{f(x): g(x,u)\le b, \forall u\in U\}&lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>: &lt;math&gt;\max_{x\in X}\ \{f(x): g(x,u)\le b, \forall u\in U\}&lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>wobei &lt;math&gt;U&lt;/math&gt; die Menge aller ''möglichen'' Werte von &lt;math&gt;u&lt;/math&gt; bezeichnet, die in Frage kommen.<del style="font-weight: bold; text-decoration: none;"> </del></div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>wobei &lt;math&gt;U&lt;/math&gt; die Menge aller ''möglichen'' Werte von &lt;math&gt;u&lt;/math&gt; bezeichnet, die in Frage kommen.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Dies ist ein ''globales'' robustes Optimierungsproblem dahingegen, dass die robuste Nebenbedingung &lt;math&gt;g(x,u)\le b, \forall u\in U&lt;/math&gt; alle ''möglichen'' Werte von &lt;math&gt;u&lt;/math&gt; betrachtet.<del style="font-weight: bold; text-decoration: none;"> </del></div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Dies ist ein ''globales'' robustes Optimierungsproblem dahingegen, dass die robuste Nebenbedingung &lt;math&gt;g(x,u)\le b, \forall u\in U&lt;/math&gt; alle ''möglichen'' Werte von &lt;math&gt;u&lt;/math&gt; betrachtet.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Die Schwierigkeit bei solch einer ''globalen'' Nebenbedingung besteht darin, dass eine Situation auftreten kann, in der es kein &lt;math&gt;x\in X&lt;/math&gt; gibt, dass diese Nebenbedingung erfüllt. Selbst wenn solch ein &lt;math&gt;x\in X&lt;/math&gt; existiert, kann die Nebenbedingung selber zu ''konservativ'' sein. Sie kann dazu führen, dass die Lösung &lt;math&gt;x\in X&lt;/math&gt; nur zu einem kleinen Zielfunktionswert &lt;math&gt;f(x)&lt;/math&gt; führt, der jedoch nicht repräsentativ für andere Lösungen &lt;math&gt;x\in X&lt;/math&gt; steht. Es könnte zum Beispiel ein &lt;math&gt;x'\in X&lt;/math&gt; geben, dass die robuste Nebenbedingung nur ganz leicht verletzt, aber einen viel größeren Zielfunktionswert &lt;math&gt;f(x')\in X&lt;/math&gt; erreicht. In diesen Fällen kann es notwendig sein, die robuste Nebenbedingung etwas aufzuweichen und/oder die Formulierung des Problems zu ändern.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Die Schwierigkeit bei solch einer ''globalen'' Nebenbedingung besteht darin, dass eine Situation auftreten kann, in der es kein &lt;math&gt;x\in X&lt;/math&gt; gibt, dass diese Nebenbedingung erfüllt. Selbst wenn solch ein &lt;math&gt;x\in X&lt;/math&gt; existiert, kann die Nebenbedingung selber zu ''konservativ'' sein. Sie kann dazu führen, dass die Lösung &lt;math&gt;x\in X&lt;/math&gt; nur zu einem kleinen Zielfunktionswert &lt;math&gt;f(x)&lt;/math&gt; führt, der jedoch nicht repräsentativ für andere Lösungen &lt;math&gt;x\in X&lt;/math&gt; steht. Es könnte zum Beispiel ein &lt;math&gt;x'\in X&lt;/math&gt; geben, dass die robuste Nebenbedingung nur ganz leicht verletzt, aber einen viel größeren Zielfunktionswert &lt;math&gt;f(x')\in X&lt;/math&gt; erreicht. In diesen Fällen kann es notwendig sein, die robuste Nebenbedingung etwas aufzuweichen und/oder die Formulierung des Problems zu ändern.</div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Zeile 49:</td> <td colspan="2" class="diff-lineno">Zeile 49:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>: &lt;math&gt;\rho(x):= \max_{Y\subseteq U} \ \{size(Y): g(x,u)\le b, \forall u\in Y\} \ , \ x\in X&lt;/math&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>: &lt;math&gt;\rho(x):= \max_{Y\subseteq U} \ \{size(Y): g(x,u)\le b, \forall u\in Y\} \ , \ x\in X&lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>wobei &lt;math&gt;size(Y)&lt;/math&gt; ein angemessenes Maß für die "Größe" der Menge &lt;math&gt;Y&lt;/math&gt; darstellen soll. Ist beispielsweise &lt;math&gt;U&lt;/math&gt; eine endliche Menge, dann kann &lt;math&gt;size(Y)&lt;/math&gt; als die [[Mächtigkeit (Mathematik)|Kardinalität]] der Menge &lt;math&gt;Y&lt;/math&gt; betrachtet werden.<del style="font-weight: bold; text-decoration: none;"> </del></div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>wobei &lt;math&gt;size(Y)&lt;/math&gt; ein angemessenes Maß für die "Größe" der Menge &lt;math&gt;Y&lt;/math&gt; darstellen soll. Ist beispielsweise &lt;math&gt;U&lt;/math&gt; eine endliche Menge, dann kann &lt;math&gt;size(Y)&lt;/math&gt; als die [[Mächtigkeit (Mathematik)|Kardinalität]] der Menge &lt;math&gt;Y&lt;/math&gt; betrachtet werden.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Die Robustheit der Entscheidung ist damit die Größe der größten Untermenge von &lt;math&gt;U&lt;/math&gt;, für die die Nebenbedingung &lt;math&gt;g(x,u)\le b&lt;/math&gt; für jedes &lt;math&gt;u&lt;/math&gt; in dieser Menge erfüllt ist. Die optimale Entscheidung ist damit diejenige mit dem größten Robustheitswert.<del style="font-weight: bold; text-decoration: none;"> </del></div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Die Robustheit der Entscheidung ist damit die Größe der größten Untermenge von &lt;math&gt;U&lt;/math&gt;, für die die Nebenbedingung &lt;math&gt;g(x,u)\le b&lt;/math&gt; für jedes &lt;math&gt;u&lt;/math&gt; in dieser Menge erfüllt ist. Die optimale Entscheidung ist damit diejenige mit dem größten Robustheitswert.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Dadurch entsteht das folgende robuste Optimierungsproblem:</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Dadurch entsteht das folgende robuste Optimierungsproblem:</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>: &lt;math&gt;\max_{x\in X, Y\subseteq U} \ \{size(Y): g(x,u) \le b, \forall u\in Y\}&lt;/math&gt;<del style="font-weight: bold; text-decoration: none;"> </del></div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>: &lt;math&gt;\max_{x\in X, Y\subseteq U} \ \{size(Y): g(x,u) \le b, \forall u\in Y\}&lt;/math&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Die beschriebene Bedeutung von Globaler Robustheit wird in der Praxis nicht oft verwendet, da die dadurch entstehenden robusten Optimierungsprobleme normalerweise (jedoch nicht immer) sehr schwer zu lösen sind.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Die beschriebene Bedeutung von Globaler Robustheit wird in der Praxis nicht oft verwendet, da die dadurch entstehenden robusten Optimierungsprobleme normalerweise (jedoch nicht immer) sehr schwer zu lösen sind.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>== Bibliographie ==<del style="font-weight: bold; text-decoration: none;"> </del></div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>== Bibliographie ==</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* Armin Scholl: ''Robuste Planung und Optimierung: Grundlagen <del style="font-weight: bold; text-decoration: none;">-</del> Konzepte und Methoden <del style="font-weight: bold; text-decoration: none;">-</del> experimentelle Untersuchungen.'' Heidelberg 2001, ISBN 3790814083</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* Armin Scholl: ''Robuste Planung und Optimierung: Grundlagen <ins style="font-weight: bold; text-decoration: none;">–</ins> Konzepte und Methoden <ins style="font-weight: bold; text-decoration: none;">–</ins> experimentelle Untersuchungen.'' Heidelberg 2001, ISBN 3790814083</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Kategorie:Optimierung]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Kategorie:Optimierung]]</div></td> </tr> </table> Aka https://de.wikipedia.org/w/index.php?title=Robuste_Optimierung&diff=181661059&oldid=prev Formatierer: typo 2018-10-10T11:26:14Z <p>typo</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="de"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Nächstältere Version</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Version vom 10. Oktober 2018, 13:26 Uhr</td> </tr><tr> <td colspan="2" class="diff-lineno">Zeile 41:</td> <td colspan="2" class="diff-lineno">Zeile 41:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Dies ist ein ''globales'' robustes Optimierungsproblem dahingegen, dass die robuste Nebenbedingung &lt;math&gt;g(x,u)\le b, \forall u\in U&lt;/math&gt; alle ''möglichen'' Werte von &lt;math&gt;u&lt;/math&gt; betrachtet. </div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Dies ist ein ''globales'' robustes Optimierungsproblem dahingegen, dass die robuste Nebenbedingung &lt;math&gt;g(x,u)\le b, \forall u\in U&lt;/math&gt; alle ''möglichen'' Werte von &lt;math&gt;u&lt;/math&gt; betrachtet. </div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Die Schwierigkeit bei solch einer ''globalen'' Nebenbedingung besteht darin, dass eine Situation auftreten kann, in der es kein &lt;math&gt;x\in X&lt;/math&gt; gibt, dass diese Nebenbedingung erfüllt. Selbst wenn solch ein &lt;math&gt;x\in X&lt;/math&gt; existiert, kann die Nebenbedingung selber zu ''konservativ'' sein. Sie kann dazu führen, dass die Lösung &lt;math&gt;x\in X&lt;/math&gt; nur zu einem kleinen Zielfunktionswert &lt;math&gt;f(x)&lt;/math&gt; führt, der jedoch nicht repräsentativ für andere Lösungen &lt;math&gt;x\in X&lt;/math&gt; steht. Es könnte zum Beispiel ein &lt;math&gt;x'\in X&lt;/math&gt; geben, dass die robuste Nebenbedingung nur ganz leicht verletzt, aber einen viel größeren Zielfunktionswert &lt;math&gt;f(x')\in X&lt;/math&gt; erreicht. In diesen Fällen kann es notwendig sein, die robuste <del style="font-weight: bold; text-decoration: none;">Nebenbedingungung</del> etwas aufzuweichen und/oder die Formulierung des Problems zu ändern.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Die Schwierigkeit bei solch einer ''globalen'' Nebenbedingung besteht darin, dass eine Situation auftreten kann, in der es kein &lt;math&gt;x\in X&lt;/math&gt; gibt, dass diese Nebenbedingung erfüllt. Selbst wenn solch ein &lt;math&gt;x\in X&lt;/math&gt; existiert, kann die Nebenbedingung selber zu ''konservativ'' sein. Sie kann dazu führen, dass die Lösung &lt;math&gt;x\in X&lt;/math&gt; nur zu einem kleinen Zielfunktionswert &lt;math&gt;f(x)&lt;/math&gt; führt, der jedoch nicht repräsentativ für andere Lösungen &lt;math&gt;x\in X&lt;/math&gt; steht. Es könnte zum Beispiel ein &lt;math&gt;x'\in X&lt;/math&gt; geben, dass die robuste Nebenbedingung nur ganz leicht verletzt, aber einen viel größeren Zielfunktionswert &lt;math&gt;f(x')\in X&lt;/math&gt; erreicht. In diesen Fällen kann es notwendig sein, die robuste <ins style="font-weight: bold; text-decoration: none;">Nebenbedingung</ins> etwas aufzuweichen und/oder die Formulierung des Problems zu ändern.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Beispiel ===</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Beispiel ===</div></td> </tr> </table> Formatierer https://de.wikipedia.org/w/index.php?title=Robuste_Optimierung&diff=152256385&oldid=prev Tattoo: Nebenbedingungung 2016-03-07T06:53:00Z <p>Nebenbedingungung</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="de"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Nächstältere Version</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Version vom 7. März 2016, 08:53 Uhr</td> </tr><tr> <td colspan="2" class="diff-lineno">Zeile 41:</td> <td colspan="2" class="diff-lineno">Zeile 41:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Dies ist ein ''globales'' robustes Optimierungsproblem dahingegen, dass die robuste Nebenbedingung &lt;math&gt;g(x,u)\le b, \forall u\in U&lt;/math&gt; alle ''möglichen'' Werte von &lt;math&gt;u&lt;/math&gt; betrachtet. </div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Dies ist ein ''globales'' robustes Optimierungsproblem dahingegen, dass die robuste Nebenbedingung &lt;math&gt;g(x,u)\le b, \forall u\in U&lt;/math&gt; alle ''möglichen'' Werte von &lt;math&gt;u&lt;/math&gt; betrachtet. </div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Die Schwierigkeit bei solch einer ''globalen'' Nebenbedingung besteht darin, dass eine Situation auftreten kann, in der es kein &lt;math&gt;x\in X&lt;/math&gt; gibt, dass diese Nebenbedingung erfüllt. Selbst wenn solch ein &lt;math&gt;x\in X&lt;/math&gt; existiert, kann die Nebenbedingung selber zu ''konservativ'' sein. Sie kann dazu führen, dass die Lösung &lt;math&gt;x\in X&lt;/math&gt; nur zu einem kleinen Zielfunktionswert &lt;math&gt;f(x)&lt;/math&gt; führt, der jedoch nicht repräsentativ für andere Lösungen &lt;math&gt;x\in X&lt;/math&gt; steht. Es könnte zum Beispiel ein &lt;math&gt;x'\in X&lt;/math&gt; geben, dass die robuste Nebenbedingung nur ganz leicht verletzt, aber einen viel größeren Zielfunktionswert &lt;math&gt;f(x')\in X&lt;/math&gt; erreicht. In diesen Fällen kann es notwendig sein, die robuste <del style="font-weight: bold; text-decoration: none;">Nebenbedinungung</del> etwas aufzuweichen und/oder die Formulierung des Problems zu ändern.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Die Schwierigkeit bei solch einer ''globalen'' Nebenbedingung besteht darin, dass eine Situation auftreten kann, in der es kein &lt;math&gt;x\in X&lt;/math&gt; gibt, dass diese Nebenbedingung erfüllt. Selbst wenn solch ein &lt;math&gt;x\in X&lt;/math&gt; existiert, kann die Nebenbedingung selber zu ''konservativ'' sein. Sie kann dazu führen, dass die Lösung &lt;math&gt;x\in X&lt;/math&gt; nur zu einem kleinen Zielfunktionswert &lt;math&gt;f(x)&lt;/math&gt; führt, der jedoch nicht repräsentativ für andere Lösungen &lt;math&gt;x\in X&lt;/math&gt; steht. Es könnte zum Beispiel ein &lt;math&gt;x'\in X&lt;/math&gt; geben, dass die robuste Nebenbedingung nur ganz leicht verletzt, aber einen viel größeren Zielfunktionswert &lt;math&gt;f(x')\in X&lt;/math&gt; erreicht. In diesen Fällen kann es notwendig sein, die robuste <ins style="font-weight: bold; text-decoration: none;">Nebenbedingungung</ins> etwas aufzuweichen und/oder die Formulierung des Problems zu ändern.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Beispiel ===</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Beispiel ===</div></td> </tr> </table> Tattoo https://de.wikipedia.org/w/index.php?title=Robuste_Optimierung&diff=127759928&oldid=prev Fettbemme: der laie sollte informiert werden, worum es sich handelt ohne erst auf den Link zeigen zu müssen :-) 2014-02-20T10:35:35Z <p>der laie sollte informiert werden, worum es sich handelt ohne erst auf den Link zeigen zu müssen :-)</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="de"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Nächstältere Version</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Version vom 20. Februar 2014, 12:35 Uhr</td> </tr><tr> <td colspan="2" class="diff-lineno">Zeile 1:</td> <td colspan="2" class="diff-lineno">Zeile 1:</td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>'''Robuste Optimierung''' ist ein Gebiet der [[Optimierung (Mathematik)|Optimierung]]. Dabei geht es um Optimierungsprobleme, in denen nach Stabilität gegenüber Unsicherheit und/oder Variabilität in den Werten der Problemparameter gestrebt wird.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>'''Robuste Optimierung''' ist ein Gebiet der [[Optimierung (Mathematik)|Optimierung<ins style="font-weight: bold; text-decoration: none;"> in der Mathematik</ins>]]. Dabei geht es um Optimierungsprobleme, in denen nach Stabilität gegenüber Unsicherheit und/oder Variabilität in den Werten der Problemparameter gestrebt wird.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Geschichte==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Geschichte==</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Die Ursprünge der Robusten Optimierung gehen zurück auf die Begründung der modernen [[Entscheidungstheorie]] in den <del style="font-weight: bold; text-decoration: none;">50er</del> Jahren. Dabei wurden '''Worst-Case-Analysen''' entwickelt, um mit hohen Unsicherheiten umgehen zu können. Robuste Optimierung wurde in den 70er Jahren zu einem eigenen Forschungsgebiet mit verschiedenen Entwicklungen in Gebieten wie [[Operations Research]], [[Kontrolltheorie]], [[Statistik]], [[Wirtschaftswissenschaft]] u. a.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Die Ursprünge der Robusten Optimierung gehen zurück auf die Begründung der modernen [[Entscheidungstheorie]] in den <ins style="font-weight: bold; text-decoration: none;">1950er</ins> Jahren. Dabei wurden '''Worst-Case-Analysen''' entwickelt, um mit hohen Unsicherheiten umgehen zu können. Robuste Optimierung wurde in den 70er Jahren zu einem eigenen Forschungsgebiet mit verschiedenen Entwicklungen in Gebieten wie [[Operations Research]], [[Kontrolltheorie]], [[Statistik]], [[Wirtschaftswissenschaft]] u. a.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Beispiel == </div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Beispiel == </div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Zeile 61:</td> <td colspan="2" class="diff-lineno">Zeile 61:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Bibliographie == </div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Bibliographie == </div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><del style="font-weight: bold; text-decoration: none;">Scholl,</del> Armin: Robuste Planung und Optimierung: Grundlagen - Konzepte und Methoden - experimentelle Untersuchungen<del style="font-weight: bold; text-decoration: none;">,</del> Heidelberg 2001, ISBN 3790814083</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">*</ins> Armin<ins style="font-weight: bold; text-decoration: none;"> Scholl</ins>: <ins style="font-weight: bold; text-decoration: none;">''</ins>Robuste Planung und Optimierung: Grundlagen - Konzepte und Methoden - experimentelle Untersuchungen<ins style="font-weight: bold; text-decoration: none;">.''</ins> Heidelberg 2001, ISBN 3790814083</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Kategorie:Optimierung]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Kategorie:Optimierung]]</div></td> </tr> </table> Fettbemme https://de.wikipedia.org/w/index.php?title=Robuste_Optimierung&diff=117089873&oldid=prev KLBot2: Bot: 2 Interwiki-Link(s) nach Wikidata (:d:Q2160088) migriert 2013-04-05T00:56:35Z <p>Bot: 2 <a href="/wiki/Hilfe:Internationalisierung" title="Hilfe:Internationalisierung">Interwiki-Link(s)</a> nach <a href="/wiki/Wikipedia:Wikidata" title="Wikipedia:Wikidata">Wikidata</a> (<a href="https://www.wikidata.org/wiki/Q2160088" class="extiw" title="d:Q2160088">d:Q2160088</a>) migriert</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="de"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Nächstältere Version</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Version vom 5. April 2013, 02:56 Uhr</td> </tr><tr> <td colspan="2" class="diff-lineno">Zeile 64:</td> <td colspan="2" class="diff-lineno">Zeile 64:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Kategorie:Optimierung]]</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Kategorie:Optimierung]]</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[en:Robust optimization]]</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[sv:Robust optimering]]</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> </table> KLBot2